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SOME REMARKS ON GENERALIZED MARTIN’S AXIOM

Z. Spasojevié

Abstract. Let GM A denote that if P is well-met, strongly wi-closed and wi-centered
partial order and D a family of < 2“1 dense subsets of PP then there is a filter G C P which
meets every member of D. The consistency of 2¢¥ = wi + 2% > ws + GMA was proved by
Baumgartner [1] and in [13] many of its consequences were considered. In this paper we give
a consequence and present an independence result. Namely, we prove that, as a consequence of
2¢ = w1 +2¥ > wy+GM A, every <*-increasing wy-sequence in (wyl, <*) is a lower half of some
(w2, w2)-gap and show that the existence of an wa-Kurepa tree is consistent with and independent
of 2¢¥ = wy +2¥1 > ws + GMA.

1. Introduction. With the discovery of Martin’s Axiom [8] and its many
consequences a number of set-theorists considered the problem of generalizing Mar-
tin’s Axiom to higher cardinals. Their aim actually was to generalize the conse-
quences of M A to higher cardinals. One of the first generalizations of Martin’s
Axiom is due to Baumgartner [1] and one of the strongest generalizations is due to
Shelah [9]. We will return to Shelah’s version in the last section but now we state
Baumgartner’s result. A partial order P is well-met if any two compatible elements
in P have the greatest lower bound. We denote compatibility of p,q € P by p £ ¢
and their incompatibility by p L q. P is wi-closed if any decreasing w-sequence in
P has a lower bound and it is strongly wi-closed if the greatest lower bound exists
for any such sequence. P is centered if any finite sub-collection of P has a lower
bound and it is w;-centered if it is a union of w; many centered partial orders.
Baumgartner [1] constructed a model for

(BA) 2 =w; +2¥t > wy +GMA

and thus obtained the consistency of one of the first versions of Generalized Martin’s
Axiom. In fact, Baumgartner considered a somewhat bigger class of partial orders,
but in this paper we will only consider partial orders which are well-met, strongly
wr-closed, wi-centered and of size < 2¢*, where 2¥! is computed in the final model.

Many consequences of (BA) were considered in [13]. The object of this paper
is to present one more consequence and an independence result. We show that every
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<*-increasing we-sequence in (wy™*, <*) is a lower half of some (w2, w2)-gap (see §2
for notation and terminology). As usual, this result will be obtained by applying
G M A to suitably chosen partial orders. It will be fairly straight-forward to show
that this partial order is well-met and strongly w;-closed. Somewhat harder will
be to show that it is wj-centered. For this we first need to recall the notion of a
complete embedding.

Definition 1.1. Let P and Q be partial orders. An i: PP — Q is a complete
embedding if

(a) Vp,p' € P(p' <p—i(p) <i(p)),

(b) Vp,p' € P(p' Lp & i(p) Li(p)),

(c) Vg e Qap e PVp' € P(p' <p—i(p') Li(p)).
We also recall a result from [13].

PROPOSITION 1.2. Assume 2“ = w;. Then any countable support iteration
of length < 2“1 with well-met, strongly w;-closed and w;-centered partial orders
yields an ws-centered partial order.

At this stage we also point out that 2¥ = w; is assumed throughout this
paper. Now, let P be a partial order which is well-met and strongly w;-closed and
suppose that all the conditions in P are countable. To show that P is w;-centered,
it suffices to exhibit a sequence (P¢:& < a < 2¢1) of sub-orders of P such that
P, = P and each P, for £ < «, is well-met, strongly w,-closed and w;-centered,
as well as a sequence (ig,;:& < n < @), with ig,: P = P, of complete embeddings
such that V&,n,0(§ < n <60 < a = igg = igg 0igy). Then P can be viewed as
a countable support iteration of length a < 2t with well-met, strongly w-closed
and w;-centered partial orders so that by Proposition 1.2 P is also w;-centered.

It is well known that 2 = w; implies the existence of an wy-Aronszajn tree
(see [6]). The results of Laver and Shelah [7] and Shelah and Stanley [10] show that
the existence of an w,-Suslin tree is consistent with and independent of (BA). In the
final section we consider the influence of (BA) on the existence of wy-Kurepa trees.
Our result is that the existence of such trees is consistent with and independent of
(BA).

2. Gaps. Let x* be the set of all function from k to k. If f,g € k" then
f<*gifand only if In < kVi < k(i > n — f(i) < g(i)) and f(i) < g(i) on a set
of size k. A (k*,kT)-pregap in (k*,<*) is a pair (a,b) where a = {(a¢: £ < k™) and
b = (be:§ < k1) are subsets of k" such that V&,n < k™ (ag <* b,) and V¢ < n <
kT (ag <* ay A by <* be). If there is a ¢ € k" such that V&, n < K+ (ag <* ¢ <* by)
then c splits the pregap (a,b). If no such c exists then (a,b) is a (sx*, k™)-gap.

Hausdorff [4] showed (in ZFC) that (w*, <*) contain an (wq,w;)-gap. Herink
[5] and independently Blaszczyk and Szymanski [2] generalized Hausdorff’s result
to higher cardinals by proving that if x is a regular cardinal then (k*, <*) contains
a (KT, kT)-gap. Hausdorfl’s result was refined in [11] by showing that M A implies
that every <*-increasing wi-sequence in (w¥,<*) is a lower half of some (w1,w1)-
gap. And this last result was further improved in [12] by establishing that t > wy is
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in fact equivalent to the statement that every <*-increasing w;-sequence in (w*, <*)
is a lower half of some (w;,w;)-gap. The goal of this section is to show that (BA)
implies that every <*-increasing ws-sequence in (wy?, <*) is a lower half of some
(w2, w2)-gap and thus refine the results of Herink [5] and Blaszczyk and Szyman-
ski [2].

Let a = (a¢:€ < wa) be an <*-increasing ws-sequence in (wy*, <*). A <*-
decreasing wo-sequence b = (bg: £ < wa) on top of a, such that (a,b) is an (w2, w2)-
gap, will be obtained from an application of GM A to a suitably defined partial
order P,. In order to guarantee that (a,b) is in fact a gap, the elements of the
sequences a and b have to satisfy the following condition:

(%) V&€ <waVi < wi(ag(d) <be(d)) AVEN <wa(é <n— Fi <wi(be(d) < ap(d))).

This condition is a refinement of the following condition due to Kunen for
(w1, w1)-gaps in (w¥, <*) (unpublished work):

VE < wiVi < w(ag(i) < be(i)) and
VEn <wi(§ #n— Fi <wlag(i) £ by(i) V an(i) £ be(i))).

Now we show that if 2¥ = w; then every (w2, ws)-pregap in (wy*, <*) satisfy-
ing (%) is in fact a gap.

LEMMA 2.1. Assume 2¥ = wy and let (a,b) = (ag,be: £ < wa) be an (wa,ws)-
pregap in (wy*, <*) whose elements satisfy (x). Then (a,bd) is a gap.

Proof. By way of contradiction, assume (a, b) is split by ¢:w; — w;. Then
(o) VE < wedng < wiVn > ng(ag(n) < c(n) < be(n)).

By a first thinning process we may assume that Y€ < ws(ng = m), for some fixed
m < wy. Since 2¥ = w; and m is a countable ordinal, we have | w{™ |= w;. Hence,
by another thinning process we may assume that

(o) VEn<walae [m=a, [mAb | m=0b, | m).

But then (o),(e) and the first clause of () imply that V&, < waVi < wq(ag(i) <
b,(¢)), which contradicts the second clause of (x). Hence, (a,b) is a gap and the
Lemma is proved. O

Therefore, the definition of P, has to incorporate the requirements in (x).
Definition 2.2. Let a = (ag:§{ < wy) be an <*-increasing ws-sequence in
(Wi, <7).
P, = {{z,y,n,8): fT,y € [w2]““* An <wi Asiy = wiA
Y€€ y((§ €z = Vi <nlag(i) < s(6)(0))A
fynez(n > ¢ — i <n(s(§)(i) < ay(i))))}
where (3, y2, 12, 82) < (21,y1,n1, $1) if and only if

(1) z1 Cx2,91 Cy2,n < Mo,
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(2) V€€ yi(s2(8) [ ma = 51(¢)),
(3) V&me Vi <wi(§ <mAny <i<np = sa(n) (i) < 52(6) (7)),
(4) V€€ z1Vn € y1Vi <wi(ni <i < mg — ag(i) < s2(n)(0)).

Clearly P, is a partial order and the next step is to show that P, is well-met,
strongly w;-closed and w;-centered so that GM A can be applied to it.

So let (z1,y1,n1, 1), {T2,Yy2,n2,82) € P, and suppose (u,v, k,t) € P, is their
lower bound. We may assume that v = z; U2 and v = y; Uys. Then there is
the least m such that max(ni,n2) < m < k and (u,v,m,t [ m) € P,, where ¢t [ m
is a function with domain v such that Y& € v((¢t [ m)(§) = t(€) [ m). Then it is
easily seen that {u,v,m,t [ m) is the greatest lower bound of {xy,y1,n1,s1) and
(z2,y2,n2, 82) so that P, is well-met.

Now let {xo,¥0, "0, S0) > {®1,¥y1,n1,81) > - - - be a decreasing w-sequence in
Po. Let u = U, i, v = U, i, M = supicw(n;) and let ¢ be a function with
domain v such that V& € v(t(§) = U{s:(£): € € y;}). Then (u,v,m,t) is the greatest

lower bound in P, of the above sequence so that P, is strongly w;-closed.

As indicated in §1, to show that P, is wi-centered it suffices to show that
there is a sequence (Py:a < wsy) of sub-orders of P, such that P,, = P, and a
sequence (iqp:a < 0 < wo), with i43:Pq — Pg, of complete embeddings such that
Ve, B,v(a < <y < ws = gy = i3y 0iap) and such that each P,, for a < wa, is
well-met, strongly w;-closed and wy-centered. Then P, can be viewed as a countable
support iteration of length ws with well-met, strongly w;-closed and wj-centered
partial orders, since P, consists of countable conditions. Then, by Proposition 1.2,
P, is also wi-centered.

For each a < wsy let P, = {{z,y,n,s) € Po:y C a} and for each a < § < wy
let in3:Py, — Pg be the inclusion map i(p) = p. Then P, = P,,, each P, is
a sub-order of P, with the ordering relation inherited from P,, and Va < g <
v < wa(iay = 98y 04q3). Analogous proof can be used to show that each P,, for
a < wg, is well-met and strongly wi-closed as the one used to show that P, has
these properties.

LEMMA 2.3. For each a < 8 < ws, iag 15 a complete embedding.

Proof. Properties (a) and (b) of Definition 1.1 are satisfied in a trivial way.
For (c), let ¢ = (z4,Yq,Mq,54) € Pg. Then p = (z4,y N, ng, 54 [ (Y4 N <)) has the
required property. O

LEMMA 2.4. Assume 2¥ = wy. Then for each a < wy, P, is wy-centered.

Proof. Let a < ws and for each y € [a]<“!,n < wy,s € (W)Y let Poyps =
{{z,z,m,t) € Po:z =yAm =nAt=s}. Then P, = J{Payns:y € [0]<“* An <
w1 A s € (wP)?} and since 2¥ = wq, hence wfy = wy, we have that P, is a union
of wy many sub-orders. Furthermore, if (z1,y,n,58),...,{(Tk,y,N,s) € Payns then
<IL‘1 U... kaay;nus) € Payns and (371 U ---U:L'kaya"%S) < (»'171,%”; 3); ) (mkay;na‘g)'
Thus, each Puyps is centered so that Py, is wi-centered. O
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Therefore, Lemmas 2.3 and 2.4 imply that P, can be viewed as a countable
support iteration of length w, with partial orders which are well-met, strongly
ws-closed and w;-centered. Thus, by Proposition 1.2, P, is also w;-centered.

Now we come to the main result of this section.

THEOREM 2.5 Assume (BA). Then every <*-increasing ws-sequence in
(Wi, <*) is a lower half of some (w2,ws)-gap.

Proof. Let a = (ag:£ < we) be an <*-increasing wp-sequence in (wi™*, <*).
Then by the previous results, P, is well-met, strongly w;-closed and w;-centered.
Let G be a filter in P, and for each n < ws let

by = U{S(n) Jp € G(p = (Tp,Yp,Mp, 8p) N8 = 8p)}.

Condition (4) of Definition 2.2 together with the requirement that for each £, 1 < ws
and each m < w; the filter G has a nonempty intersection with the following dense
sets

Depm = {(z,y,n,s) € Pi:é €x An€yAn>m}

will guarantee that Y&,n < we(ag <* by). In addition, condition (3) of Definition
2.2 together with the requirement that for each £ < 7 < wy and each m < w; the
filter G has a nonempty intersection with the following dense sets

Eenm = {(2,y,n,5) € Pa:&,m € yA | {izs(n)(i) < s()(0)} [> m}

will guarantee that V€ < 1 < wa(b, <* b¢). Then the total number of these dense
sets De¢pm and Egpp, is wa. Therefore, to satisfy the requirements that V¢, n <
wa(ag <* by) and V€ < n < wa(b, <* be) the filter G needs to intersect wo dense
subsets of P, and by (BA) there is one such filter. In addition, the definition of P,
implies that V€ < woVi < wy (Clg('l) < bg(l)) and V&, n <wa(é<n— Fi < wy (bE(Z) <
a,(i))) so that (a,b) is in fact an (wa,ws)-gap in (wy*,<*). O

3. Trees. It is well known that 2 = w; implies the existence of an ws-
Aronszajn tree (see [6]). Since 2 = w; is a part of (BA), it follows that (BA)
sattles the existance of an ws-Aronszajn tree. By the results of Laver and Shelah
[7] and Shelah and Stanley [10] the existence of an ws-Suslin tree is consistent with
and independent of (BA). In this section we consider the influence of (BA) on the
existence of wy-Kurepa trees. We show that the existence of such trees is consistent
with and independent of a stronger version of Generalized Martin’s Axiom, due to
Shelah [9], than the one we have considered so far. Recall that an wo-Kurepa tree
is a tree T = (T, <r) of hight ws such that any level of T is of size < wy. lf x € T
let # ={y € T:y <t x}. We also assume that T = w, and that all our trees have
the following properties:

1) |Levo(T) [=1,
2) Va < 8 < hight(T)Vz € Levy(T)3y1,y2 € Leva(T) (y1 # y2 Az <1 y1,y2),
3) Va < hight(T)Vz,y € Levy(T)(limit @ = (x =y & & = §)).
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We begin by formulating Shelah’s version of Generalized Martin’s Axiom. A
partial order P is wg-normal if {ps:a < ws} C P then there is a club C C ws
and a regressive function f:ws — ws such that for a, 8 € C if cf(a) = cf(8) = w;
and f(a) = f(B) then p, and pg are compatible. Note that ws-normality is a
strengthening of wp-Knaster condition, which states that if {py:a < wa} C P then
there is an A € [w2]¥? such that any two elements in {p,:a € A} are compatible.
Let GM A* denote the statement that if P is a partial order such that | P |< 2¢1,
it is well-met, strongly w;-closed and we-normal and D is a family of < 2¥' dense
subsets of PP then there is a filter G C P meeting all the elements of D. The following
Lemma is due to Shelah [9].

LEMMA 3.1. Suppose 2¥ = wy, 2<% = k and k is a regqular cardinal. Let
((Py:a < k), {Qu:a < K)) be a countable support iteration such that

»”

1lkp, “Qu is well-met, strongly wi-closed and wa-normal
Then P is strongly w;-closed and ws-normal.

This Lemma is essentially all that is needed in Shelah’s proof [9] of the con-
sistency of

(SA) 2 =wy + 2 > wy + GMA*.
This Lemma will also play a role in the analysis below.

To obtain a model for (SA) in which there is an wo-Kurepa tree, we start
with a ground model V for ZFC + GCH in which there is an ws-Kurepa tree. For
example, the constructible universe L has this property. Then iterate, as in [9],
to obtain a model for (SA). By Lemma 3.1 cofinalities and hence cardinals are
preserved by the iteration so that any we-Kurepa tree in the ground model remains
an wo-Kurepa tree in the extension. Thus, the existence of an wy-Kurepa tree is
consistent with (SA).

The construction of a model for 2¥ = wy + 2% = w3 + GM A* in which there
are no wo-Kurepa trees requires the existence of a strongly inaccessible cardinal
and it is analogous to Devlin’s construction [3] of a model for 2¥ = wy + M A in
which there are no w;-Kurepa trees. Therefore we only present an outline of our
construction.

The construction will proceed as follows. Start with a model for ZFC+GCH
in which k is a strongly inaccessible cardinal. Then collapse x to wz by the Levy
collapse L, (see below). In the extension, there are no ws-Kurepa trees. Then
iterate, as in [9], to obtain a model for 2¢ = wy + 2¥* = w3 + GM A*. We use
Lemma 3.1 to show that in the final model there are no wy-Kurepa trees.

Now, we define the Levy collapse L, and present some of its properties whose
proofs are standard.

Definition 3.2. L, = {p:| p |< w1 Ap is afunction A dom(p) C k X waA
V(a, &) € dom(p)(p(a, &) € o)}, where p < ¢ if and only if p D q.

For A < k let Ly = {p € L,:dom(p) C A x wz} and L* = {p € L, : dom(p) C
(k\ A) X w2}. then Ly x L is isomorphic to L.
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LEMMA 3.3. L, is wo-closed. If k is strongly inaccessible, then L, has the
K-cc.

LEMMA 3.4. Let M be a countable transitive model (c.t.m.) for ZFC +GCH
and suppose K is strongly inaccessible in M and G is Ly -generic over M. Then
WM = - MIGT _ M MG — e and, in M[G], there are no wo-Kurepa

trees.

So, by extending with L, w; and ws remain unchanged and k gets collapsed
to ws and if GCH holds in M it also holds in M[G].

The idea now is to start with a model M[G], as above, and iterate, as in [9],
w3 times to obtain a model for 2¥ = w; + 2% = w3 + GMA*. But we need to
know that the iteration does not introduce any new w»o-Kurepa trees. The next two
Lemmas are toward this end. We omit the proofs as the Lemmas and their proofs
are the analogues of the corresponding Lemmas for wi-trees. The first one is the
analogue of Lemma 3.6 in [3] and the second one is the analogue of Theorem 8.5
in [1].

LEMMA 3.5. Let M be a c.t.m. for ZFC and suppose that, in M, P and
Q are partial orders such that P is strongly wi-closed and ws-normal and Q is
wo-closed. Let G be P x Q-generic over M. Let Gp = {p € P:(p,1) € G} and
Go={q€Q,q) € G}. Then if T is an wy-tree in M[Gp] and b is an w-branch
of T in M[G], then b € M[Gp]. In addition wiu[G] =wM and wéw[G] =wi,

LEMMA 3.6. Suppose T is an ws-tree and P is strongly wy-closed and w,-
normal partial order. Then forcing with P adds no new wo-branches through T.

Now we state and prove the main result of this section.

THEOREM 3.7. Let M be a ct.m. for ZFC + GCH and k strong-
ly inaccessible in M. Then there is an extension of M which is a model for
2¥ = wy +2¥ = w3 + GM A* in which there are no ws-Kurepa trees.

Proof. Let M be as above and G L,-generic over M. Then, by Lemma
3.4, in N = M[G] there are no we-Kurepa trees and GCH still holds. In N, we
perform a countable support iteration of length ws, as in [9], to obtain a model for
2¥ = wy +2¥ = w3 + GMA*. Let ({(Po:a < w3), (Qq:a < ws)) be such iteration
and H P,,-generic over N. Then N[H] is a model for 2¥ = w; 4+ 2! = w3 +GM A*
and we now show that there are no ws-Kurepa trees in N[H]. In N, let 7 be a
nice P,,-name for an wa-tree in N[H| (see [6] for the definition of a nice name).
Since, by Lemma 3.1, IP,, has ws-cc there is an @ < w3z such that 7 is in fact a
P,-name. Then H,, the restriction of H to P,, is P, generic over N. Since a < ws,
the iteration is with countable supports, we are considering only partial orders of
size < w3 (ie. 1lkp, “|Qy |[<w3]|”), GCH holds in M[G], hence the density
of P, is < ws, we may assume that | P, |[< ws. Now, in M, L, has the s-cc (by
Lemma 3.3), so there is some A < & such that if G is the restriction of G to Ly
then P, € M[G,] and H, is P,-generic over M[G)]. Now T = 7[G] € M[G\][H.]
and, by Lemma 3.5, any wp-branch of T which is in M[G,\][H,][G?] is already in
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MI[G\][Ho]- So, in M[G,][H4], T has at most 2“2 = # such branches and since
k is still strongly inaccessible we have that § < k. But, in M[G\][H,][G}], & is
collapsed to w3. So T can have at most N, many wy-branches in M[G,][H,][G?].
But M[G\][H4][G}] = M[G\][G*[Ha] = M[G][H,] = N[H,]. So T has at most R,
many wy-branches in N[H,]. However, by Lemma 3.1, P® is wy-normal so that, by
Lemma 3.6, T does not obtain any new ws-branches in the extension N[Hy][H?*].
But N[H,]|[H®] = N[H]. So T can not be an ws-Kurepa tree in N[H] which proves
that in the model N[H] there are no wy-Kurepa trees. This finishes the proof of
the Theorem. O

Therefore, the existence of an wo-Kurepa tree is consistent with and indepen-
dent of (SA) and hence consistent with and independent of (BA).
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