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ON SUMS INVOLVING RECIPROCALS
OF CERTAIN LARGE ADDITIVE FUNCTIONS (II)

Tizuo Xuan

Abstract. Let 8(n) =3, ,p and B(n) = 3, a |, @p- Let p(n) denote the largest prime
factor of an integer n > 2. In the present paper we sharpen the asymptotic formula for the sum

>> B(n)/B(n) and we derive an asymptotic formula for the sum Y~ (B(n) — 3(n))/p(n).
2<n<z 2<n<z

1. Introduction and statement of results

Let B(n) = 3., ,p and B(n) = }_ o), op.
In [2] it was proved that

(1.1) Z B(n)/B(n) = z + O(z exp(—c1 (log z log, :1:)1/2)), ¢ >0,
2<n<z

and

(1.2) Z B(n)/B(n) = z + O(z exp(—ca(log z log, 2)'/?)), ¢z > 0.
2<n<z

The above results were slightly sharpened in [6]. Let us define p(n) as the largest
prime factor of n > 2, and p(1) = 1. In [3] it was proved that

>~ 1/p(n) = 25() (1 + O((log, o/ log 2)'%)),

n<x
[ (logz\,_,
0(z) —/2 p(logt)t dt.

Here p(u) is the so-called “Dickman function”, which is the solution of the
differential-difference equation up’'(u) + p(u — 1) = 0, (u > 1), with the initial

where
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condition p(u) =1, (0 < u < 1), p(u) continuous at v = 1. An approximation to
p(u) in terms of elementary functions is

(1.3) p(u) = exp{—u(logu + log, u — 1 +log, u/logu + O(1/logu)) },

where log, u = loglog u. The asymptotic formula (1.3) was established by Hua [5]
and de Bruijn [1], independently.

In [8], we proved that

(1.4) Y 1/B(n) = (D + O(log; z/logy 2)) Y 1/p(n),
2<n<z nlzx
where 1/2 < D < 1 is an absolute constant.

One of the aimes of the present paper is to provide sharpenings of (1.1) and
(1.2). The results are contained in the following theorem.

THEOREM 1.
B(n) log3 1
(1.5) ——=z+ Dloga:<1+0< —,
25;9 Bn) log, « g p(n)
and
Bn) 1 log§ x 1
(1.6) Z B(n) - 2D10gx<1+0<10g2$>) Z o)
2<n<z n<az

where D is the same as in (1.4).

Moreover, in [9] we proved that

Y Iﬁ:xexp{—(Zrlogmlngm)l/z( 2\\//——1225*‘0(10;23;))}’

2<n<lz
and
(1.8)

B(n) — B(n) _ /- T logs 1
D R G v e )

where r > 0 is arbitrary but fixed.

Another aim of the present paper is to provide sharpenings of (1.8). The
result is:

THEOREM 2.

> B(n) - () _ %logx(l—}—OGZizZ)) ES:(L

i p(n)
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By Theorem 1 and 2, we have

B(n) = (n) _ <~ B(n) - A(n)
2 “hw Pl Tom

2<n<z

It seems interesting to compare the sums involving reciprocals of §(n) with the
sums involving reciprocals of p(n) [8]:

3oyl oy e )
25%:9/3(”) ngn)’ Q;Tbswﬂ(n) Dnzsm;o(n)’

and

Q(n) —w(n Q(n) —w(n
) (n) ()”DZ (L(n)(),

omte  B)

where (n) and w(n) denote respectively the number of prime factors of n counted
with and without multiplicities.

n<x

2. The necessary lemmas

LemmaA 1 [7]. Let

1 1/2 logs =
Ly = exp 3 log z log, = 1-— 210g 21 and
2

1 1/2 logs =
Ly = exp §log;c10g2;c 1+2log—m .
2

Then we have
Z%: Z 1\I'<£,p) (l-I—O(log_Ax)),
n<z p L1<p<L» p p

where A > 0 is arbitrary but fized, and ¥(z,y) denotes the number of positive
integers not exceeding x, oll of whose prime factors do not exceed y.

LEMMA 2 [4]. For any fized e > 0 and z > 3, exp{(log, )%/} <y < z, we
have uniformly

log(u + 1))) - logz

¥(z,y) =wp<u)(1+0( - - L,

LemMA 3 [8]. For any fized e > 0 and 1 < d < y, exp{(log, z)3/3+°} <y <

172 we have uniformly

x

(2.1) U(z/d,y) = U(z,y)d " (1 +0(1/u) + (71%1(0';; 1))>,
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uhere §(log z/logy)
B=pB=y) =1~ T?

here £(u) denotes the positive solution of the equation

(2.2) et =uf+1, (u>1),

and satisfies

(2.3) &(u) =logu + O(logs (u + 2)), u — oo.

LEmMA 4 [8]. For any fized € > 0 and
1<d<y, exp{(logyz)’**}<y<u,

we have uniformly
U(z/d,y) < U(z,y)d~".

3. Proofs of the Theorems

We shall only give a detailed proof of Theorem 1, since Theorem 2 may be
obtained in a similar and simpler way.

By the definition of B(n) and 8(n) we have (p, ¢ denote primes):

B(n) — B(n 1
W(z):= Z 7(,)3@)6():2(&_1)(1 Z W

2<n<z q><z 2<n<z,q“||n
1
@) =Ye-m ¥ > s
¢ <z g<p1<z/9* mi<z/q*p1,p(m1)<p1,(g,m1)=1 1

+ 0( > (a- I)W(wq‘“,q)) = Wi +O0(W2), say.

q><z
It is evident that

1
=3 3 (a-1y > q+Bmipr)’

p1<z ¢*<z/p1, m1<z/q%p1
qa<pi p(m1)<p1, (g;m1)=1

We may write

32 Wi= D+ D> o+ D+ D> =Wt Wat Wi+ W,

p1<z1  z1<p1<Li Li<pi<Ls Lz<pi<z
where z; = exp{(1/10)(logzlog, z)'/?}, and I, and L, are defined in Lemma 1.

Let R = (logzlogg z/logy z) -, <, 1/p(n); we have

1 -
Ws < Z o Z (o= 1)q¥(zg i ', p1)

p1<z1 q><z/p1,9<p1
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(3.3) < 10g2:1:( Z p%) Z q¥(zq~>, 1)

P1<z1 q<z1
< zexp{—4(log zlog, 2)'/*} < R,
since by Lemma 2 and (1.3) we have ¥(2q2, 21) < xq~2 exp{—4.5(log z log, z)*/?}.
Using Lemma 4 we have

mi< Y =Y (a-De¥gontm)

1
z1<p1<La p q*<z/p1,q<p1

1 s
< > p_‘I;(x/plapl) > (a=1)g%)

z21<p1<Lla g~<z/p1,9<p1

1 _ /

< > —U/pp) ) ¢,
z1<p1<Ly p <p1

where §' = (logp1) £(log(z/p1)/logp1). By (2.2) and (2.3) we have
' log(z/p1)
20 <o (2 (7 L logzlog, ,
q”° <exp|2¢ log pr g = log,
for 23 < p1 < L;. Therefore using Lemma 1 we obtain:

1
(3.4) Wi <log’z > —W(z/p;,p1) < R.
21<p1<Ly O
Similarly we have W5 < R.

Now we come to the estimation of Wy in (3.2). We consider separately the
cases p(my) < p1 and p(m1) = p; and obtain

Ws= Y > (a-1)g

Li<p1<Lzq><z/p1,q<p1
1

(3:5) 8 q+p1 + B(my)

m1<z/q%p1,p(m1)<p1,(g;m1)=1
a—1)q o
o Xy aait),
Li<pi<La q*<z/p1,q<p1 b1
Denoting by W the main term on the right-hand side of (3.5) we may write
CERND "IN v »
Li<p(m1)<p1,p(m1)|lm1  Li<p(m1)<p1,p?(m1)||m1  p(m1)<L1

Then we have
1

3= Z Z Z (a=1)g Z q+p1+p2+ B(me)
Li<pi1<La Li<p2<p1 ¢°*<z/pip> ma<z/q%p1p2
q<p1, q#p2 p(ma)<pz,(g,m2)=1
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o XYY - Dm el

Li<pi<Ls Li<pa<pi q><z/pip2,q<p1

+0( > > > (a—l)qpfli'(w/q“plpz,pz))

Li<pi<Ls pa<Li q><z/pip2,q<p1

Proceeding as before, we obtain

s s s—1

(3.6) W5:W5"+O<ZW7]')+O(ZW8j)+O(ZW9j>a

j=1 =2 j=1
where
(3.7

1
w! = Z Z (a—1)q Z )
Pl,.-3Ps anz/m-ups msSz/q“m.ups q +p1 + . —|— Ps + ,B(ms)
a<p1 p(ms)<ps, (¢,ms)=1
where the ranges of summation in the above sums pq,...,ps are Ly < p; < Lo,
Ly <py<pi, ..., [1 <ps <ps—1, and s <logz z is a large number which will be
chosen later and
a—1)q

(3.8) We; = Z Z %‘I’(ﬂf/qapl ---pj—ll)?;Pj),

P1y--5Pi q* <z /p1...pj, q<p1

(3.9) Wej= >, > > M‘I’(x/qo‘pl - Dj»Pj)s

1
P1s--5Pj—1 p; <L1 g <z /p1...pj, 9<p1 p

a—1)q
(3.10) Wy; = Z Z uq’(m/qa“pl .-Dj59q).
P1y---5Pj q*<x/p1...pj, ¢<P1 p1
Since
1 1

= 0 —2 0 —2 ),
APt Ap A Bmy) it +p (gp") + O(pr~B(ms))

and

T T
1= ——, -y — + O(Wrs),
Z <qap1”‘ps pS) (qa+1p1---p3 ps) ( 75)

ms<z/q*p1...ps
p(ms)<ps, (¢,ms)=1

we have further

q
LAY > ————%(z/¢°p1.. . ps;Ds)
o pr+---+Dps
Py 5Ps g% <z /p1-..ps

q<pi,a>2
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+O( Z Z %‘I’(m/qam--.ps,pso

P1se5Ps @<z /p1...ps, q<P1

(D SR SEE =D SR ()

p
P1y---3Ps q*<z/p1...ps, q<P1 ! ms<z/q%p1...ps
p(ms)<ps, (Q:ms)zl

+ O(Wrs) = Wig + O(Wi1) + O(Wi2) + O(Wrs),  say.

We estimate first W19. We consider separately the cases @ = 2 and a > 3 and by
using Lemmas 3 and 4 we obtain

v ...Ds>Ds _
Wio = Z (&/P1 - Pa 1) Z q 1+261(1+O(10g3 x/log, 7))

piop, PLT P S
+ 0 Z 111(.73/1?1 .. .Ps;ps) Z ql—a(l—él) ’
p1+---+ps -
P15+ 3Ps q“<z/p1..ps
q<p1, >3
where ) |
5, — £<Og(x/pi-..ps)>’ i=1.2... s
log ps log ps
Using partial summation and the prime number theorem we have
P1
Z g 120 = / 2720 107! 2 dz (1 4+ O(logg / log, z))
el/d1

q<p1

= (log, 2)~'p;” (1 + O(logs 2/ log, 7).

Similarly

> gt~ « 1.
q« Sz/pl“~p57 q<pi, a23

Therefore we obtain

U(z/p1 .. ps,Ds)
Wio = ) P+ +spss Py (1+ O(logg z/ log, ).

3029 Ps

By (4.13) of [8] we have p% = p°(1 + O(logs ¢/ log, x)) for L, < p < Lo, where
0 = 05. Moreover by (4.6), (4.16), (4.18) and (4.31) of [8], we have

5t (oroi) w2 v

P1ye--sPs L1<p<Lo> p

Similarly, in a way analogous to the above we have for Wi,

Wio = D(logz #) ™" (1 + O(logi z/logy z)) Y p~" "> W(zp~',p)
L1<p<L>

1 1
= —Dlogz(1+ O(log? z/log, x —_.
B g ( (logz =/ log, ));p(n)

(3.12)
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Now we come to the estimation of Wiz in (3.11). By the definition of §(m) and
Lemma 4 we have

Wiz < ) > ((1;721)(1 > p¥(¢/q°p1 - -psp, ps)

P1;---3Ps ‘1<:c/p1 Ps, q<p1 1 P<ps
< Z E T(z/p1 - psp,ps)py’ (logy @) ™"
15:+Ps P<Ps

By (4.19) of [8]

Z Z m/pl -pspaps) 10g12$

1reesPs P<Ps Li<p<Ls p
Similarly
(3.13) Wiz < R.
Similarly we have also
(3.14) Wi, W, Wej, Wo; < R.

By putting (3.12)—(3.14) into (3.11) and (3.11), (3.14) into (3.6) and finally (3.3),
(3.4) and (3.6) into (3.2) we get
1

1
Wi = =Dlogz (1 + O(log? z/ log, = —_.
1 2 g ( ( g3 / 2 ))gp(n)

Moreover, it is easy to prove that
W < R,

which completes the proof of Theorem 1.
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