A GENERALIZATION OF EQUIVALENCE RELATIONS

Marica D. Prešić

Abstract. A many sorted generalization, called *case relation*, of the notion of equ'valence relation is given. Some fundamental properties of the case relations are proved, such as: some set theoretical characterizations and a formula which describes all case relations of the given sets.

By the set-theoretical interpretation of natural languages with highly developed inflection introduced in [2], the verbs have been interpreted as many-sorted relations of the given domains. Namely, if \mathcal{D} is an interpretation, α a verb having the mark $\langle k_1, k_2, \ldots, k_n \rangle$, $i \in D_s$, then the meaning $m(i)(\alpha)$ of the verb α at the index i has been defined as an n-ary relation of the sets $D_{k_1}, D_{k_2}, \ldots, D_{k_n}$ i.e. as a subset of $D_{k_1} \times D_{k_2} \times \cdots \times D_{k_n}$. In what follows for these relations we use the name case relations. Case relations have various properties which resemble the well-known properties of the corresponding one-sorted relations. For example, consider the predicate

(in Serbocroatian: je sličan, in German: ist änlich).

In most inflective languages (1) has the mark $\langle 1, 3 \rangle$, which means that it is applicable to an ordered pair of nouns wich are in nominative and dative respectively. Thus, in the interpretation \mathcal{D} the corresponding case relation for each chosen $i \in D_s$ is a subset of $D_1 \times D_3$. Denote this relation by \sim . On the basis of the usual properies of (1) it follows immediately that \sim satisfies:

$$(R_{13})$$
 $x^1 \sim x^3$

$$(S_{13})$$
 $x^1 \sim y^3 \Rightarrow y^1 \sim x^3$

$$(T_{13}) x^1 \sim y^3 \wedge y^1 \sim z^3 \Rightarrow x^1 \sim z^3 (x^1, y^1, z^1 \in D_1, x^3, y^3, z^3 \in D_3).$$

Obviously, (R_{13}) , (S_{13}) , (T_{13}) are generalizations of reflexivity, symmetry and transitivity. For that reason we call the relation \sim having the properties (R_{13}) , (S_{13}) ,

18 Prešić

 (T_{13}) , or more generally the properties:

- $x^i \sim x^j$ (R_{ij})
- $x^i \sim y^j \Rightarrow y^i \sim x^j$ (S_{ij})

$$(T_{ij}) x^i \sim y^j \wedge y^i \sim z^j \Rightarrow x^i \sim z^j (x^i, y^i, z^i \in D_i, x^j, y^j, z^j \in D_i).$$

a case equivalence relation or more precisely an (i, j)-case equivalence relation. Similarly, the notion of an order relation can be generalized to the notion of a case order relation.

In the sequel we develop a small theory of (f,g)-equivalence relations which comprehends the notion of case equivalence relations.

Definition 1. Let A, B be nonempty sets, $f:A\to B$ a one-to-many mapping from A to B, $g: B \to A$ a one-to-many mapping from B to A and $\sim \subseteq A \times B$ a binary case relation. We say that \sim is an (f,g)-equivalence relation iff:

(i) Both f, g are onto:

$$(0_f) \qquad (\forall y \in B)(\exists x \in A)y = f(x)$$

$$(0_g) \qquad (\forall x \in A)(\exists y \in B)x = g(y);$$

(ii) \sim does not discern f and g, i.e. for each $f(y)_i$, $g(x)_i$

$$(D_{f,g}) x \sim f(y)_1 \Leftrightarrow x \sim f(y)_2, (x, y \in A)$$
$$g(x_1) \sim y \Leftrightarrow g(x)_2 \sim y (x, y \in B);$$

(iii)
$$f, g$$
 are \sim -inverse to each other: $(I_{f,g})$ $x \sim y \Leftrightarrow g(f(x)) \sim y, \quad x \sim y \Leftrightarrow x \sim f(g(y))$ $(x \in A, y \in B);$

(iv) \sim is (f,g)-reflexive (f,g)-symmetric and (f,g)-transitive:

$$(R_{f,g})$$
 $x \sim f(x), \ g(y) \sim y$

$$(S_{f,g})$$
 $x \sim y \Leftrightarrow g(y) \sim f(x)$

$$(T_{f,g})$$
 $x \sim y \land g(y) \sim z \Leftrightarrow x \sim z$, for all $x \in A, y \in B$.

For example, let $A = \{a_1, b_1, c_1, d_1, e_1\}, B = \{a_2, b_2, c_2\}, f = \{(a_1, a_2), (b_1, b_2), e_1\}, f = \{(a_1, a_2), (b_1, b_2), e_2\}, f = \{(a_1, a_2), (b_1, b_2), e_2\}, f = \{(a_1, a_2), (b_2, b_2), e_3\}, f = \{(a_2, b$ $(c_1, a_2), (d_1, c_2), (e_1, c_2); g = \{(a_2, a_1), (a_2, b_1), (b_2, b_1), (b_2, c_1), (c_2, d_1), (c_2, e_1)\}$ and let $\sim = \{(a_1, a_2), (a_1, b_2), (b_1, a_2), (b_1, b_2), (c_1, a_2), (c_1, b_2), (d_1, c_2), (e_1, c_2)\}.$ It is not difficult to verify that \sim is an (f,g)-equivalence relation.

In the case A = B and f, g are identity mappings of A, Definition 1 reduces to the definition of an equivalence relation of A. If f is a one-to-one mapping wich is 1 - 1 and onto, and g is f^{-1} , the conditions for an (f, f^{-1}) -equivalence relation read:

$$x \sim f(x), \ f^{-1}(y) \sim y,$$

$$x \sim y \Rightarrow f^{-1}(y) \sim f(x),$$

$$x \sim y \wedge f^{-1}(y) \sim z \Rightarrow x \sim z.$$

i.e. f is a subset of $A \times B$ having the property: $(\forall x \in A)(\exists y \in B)(x,y) \in f$. By $f(x), f(x)_0, f(x)_1, \ldots$ we denote different images of $x \in A$ by the mapping f.

Especially, if $A = D_i$, $B = D_j$ and f maps x^i to x^j the definition of an (f, f^{-1}) -equivalence relation reduces to the definition of the (i, j)-case equivalence relation.

The following theorem is an immediate consequence of Definition 1.

Theorem 1. The (f,g)-equivalence relation \sim has the following properties:

- (3) $x \sim y \land x \sim z \Rightarrow g(y) \sim z.$
- $(4) x \sim y \Leftrightarrow (\forall z \in B)(x \sim z \Leftrightarrow g(y) \sim z),$
- (5) $x \sim y \wedge z \sim y \Rightarrow z \sim f(x),$
- (6) $x \sim y \land z \sim f(x) \Rightarrow z \sim y,$
- (7) $x \sim y \Leftrightarrow (\forall z \in A)(z \sim y \Leftrightarrow z \sim f(x)).$

Starting from the (f, g)-equivalence relation \sim , we define two binary relations \sim_A , \sim_B , of the sets A, B respectively.

Definition 2.
$$x \sim_A y \Leftrightarrow x \sim f(y), \quad (x, y \in A)$$

 $x \sim_B y \Leftrightarrow g(x) \sim y, \quad (x, y \in B).$

In virtue of $(D_{f,g})$, it follows that \sim_A , \sim_B do not depend on the choice of f(y), g(x), and therefore the definitions are correct. The properties of \sim_A , \sim_B are summarized in the following theorem.

Theorem 2. (i) \sim_A , \sim_B are equivalence relations of the sets A, B respectively.

(ii) Neiher \sim_A discerns g nor \sim_B discerns f, i.e.

$$f(x)_1 \sim_B f(x)_2, \ g(y)_1 \sim_A g(y)_2, \ for \ all \ f(x)_i, \ g(y)_i, \ x \in A, \ y \in B.$$

(iii)
$$x \sim_A q(f(x)), y \sim_B f(q(y)) \text{ for all } x \in A, y \in B.$$

(iv) \sim_A , \sim_B are compatible with f, g respectively, i.e.

$$x \sim_A y \Rightarrow f(x) \sim_B f(y), \quad (x, y \in A)$$

 $x \sim_B y \Rightarrow g(x) \sim_A g(y), \quad (x, y \in B).$

Proof. Part (i) follows by $(R_{f,g})$, $(S_{f,g})$, $(I_{f,g})$, and by part (5) of Theorem 1. (ii) follows by $(D_{f,g})$ and (iii) by $(I_{f,g})$. The proof of the first implication in (iv) reads

$$x \sim_A y \Rightarrow x \sim f(y) \Rightarrow g(f(y)) \sim f(x) \Rightarrow f(x) \sim_B f(y)$$
.

We can prove similarly the second implication.

Using $(I_{f,g})$ it follows immediately that the implications in part (iv) may be replaced by equivalences.

THEOREM 3.

(8)
$$x \sim_A y \Leftrightarrow f(x) \sim_B f(y) \quad (x, y \in A)$$
$$x \sim_B y \Leftrightarrow g(x) \sim_A g(y) \quad (x, y \in B)$$

20 Prešić

An immediate consequence of the preceding theorems is the following:

THEOREM 4.
$$f(x)/\sim_B = \{f(u) \mid u \in A, \ x \sim_A u\}$$
 $g(y)/\sim_A = \{g(\nu) \mid \nu \in B, \ y \sim_B \nu\}$ $(x \in A, \ y \in B).$

Starting from f, g we define in the natural way the mappings (one-to-one) $F: \mathcal{P}(A) \to \mathcal{P}(B), G: \mathcal{P}(B) \to \mathcal{P}(A)$.

Definition 3.
$$F(S) = \{f(x) \mid x \in S\}$$
 $(S \subseteq A),$ $G(T) = \{g(y) \mid y \in T\}$ $(T \subseteq B).$

Theorem 5. The mappings F, G have the following properties:

- (i) $F(x/\sim_A) = f(x)/\sim_B$, $G(y/\sim_A) = g(y)/\sim_A$,
- (ii) F, G are both 1 1 and onto.
- (iii) F, G are inverse to each other.

Proof. (i) has been proved in the preceding theorem; (ii) follows by Theorem 3 and the assumption that f, g are onto; (iii) follows by Theorem 2, part (iii).

In the theorems which follow we prove that the properties (i) - (iv) of \sim_A , \sim_B proved in Theorem 2 and the properties (i) - (iii) of F, G proved in Theorem 5 are characteristic in the sense that any (f,g)-equivalence relation \sim can be defined in terms of two equivalence relations of the sets A, B.

THEOREM 6. Let A, B be non-empty sets, $f: A \to B$, $g: B \to A$ one-to-many mappings which are onto. Let further \approx_A , \approx_B be binary relations of A, B respectively having the properties:

- (i) \approx_A, \approx_B are equivalence relations,
- (ii) \approx_A, \approx_B do not discern f, g respectively,
- (iii) $x \approx_A g(f(x), y \approx_B f(g(y)))$, for all $f(x) \in B$, $g(y) \in A$, $x \in A$, $y \in B$
- (iv) \approx_A , \approx_B are compatible with f, g respectively.

Then any (f,g)-equivalence relation \sim can be defined so that the corresponding relations \sim_A , \sim_B are just \approx_A , \approx_B .

Proof. The relation \sim having the required properties is defined by:

$$x \sim y \Leftrightarrow x \approx_A g(y)$$
.

THEOREM 7. Let f, g be one-to-many mappings of A onto B and B onto A respectively, and let \approx_A , \approx_B be equivalence relations of the sets A and B. Furthermore, suppose that F, G are the mappings introduced by Definition 1. If F, G have the properties:

- (i) $F(x/\approx_A) = f(x)/\approx_B$, $G(y/\approx_B) = g(y)/\approx_A$ $(x \in A, y \in B)$,
- (ii) F, G are both 1 1 and onto,
- (iii) F, G are inverse to each other,

then an (f,g)-equivalence relation \sim can be defined so that the corresponding relations \sim_A , \sim_B are just \approx_A , \approx_B .

The proof follows immediately by Theorems 4 and 6.

Using the preceding results and the results of [1], it follows that all (f,g)-equivalence relations can be determined by the reproductive formulae given in the next theorem.

THEOREM 8. Let $f:A \to B$, $g:B \to A$ be one-to-many mappings which both are onto and π -inverse to each other, where $\pi \subseteq A \times B$ is a binary relation not discerning f and g. Then the relation \sim defined by any of the formulae.

(9)
$$x \sim y \Leftrightarrow (\forall z \in A)(z\pi y \Leftrightarrow z\pi f(x))$$

(10)
$$x \sim y \Leftrightarrow (\forall z \in B)(x\pi z \Leftrightarrow g(y)\pi z)$$

is an (f,g)-equivalence relation, and all (f,g)-equivalence relations can be obtained by any of the preceding formulae.

Proof. If part: Let \sim be defined by (9). It suffices to prove that \sim is (f,g)-reflexive, -symmetric and -transitive. Reflexivity follows immediately. Suppose $x \sim y$, i.e. $(\forall z \in A)(z\pi y \Leftrightarrow z\pi f(x))$. As we have $s\pi y \Leftrightarrow z\pi f(g(y))$, we conclude $(\forall z \in A)(z\pi f(g(y)) \Leftrightarrow z\pi f(x))$, wherefrom $(\forall z \in A)(z\pi f(x) \Leftrightarrow z\pi f(g(y)))$, which, by definition (9), means $g(y) \sim f(x)$, i.e. \sim is (f,g)-symmetric. The proof of transitivity is, for example:

$$x \sim y \land g(y) \sim z \Rightarrow (\forall u \in A)(u\pi y \Leftrightarrow u\pi f(x)) \land (\forall u \in A)(u\pi z \Leftrightarrow u\pi f(g(y)))$$
$$\Rightarrow (\forall u \in A)(u\pi y \Leftrightarrow u\pi f(x)) \land (\forall u \in A)(u\pi z \Leftrightarrow u\pi y)$$
$$\Rightarrow (\forall u \in A)(u\pi z \Leftrightarrow u\pi f(x))$$
$$\Rightarrow x \sim z$$

The proof of the *if part* is similar in the case \sim is defined by (10). Only *if part*: By Theorem 1 parts (4) and (7), it follows immediately that each of the formulae (9), (10), is reproductive, i.e. if \sim is any (f, g)-equivalence relation, it can be obtained by (9), as well as by (10), by choosing for π just the relation \sim .

REFERENCES

- [1] Marica D. Prešić, On certain-formulas for equivalence and order relations, Mat. Vesnik 7 (22) (1970), 507-509.
- [2] Marica D. Prešić, Noun cases: from a logical point of view, to appear,

Institut za Matematiku Prirodno-matematički fakultet Beograd, Jugoslavija (Received 03 01 1985)