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A GENERALIZATION OF EQUIVALENCE RELATIONS

Marica D. Presié

Abstract. A many sorted generalization, called case relation, of the notion of equ’valence
relation is given. Some fundamental properties of the case relations are proved, such as: some set
theoretical characterizations and a formula which describes all case relations of the given sets.

By the set-theoretical interpretation of natural languages with highly devel-
oped inflection introduced in [2], the verbs have been interpreted as many-sorted
relations of the given domains. Namely, if D is an interpretation, o a verb hav-
ing the mark (ki, ks, ... ,k,), i € Dy, then the meaning m(7)(«) of the verb « at
the index ¢ has been defined as an n-ary relation of the sets Dg,,Dg,,... , Dy,
i.e. as a subset of Dy, X Dy, X --- x Dy_. In what follows for these relations we
use the name case relations. Case relations have various properties which resemble
the well-known properties of the corresponding one-sorted relations. For example,
consider the predicate

(1) is similar

(in Serbocroatian: je sli¢an, in German: ist dnlich).

In most inflective languages (1) has the mark (1,3), which means that it is
applicable to an ordered pair of nouns wich are in nominative and dative respective-
ly. Thus, in the interpretation D the corresponding case relation for each chosen
i € D, is a subset of D; x D3. Denote this relation by ~. On the basis of the usual
properies of (1) it follows immediately that ~ satisfies:

(Riz) ' ~2a°
(S13) ' ~yi=yt~z
(Tis) ' ~yPAyt~Z=al~z

3

3 (.Z'l,yl,zl€D1,$37y3723€D3).

Obviously, (R13), (S13), (T13) are generalizations of reflexivity, symmetry and tran-
sitivity. For that reason we call the relation ~ having the properties (Ri3), (S13),
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(T13), or more generally the properties:

(Rij) a'~al

(Siy) 2t~y =yl ~al

T;; i~y Ay~ 2t~ 2ty 2t € Dy, 2,y , 2 € D).
J J

a case equivalence relation or more precisely an (i, j)-case equivalence relation. Sim-
ilarly, the notion of an order relation can be generalized to the notion of a case order
relation.

In the sequel we develop a small theory of (f, g)-equivalence relations which
comprehends the notion of case equivalence relations.

Definition 1. Let A, B be nonempty sets, f : A — B a one-to-many! mapping
from A to B, g : B — A a one-to-many mapping from B to A and ~ C AXx B a
binary case relation. We say that ~ is an (f, g)-equivalence relation iff:

(i) Both f, g are onto:
(0y) (Vy € B)(Fz € A)y = f(z)

(0g) (Vz € A)(Jy € B)z = g(y);

(ii) ~ does not discern f and g, i.e. for each f(y)i, g(x);
me(y)lﬁme(y)Qa ($7y€A)

(Dy.9)
! g@) ~y & g@)a~y  (z,y€B);
(iii) f, g are ~-inverse to each other:
(I1,9) z~y&g(f@)~y, a~ysa~flgly) (z€AyeB);
(iv) ~ is (f, g)-reflexive (f, g)-symmetric and (f, g)-transitive:
(Ryy) z~ f(z), g(y) ~y
(S1.6) z~y &gy ~ f(x)
(Tt,9) r~yAgly)~zox~2z, forall ze A yeB.

For example, let A = {al,bl,cl,dl,el}, B = {ag,bg,CQ}, f = {(al,a2),(b1,b2),
(c1,a2), (d1,¢2), (e1,¢2)}; g = {(a2,a1), (a2,b1), (b2,b1), (b2, c1), (c2,d1), (c2,€1)}
and let ~ = {(ala (12), (ala b2)’ (blu a2)) (bla b2)7 (Cla 0/2), (Cl, b2)a (dla 02)7 (61, 02)}' It
is not difficult to verify that ~ is an (f, g)-equivalence relation.

In the case A = B and f, g are identity mappings of A, Definition 1 reduces
to the definition of an equivalence relation of A. If f is a one-to-one mapping wich
is 1 - 1 and onto, and g is f~!, the conditions for an (f, f~!)-equivalence relation
read:

z~ f(x), f7'() ~v,
z~y=> [Hy) ~ f2),
T~yAfr )~ 2=~ 2

li.e. f is a subset of A X B having the property: (Vz € A)(Jy € B)(z,y) € f. By
f(z), f(x)o, f(z)1,... we denote different images of z € A by the mapping f.
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Especially, if A = D;, B = D; and f maps z' to 7 the definition of an (f, f1)-
equivalence relation reduces to the definition of the (i, j)-case equivalence relation.
The following theorem is an immediate consequence of Definition 1.

THEOREM 1. The (f,g)-equivalence relation ~ has the following properties:

w

r~yNz~z=g(y) ~ 2.
z~y& (Vz€B)(z~zeg(y) ~2),
rT~YyAz~y =z~ f(x),

N

AN N N N N
D Ut
NN AN NN

r~yAz~ flr)=>2~y,
z~ye (VzeA)(z~y ez~ f(x)).

EN{

Starting from the (f, g)-equivalence relation ~, we define two binary relations
~4, ~pB, of the sets A, B respectively.

Definition 2. z~ay<xz~ f(y), (z,y€ A
z~pyegx)~y, (z,y€B).
In virtue of (Dy ), it follows that ~4, ~p do not depend on the choice of

f (W), g(z), and therefore the definitions are correct. The properties of ~4, ~p are
summarized in the following theorem.

THEOREM 2. (i) ~a, ~p are equivalence relations of the sets A, B respec-
tively.
(i¢) Neiher ~4 discerns g nor ~g discerns f, i.e.

f@)1 ~B f(x)2, 9(y)1 ~a g(y)2, for all f(x)i, g(y)i, v € A, y € B.

(i) z~a9(f(@), y~p flg(y)) foral z€ A, yeB.
(iv) ~a, ~pB are compatible with f, g respectively, i.e.
z~ay= fle) ~s fy), (z,y€A)
z~py=g(x)~ag(y), (z,y€B).
Proof. Part (i) follows by (Ry,q), (St.g), (If,4), and by part (5) of Theorem
1. (ié) follows by (Dy,4) and (#it) by (Ir4). The proof of the first implication in
(7v) reads
z~ay =z~ fy) = 9(fy) ~ f(@) = f2) ~p f(y).

We can prove similarly the second implication.

Using (Iy,q) it follows immediately that the implications in part (iv) may be
replaced by equivalences.

THEOREM 3.
T~ay e f(o) ~p fly) (z,y € A)

®) 2 ~py o g(@) ~agly) (zy€B)
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An immediate consequence of the preceding theorems is the following;:

THEOREM 4.

f(@)) ~p={f(u)|u€ A, ~4u}
9()) ~a={g9(v) |veEB, y~pv} (x€ A, yeB).

Starting from f, g we define in the natural way the mappings (one-to-one)
F:P(A) - P(B),G:P(B) = P(A).
Definition 3. F(S)={f(z) |z €S} (SCA),
G(T)={9(y) lyeT} (TCB).
THEOREM 5. The mappings F', G have the following properties:
(i) F(z/ ~a) = f(x)] ~B, G(y/ ~a) = 9(y)/ ~a,
(i) F, G are both 1 -1 and onto.
(iis) F, G are inverse to each other.
Proof. (i) has been proved in the preceding theorem; (1) follows by Theorem
3 and the assumption that f, g are onto; (44) follows by Theorem 2, part ().

In the theorems which follow we prove that the properties (i) - (iv) of ~4,
~p proved in Theorem 2 and the properties (4) - (i) of F', G proved in Theorem 5
are characteristic in the sense that any (f, g)-equivalence relation ~ can be defined
in terms of two equivalence relations of the sets A, B.

THEOREM 6. Let A, B be non-empty sets, f : A — B, g : B — A one-to-
many mappings which are onto. Let further ~4, ~p be binary relations of A, B
respectively having the properties:

(i) ~a, ~p are equivalence relations,
(i1) ~4, ~p do not discern f, g respectively,
(i) = =4 9(f(2), y =B f(9(y))), for all f(z) € B, g(y) €A,z € A, y€B
(iv) ~4, ~p are compatible with f, g respectively.
Then any (f,g)-equivalence relation ~ can be defined so that the corresponding

relations ~ 4, ~p are just 84, ~p.

Proof. The relation ~ having the required properties is defined by:

T~y Sz g(y).

THEOREM 7. Let f, g be one-to-many mappings of A onto B and B onto
A respectively, and let =4, ~p be equivalence relations of the sets A and B. Fur-
thermore, suppose that F', G are the mappings introduced by Definition 1. If F', G
have the properties:

(i) F(z/ =a) = f(2)/ =B, Gly/ =B) =9(y)/ ~a (z €A, y€B),
(it) F, G are both 1 - 1 and onto,

(iie) F, G are inverse to each other,
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then an (f, g)-equivalence relation ~ can be defined so that the corresponding rela-
tions ~4, ~p are just X4, NB.

The proof follows immediately by Theorems 4 and 6.

Using the preceding results and the results of [1], it follows that all (f,g)-
equivalence relations can be determined by the reproductive formulae given in the
next theorem.

THEOREM 8. Let f: A — B, g: B — A be one-to-many mappings which
both are onto and w-inverse to each other, where 1 C A x B is a binary relation
not discerning f and g. Then the relation ~ defined by any of the formulae.

9) z~ys (Vz € A)(zmy & 2nf(x))
(10) z~ys (Vz € B)xnz < g(y)rz)

is an (f, g)-equivalence relation, and all (f, g)-equivalence relations can be obtained
by any of the preceding formulae.

Proof. If part: Let ~ be defined by (9). It suffices to prove that ~ is (f, g)-
reflexive, -symmetric and -transitive. Reflexivity follows immediately. Suppose
x~y,ie (Vz € A)(zry & znf(x)). As we have sty < z7f(g(y)), we conclude
(Vz € A)(2mf(9(y)) © znf(x)), wherefrom (Vz € A)(znf(z) & 27 f(g(y))), which,
by definition (9), means g(y) ~ f(z), i.e. ~ is (f,g)-symmetric. The proof of
transitivity is, for example:

z~yAgly) ~z= (Vu € A)(ury © unf(z)) A (Vu € A)(urz & urn f(g(y)))
= (Vu € A)(ury & urf(z)) A (Vu € A)(urz < ury)

= (Vu € A)(urz & urf(z))
>zr~z

The proof of the if part is similar in the case ~ is defined by (10). Only
if part: By Theorem 1 parts (4) and (7), it follows immediately that each of the
formulae (9), (10), is reproductive, i.e. if ~ is any (f, g)-equivalence relation, it can
be obtained by (9), as well as by (10), by choosing for 7 just the relation ~.
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