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Abstract. We introduce the notion of the spectrum of an infinite denumerable graph,
with specially defined adacency matrix. Among other things, we investigate general properties of
spectra, spectra of bipartite graphs and infinite graphs with finite spectrum.

The main difference in comparision with spectra of finite graphs is the non-uniqueness of
the spectrum of an infinite graph.

1.Introduction.

1. — There were few attempts to extend the well developed theory of spectra
of finite graphs [5] to the infinite case (see, for example [2a]). Here and in the
forthcoming papers we offer such an extension.

Thus our aim is to introduce and to investigate the spectrum of an infinite
graph, and to obtain an analogue to the spectral theory of finite graphs. But this
idea comes accross distinct difficulties, and only a number of results rest valid for
infinite graphs.

In this paper, we adopt without a special mention many general denotations
and definitions from the spectral theory of finite graphs (for instance, bipartite
graphs, complete graphs, irreducible matrix, prenumeration of the vertex set i.e.
permutation of a graph etc).

Throughout the paper, under a graph G we always mean an infinite denumer-
able graph with vertex set V(G) equal to the set N = {1, 2, ...} of natural numbers,
which is in addition connected and undirected, and without loops or multiple edges.

1) — Communicated on VII Congress of Yugoslav Mathematicians, 6-12. 10. 1980, Becié¢i—
Budva.

2) — Izradu ovog rada je finansirala Republicka zajednica za nau¢ni rad SR Srbije.
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The adjacency matrix A(G) = [a;;] of G is an infinite N x N matrih, which
is, in order to avoid several difficulties, defined in a special way; we put

a™ti=2, if vertices i and j are adjacent,
a;; =
“ 0, if ¢ and j are non-adjacent

where a is a fixed positive constant (0 < a < 1).
Next, since if 4, j are adjacent, a;; = a*~'a?~!, we can say that for any i € N

vertex v; supports the weight a’~!, so that whole graph G is labelled or weighted.

As an essential difference in comparision with finite case, we note that the
matrix A = A(G), at any relabelling of the vertex set V(G) transforms into a
matrix PAP’, but the matrix P is never orthogonal (except in the trivial case).

Matrix A can be regarded as the matrix of a linear operator in a separable
Hilbert space H with an orthonormal basis {e1, ez,...} = {e;} and it is obviously
symmetric. In the sequel, we shall not differ it from the corresponding linear
operator in space H.

We notice that in general case, spectrum of any bounded operator (or bounded
symmetric operator) in a Hilbert space, does not consists of the eigenvalues only,
so we need some auxilliary facts concerning symmetric Hilbert— Schmidt operator
whose matrix has non-negative entries.

2. — Let A = [a;;] be any symmetric N x N matrix with complex entries such
that
1/2
n(A) = Z |ai;|? < oc.
i,J
Then A is said to have finite absolute norm n(A4), it is bounded, and its
operator norm ||A|| < n(A).

The corresponding operator A is also called — Hilbert-Schmidt operator. It
is compact and self adjoint ([1], p.92), and its spectrum is the spectrum of the
matrix A.

Since A is compact and self-adjoint in H, its spectrum is real and consists
of a sequence A1, A2, A3, ... of eigenvalues (each of finite multiplicity), and of the
value A = 0 (which need not be an eigenvalue:

a(A) = D s b (] > he] >0

Here, sequence {\;} is finite or A,, = 0(n — 00). The spectral radius r = r(A)
is equal to the maximal eigenvalue (and to the operator norm), r(A) = Ay = [|4]|.

Since |A,| < |A1], the whole spectrum o(A) is concentrated in the interval
[=r(4),r(4)].

If A = ); is an eigenvalue of A, then N(A — AI) = {z € H|Ax = Az} is the
corresponding proper subspace of the operator A.
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If now {f,}(v € A) is any subset of vectors in H, then L = L{f, | v € A} is
the corresponding closed subspace of H generated by vectors f, € H.

Next if z is an arbitrary vector in space H,z = 3" z;e;, i.e. £ = (z1,22,...) ",
it is said to be positive (non-negative), or negative (non-positive), if all its coordi-
nates z;(i = 1,2,...) are of the corresponding kind. Tts norm is ||z|| = (3 |=;]?)*/2,

and then
(o @) oo
zt = Z |zilei, r =—zT = —Z |z e

We note that ||z]| = ||z~ || = |||

As in the finite case, a Hilbert-Schmidt operator A is called ”irreducible” (in
the matrix sence), if there is no any coordinate space m# = L{e;,,€;,,. .. }, which is
invariant for A.

It is easy to see that the adjacency matrix A = A(G) of an infinite graph G
is an irreducible operator iff the corresponding graph G is connected.

In the following theorem we quote some known facts from the theory of irre-
ducible Hilbert-Schmidt operators with non-negative entries (see [8] and [9]).

THEOREM 1. — Let A = [a;;] be an irreducible Hilbert-Schmidt symmetric
operator with non-negative entries.

Then A\ = ||A]| is (mazimal) eigenvalue of A, and it is simple. There is at
least one positive eigenvector corresponding to this eigenvalue \y = r(A).

If X = —r(A) is the (minimal) eigenvalue of A, then it is is simple also. O

2. Spectra of infinite graphs.

1. — Let G be any infinite graph with adjacency matrix A. Then

n(4)? =3 af; <) a7 =n(do)? < oo,
(2] i#]

where n(A4o) = av/2/(1 —a?)v/1 + a? is the absolute norm of the adjacency matrix
Ap of complete graph K, thus A is a Hilbert-Schmid operator in the space H.

Then, spectrum o(G) of G is defined by ¢(G) = o(A), thus as the spectrum
of the corresponding Hilbert-Schmidt operator A = A(G).

Applying Theorem 1, we immediately have following basic properties of the
spectrum of an infinite graph G.

THEOREM 2. —Spectrum o(G) of any infinite graph G consists from a se-
quence of real eigenvalues A\ = r(G), A2, A3, ..., and of zero (A, = 0,n — 00),
each non-zero A\, has a finite multiplicity.

The spectrum

O'(G) = {)\1,)\2,... ,0}
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is concentrated in the interval [—r,r], where r = r(QG) is the index (spectral radius
of G.

The mazimal eigenvalue A = r(G) is simple.

If A = —r(G) is the (minimal) eigenvalue of G, it is simple too. O

In such a way, we conclude that spectra of all considered infinite graphs lie in
the interval D = [—b, +b], where b = av/2/(1 — a®)v/1 + a2. It is an open question
to small this interval as much as possible.

REMARK. — It is obviously that the spectrum o(G) of G depends on the
constant a(0 < a < 1) and of the way of its vertices. In a general case, it changes
under relabelling of the vertex set V(G) = N.

But in spite of these difficulties, there is some number of spectral properties
of the graph G which does not depend on a constant a and of the way of labelling
(for instance, the property — to have the finite spectrum). It is naturally to call
them — pure spectral properties of graph G. Hence, to have finite spectrum (or to
have infinite spectrum) — is a pure spectral property of G.

It is obviously of great interest to find as many as possible such (pure spectral)
properties of graph G.

2. — Consider especially relabelling (prenumeration) of the vertex set VG of
a graph G, which corresponds to an arbitrary permutation w = (w(1),w(2),...) of
the set IV; let the new graph so obtained be G;.

If Ay is the adjacency matrix of the graph Gy, let define a matrix P = [p;;]
(permutation matrix) by

then A, = PAP'.
It can be easily checked that

PP' = diag (a?~2¢(M) g4=20(2) ),
PP = ding (a2~ V-2 g2 -4\

so that matrix P is never orthogonal (except in the trivial case).

It is the reason that we lose the property o(G1) = o(G), property of invari-
atneess of spectrum at any prenumeration of the vertex set. [

3. — Now add a new adge to the graph G; let the new graph be G; (we note
that the vertex set VG is assumed to be indexed in the same way as VG).

PROPOSITION 1. — Spectral radius r(G) < r(G1).

ProOOF. — Let A = [a;;], B = [b;;] be adjacency matrices of G and G
respectively. Then a;; < b;;(i,7 € N), and there is just one pair g, jo (40 < jo) such
that

R c = gqlotjo—2
Gigjo = 0 < bigjo = a .
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If z(]|z|| = 1) is a proper vector of A corresponding to the eigenvalue r(G) =
[|A]|, we can suppose it is positive, so that

r(G) = (Az,z) = Zaijm,-a:j < Zbijmixj =
i3 @57

= (Bz,z) <||B| =r(G1), q.e.d.O

COROLLARY. — If rq = r(Gy) is the spectral radius of complete graph Go =
K, then the spectrum o(G) of every graph G lies in the intervale (—ro,r0). O

Moreover we note that for complete graph K, it holds the strong inequlity
ro = ||Ao|| < n(Ag). Indeed, equality ||A|| = n(A) holds for an symmetric Hilbert-
Schmidt matrix A, iff the operator A is one dimensional, which is one dimensional,
which is impossible for any adjacency matrix A.

3. Spectrum of the complete graph K.

THEOREM 3. — Spectrum of the complete graph G = K, consists of an
infinite sequence of simple eigenvalues &, &1,&s, ... where

& >0, §<&<EH<...<0.

It holds:

1) & > a%

2) €n € (_a2n—27_a2n) (TL = 1727"')7
3) §o = [&1] + || +- ..

PROOF. - Let A be any eigenvalue of G,z = (z1,%2,...)" # 0 be a corre-
sponding eigenvector. Then from Ax = Az, we find:

(%)

{f=$1+awz+a2$3+---=()\+1):c1
af=A+a™z,y1 (n=1,2,...)

Using condition

o0
2]l =) af < oo,
i=1

it can be eecily proved that A # 0 and A # —a?""2(n =1,2,...).
So we obtain:

(1) zn=(A+1a" o /(A +a™7?) (2 2).
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Substituting x,, in the first relation in (x), we get

A+ 1)y i a® /(A +a®") = Az;.

n=1

Since z1 # 0, we conclude that all eigenvalues of G satisfy the equation

(2) g =D /(A +a®") =X/ (A+1).
n=1

We observe that, all roots of (2) are eigenvalues of G because

A+ 1 2a2n—21.2 "
2= QFD a1 na2a 2 (] < 1),
A+a )

: 2
so the series ) z; converges.

Next, since it can be checked that ¢'(A) < 0 in all intervals (—oo,—1),
(=1, —a?),(—a?,—a%),... ; (0,+00), the function g()) is strongly monotonically de-
creasing in all these intervals.

On the other side, function h(A) = A/(X + 1) is strongly monotonically in-
cressing in intervals (—oo, —1), (—1, +00), so we easily conclude that equation (2)
has exactely one root in each of the intervals I, = (—a*" 2, —a®"), Iy = (0, +00).
Moreover, since the cooresponding proper vector is always unique defined, all these
eigenvalues are simple.

Next, since g(a?) > h(a?), we get that & > a?.

-t ¢ o0

s, B, %5 ... X,

Fig. 1

To prove the equality
o
EDI
n=1
let us first observe that in view of the estimation ||&,|| < a?"2(n = 1,...), the

series
oo
0" [&nl < o0,
n=0

converges.
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But this is the characteristic property of so called nuclear operators, whose
class is denoted by £1(H) ([7], p. 88).

But then, spectral trace of A coincides to its matrix trace ([7], p. 127); i.e.

) %)
Z é-n = Z Appn =0,
n=0 n=1

thus
o
fo=)lél, qed O
n=1
Problem. — Does for every infinite graph G, the adjacency matrix A is a

nuclear operator, and consequently equality

holds. O

4. Spectra of bipartite graphs.

THEOREM 4. — Spectrum of any (connected) bipartite graph G is symmetric
with respect to zero.

PrRoOOF. - Let the set N = VG of vertices be devided into two subsets
Ny = VG, Ny = VG, where Ny, Ny are internel stabil:
a;; =0 (i,j € Ny, or i,j€ Ny).

If we put: Hy = L{e; | i € N1}, Hy = E{ej | € Na}, then Hy, Hy are closed
mutually orthogonal subspaces of the space H, and H = H; & N».

Then the operator A in the permutated basis {e; | i € N1} U {e; | j € Na}
has the form

0 B
a=[ 7).

Now Az = Az(A € R,z # 0), where x = x1 + z2(x1 € Hy, 20 € Hy) is

equivalent to
0 BI T1| _ )\1131
B 0 Io a A$2 ’

{ B.’L‘l = )\.CL’Q

BI.TQ = )\.’L’l '

or to:
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Suppose that A # 0 and observe that (1) implies 1 # 0, x2 # 0.
Then from (1),

(2) BIB.QIl = )\2.'13'1 (5[31 75 0)

Thus if A # 0 is an eigenvalue of A, relation (2) must be satisfied.

Conversely, if 4 = A2 > 0 is any eigenvalue of B'B € B(H;) whose corre-
sponding eigenvector is x1, then defining

&' = zy + Bxy /I,
z" =z — By [/,

one obtain the mutually orthogonal eigenvectors of A corresponding to eigenvalues
Vi and — /1 respectively.

We remark that B'B is a non-negative Hilbert-Schmidt operator in the sub-
space Hi, so its spectrum o(B'B) consists from a sequence p1, s, . . . of real eigen-
values such that g, — 0(n — o0), including zero (if H; is infinite dimensional).

Hence the spectrum of G is quite described:
o(A\{0} = {£X | \? € ¢(B'B)\(0)}.0

— We do not know does the converse true, i.e. is an infinite graph G bipartite
if its spectrum is symmetric about zero.

We conjecture — no, but we have not any counter-example until now.

5. Spectrum of complete bipartite graph K (N, N»).
Let G = K(N1, N2) be complete bipartite graph, where
le{il,iz,...}, sz{jl,jg,...}

(some of Ny, Ny can be finite too).

THEOREM 5. — Spectrum o(G) is finite,

o(G) = {0, xr},

r= E :azirz E :azjqu_
p q

PrROOF. — We have a;; =0ifi =j, orifi, j € Ny, orif i, j € Ny, and

where

aij =a 772 otherwise.
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If A is any eigenvalue of G, and z € N(A — I)(z # 0), we find from Az = \z:
D iyo i, = Az, (ip € N1)
q

Zajrismis = Am]r (JT' € N2)
p

Hence:

(2) atr 2 Zajqqu = Az, (ip € N1)
a

3) a2 alez;, = Azj (G € Vo).
8

If now H;, Hy have the same meaning as in the preceeding section, and
x=2a' +a'"(z' € Hy,z" € Hy), we easily find for A = 0:

E a*wx;, =0, E a’x;, =0,
s

q

so that 2’ is orthogonal to the vector a’ = (a®,a,...) in H; and 2" is orthogonal
(in Hy) to the vector a” = (a’*,a”,...). Hence, 2 is an arbitrary vector from the
orthogonal complement L{ fi, f2}*, where fi = Y, bie;, fo = Y, cie; and

{ bip = aiP, qu = 0,
¢, =0, ¢j, = ala.
Thus A = 0 is an eigenvalue, and the corresponding proper subspace N (A) is

of codimension 2.
If next A # 0, then substituting z;, from (3) to (2), we find:

1, . . _
F0111172(2 a21q72)(z azsxis) = (Zp € Nl)-
q s
Where from we obtain
A2 = Zazz'rz Z a2,
p q
or A2, = xr, where
r= Za%—Q Za%—? =ViV/1/(1 - a?) -1,
p q
l= Z a?» 2,
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For these values of A, corresponding eigenvectors are for example:
T = E T, €, + E zj,ej,, Where
P q
_ =2 2jq—2
T, =a’” /(E a*e?),
q
. = gJa—2
z;, =a’ “ /A

Hence, spectum o(G) = {0,%r}, qe.d. O
If specially, Ny = {i}, we get that o(G) = {0, £r}, where

r=a"1/1/(1 - a?) — a?-2.0

REMARK. — It can be proved that for distinct partitions Ny, N, all the
graphs G = K(Ny, N») have different spectra.

We do not know too, any non trivial example of two cospectral graphs, or of
any graph G whose some non-zero eigenvalue is not simple. [

6. Line graph of an infinite graph.

Let G be an infinite graph. Then as in finite case, the line graph L(G) of G
is the graph whose vertices are edges of G, with two vertices of L(G) — adjacent if
and only if the corresponding edges of G have one vertex in common.

If now g; = (vp(i), ve(s)) (P(3) < g(i);i = 1,2,...), we introduce the vertex-
edge incidence matrix R = [r;;] of G defining

p = { o, i =p(j),a(j)
“ 0, otherwise
Then:
Rei = rp@yiep(i) + Ty(i)i€a(s) =
= a'_l[ep(,-) +eq(i)] (i=1,2,...).

If now A and B are adjacency matrices for G and L(G) respectively, one can
derive the basic formula

7

(1) |[RR=B+2D

where D = diag (1,a2,a%,...) ([4], p. 103).

REMARK. - For regular graphs with finite degree d = d(G), in general we
lose relation
RR' = A +dlI.

! For our aim, it is not important the way of denumeration of vertices in L(G).
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It is the reason that we lose satisfactory results for total graph of a graph. O

We observe that the operator R € B(H) is not symmetric, but it is of finite
absolute norm because

S =2 e =) <o
,J Jj=1

Hence, R'R is a Hilbert Schmidt operator too. O

THEOREM 6. — For every infinite graph G, all spectral values A € o(L(Q))
satisfy the ineguality \ > —2.

PROOF. — We have from (1),
B = A(L(G)) = R'R - 2diag (1,a?,a%,...),
B+42I = R'R+2diag (0,1 —a%,1—a,...) >0,
because R'R > 0, and

diag (0,1 —a?,1—a*,...) >0.

Hence o(B + 2I) = 0(B) + 2 > 0, so that A > —2 for every \ € o(B).
We yet prove that A = —2 is not an eigenvalue of B = A(L(Q)).
If oppositely, x is an eigenvector corresponding to A = —2, we would have

< R'Rz,z>=0, |[|Rz|*=0, Rz=0,

ane Dz = 0, which implies that z = x1e1(z1 # 0).
But then:

Rz = z1Rey = m1[rpy1€p(1) + Te(1)189(1)] = 0,

which is impossible.

In this way, we have obtained the strong estimation A > —2 for every A €
o(B). O

A problem. — Does for every € > 0, there exists an infinite graph G such that
its minimal eigenvalue A,,,(G) € (—2,-2+¢). O

7. Graphs with finite spectra.

It is an important question — when an infinite graph G has the finite spectrum.

PROPOSITION 2. — Spectrum o(A) of a compact selfadjoint operator A €
B(H) is finite,
O'(A):{/\l,...,)\p,()} ()\1#0)



280 Aleksandar Torgasev

if and only if its range R(A) is finite dimension p.

Then A = 0 is an eigenvalue of A such that the corresponding proper subspace
N(A) is of codimension p. O

Here A1,... , A\, can be distinct or not, but their total number is p.

Next, since columns Cy,Cs, ... of the adjacency matrix A are in accordance
with vectors Aey, Aes,... in H, we get that spectrum o(A) is finite if and only if
the adjacency matrix A has just p linearly independent columns.

Hence, o(A) contains p non-zero eigenvalues iff A has exactely p linearly
independent columns.

Wherefrom we obtain the following.

PROPOSITION 3. — Spectrum o(G) of a graph G consists of exactly p non-
zero eigenvalues (and zero), iff there at ITeast one minor of the adjacency matriz of
order p different from zero, and all other minors of order p+ 1 are egual to 0. O

Furher, if spectrum o(G) of a graph G is finite, and consists of p non-zero
eigenvalues Ag, ..., Ap, the operator A is obviously nuclear, i.e.

D> il <oo, A€ Li(H).

But then )" A; = 0, so that

—~
—
~—

‘)\1+)\2+"'+)\p:0‘.

REMARK. —If p =2, we get that Ao = =)y, L.e. 0(G) = {0, £r}(r = r(G)).

If p = 3, graph G has exactely one positive eigenvalue, and two negative
eigenvalue (Aa, A3 < 0), so that Ay = |Aa| + [A3]. O

If spectrum o(G) is finite, it is an important question too — how determine
it.

We assume that for instance, columns Cj,,...,Cy, (i1 < iz < --+ < 4p) are
linearly independent, and all other depend on them.

Then non-zero spectrum o(G)\0 coincides to the spectrum o(A |g(a)) of
operator A in finite dimensional subspace R(A).

THEOREM 7. — Non-zero eigenvalues Ai,...,\, of A are just roots of a

“characteristic equation”

det(B — AI) =0,
where B = [biy] is a square p X p matriz, and

oo

bim =Y Clitlir,
i=1
oo

Aei = Z cliAeTl (’L = 1,2, .. )

i=1
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Matriz B is regular and in general case non symmetric. O

We omit the proof.

EXAMPLE. — Let G be complete bipartite graph Ky;; . Then its adjacency
matrix is

0 a|a2 a®

a 0|0 0O
A=1ag 0

a® 0‘ 0
-

so that columns C1, Cs obviously form a basis in R(A).
We obtain Ci1 = Co9 = 1,C12 = C91 = O,Cli = O(Z 2 3),021 = ai’Q(i Z
3),b11 = b22 = 0,b12 = a, b21 = a/(l - a2), and

0 a
a ol

1-—aq2

B =

Then the eigenvalues are A = av/1—a?. O

8. Graphs with two non-zero eigenvalues.

We solve here a tipical problem of reconstruction of (infinite) graphs. Deter-
mine all graphs with a “small” number of non-zero eigenvalues (in case when this
number is two).

If graph G has two non-zero eigenvalues A1, A2, then as we have seen,

(@) = {0,xr}, where r =7(G).

THEOREM 8. —All graphs with two non-zero eigenvalues £r are the complete
bipartite graphs K(Nyi, Na).

PRrROOF. - For simplicity, take that columns C7,Cs of matrix A are inde-
pendent, and all other are their linear combinations (the proof is quite similar in a
general case t00).

We observe that ajs # 0, because in the opposite case, we can conclude that
a1; = az; = 0(i € N), thus C; = Cy = 0 which is impossible.

If now C; = pCi + qCa(i > 3,p = pi, ;) we have that
a1 = qa, ay =pa (p°+¢° #0),
so that a;1 = qa, aj> = pa, but then

ai; = pa; + qaz = 2pga = 0,
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so that p =0 or ¢ = 0.

Hence, every column of the adjacency matrix A is proportinal with C; or
with Cy. If now Ny = {i | C; ~ C1} (including 1 too), and N2 = {i | C; ~ Cs},
by reconstruction the matrix A, one can can easily conclude that in the basis
{ei| i€ N1} U{e; | j € N2} matrix A take the form

0o P
=(» )

where P is a Ny x N; matrix whose all entries are distinct from zero.

Hence G = K(Ny, N»), q.e.d. O

— Finally, we only remark that spectral radii r = 7(G) of all complete bipartite
graphs K (N, N,) cover the open segment I = 0,d), where d = 1/2(1 — a?), so that
their spectra cover the open segment (—d, +d). O

We conclude with three open questions which we have concerned throughout
the text.

1. — Does there exist two (non-isomorphic) isospectral graphs.
2. — Are the non-zero eigenvalues of every infinite graph G simple.
3. — Is there any non-bipartite graph whose spectrum is zero-symetric.

4. — Are all operators A = A(G) corresponding to infinite graphs — nuclear,
and then

REMARK. As C. Godsil informed the author, recently B.D. Mc Kay in
paper “The expected eigenvalue distribution of a random labelled regular graph”
(Math. Reas. Reports Univ. Melbourne, rep. no-9 (1979), investigated the limits
of eigenvalues of a class of finite regular graphs.
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