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INEQUIVALENT REGULAR FACTORS OF REGULAR GRAPHS
ON 8 VERTICES

Zoran S. Radosavljevié

In this paper we shall find all nonisomorphic factorizations of all regular
graphs on 8 vertices into two regular factors without the use of a computer (as
a contrast to [1]). These factorizations are significant since they produce regular
graphs with the least eigenvalue —2 which are neither line-graphs nor cocktail-party
graphs but which are cospectral to line-graphs (cf [1]).

Sl:
/l : \\
Syt j
e
P\ s | H
! !
1
. . i
53. S4. : :
1 t
e N I ]
¥ % . s \, 7
N7 N 7
55: { : 2K4 /><\ /\,\
k A e BN 7’ N\
Fig. 1

Regular graphs of degrees 0, 1, 2 are not interesting. Nonisomorphic fac-
torizations of the six cubic graphs were found in [1] (Fig. 1), the connected cubic
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graphs being denoted by Si,...,S5. In sections 1 and 2 we shall solve the prob-
lem for regular graphs of degrees 4 and 5 respectively. The remaining cases are
mentioned in section 3.

1. Graphs of Degree 4

Let us denote by G the complement of a graph G' and by L(G) the linegraph
of G. In order to determine the automorphism groups of the graphs Si,... ,Ss, we
will rather consider Si,... , S5, since their automorphisms can be described easier
(because of the less number of edges). On the other hand, any automorphism of a
graph G generates an automorphism of L(G) and we will often refer to automor-
phisms of L(S;) induced by the group of S;.

Graps Si: Graphs S; and S; are displayed in Fig. 2.

Fig. 2

THEOREM 1. All nonisomorphic reqular factorizations of S are determined
by three inequivalent 1-factors in Fig. 3 and 2-factors (a), (c), (d) and (f) in Fig.

4.

PRrROOF: The automorphism group is the dihedral group Dg. Graph S; has
only one orbite, but L(S;) has two, since the edges between the vertices being at
distance 2 in the characteristic octogon 12 ... 8 of S; cannot be mapped into those
pairs of vertices which are at distance 3. Let us denote those sets of “shorter” and
“longer” edges by O; and O,. Now, there are only 4 1-factors which consist only
of the edges of O1; they are all equivalent since a suitable rotation' sends them
one into another (Fig. 3. (a)). There are also two 1-factors whose edges are only
of O, and they are equivalent, too (Fig. 3. (b)). It is not difficult to see that three
edges from one orbite and one from another cannot be taken and that also would be
impossible to make a 1-factor by taking two edges from Oy and two edges from the
same quadrangle of O;. But if we take one edge from the quadrangle 1357 and one
from 2468, then we can construct a 1-factor in case we didn’t take those two edges
in such way that they span four successive vertices of the octogon 12 ... 8 of Sj.
Thus we get eight new 1-factors and they are all equivalent because rotating any
one of them gives the rest (Fig. 3. (¢)). The necessary condition for two factors to
be equivalent is that they have the same number of edges taken from every orbite;
hence the three groups of 1-factors are different equivalence classes and S; has 3
inequivalent 1-factors.

L Geometric notions will be used rather then abstract isomorphism mappings.
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Since 2-factors of the form Cg and 2 C, are sums of 1-factors, all such 2-
factors can be found by mutual combining of 1-factors. Thus, 1-factors in the first
equivalence class give only one 2-factor having all eight edges in O; (Fig. 4 (a)), and
similarly 1-factors in the second class generate only one 2-factor taking all edges
from Oy (Fig. 4 (b)). Since all 1-factors in the third class can be obtained by a
rotation of any of these factors, it is sufficient to take the sums of, say, factor (7)
and all other factors in this class. The only possibilities are to combine (7) with
(8), (11) and (14). Among these three 2-factors ((7, (14)) is mapped into ((7), 11))
(Fig. 4 (d)) by a rotation, while ((7), (8)) is neither as a graph isomorphic with (d)
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(Fig. 4 (¢)); in fact, (c) is Cs and (d) is 2 C4. These 2-factors take four edges from
every orbite. When combining 1-factors of the first and the second class, we see
that in both classes the successive rotation of any factor gives the rest. That is
why we may only combine 1-factor (1) with the factors in the second class. The
pair ((1), (5)) is (d) again, but ((1), (6)) yet cannot be mapped into (¢) in spite of
having four edges in every orbite because it has no two adjacent edges in 0; (while
(c) obviously has) - Fig. 4 (e). When combining the 1-factors of the first class with
those of the third one we may again consider only the factor (1) in the first class
and get the only case in Fig. 4(f) which takes 6 edges from O; and 2 edges from
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0. The second and the third class (2 edges from O; and 6 from 02) give rise to the
2-factor in Fig 4 (g). Now, in order to find 2-factors of the form C3 U C; we should
only notice all inequivalent triangles. Since all eight triangles of S; are equivalent,
let us take, say, 146. The remaining five vertices induce only one pentagon in S;.
The obtained 2-factor is shown in Fig 4 (h).

Finally, one can easily find the complementary pairs of inequivalent 2-factors:
(a) and (b), (c) and (h), (d) and (e), (f) and (g). This completes the proof.

Graph Sy: Graphs S, and S, are shown in Fig. 5.

THEOREM 2. All nonisomorphic regular factorizations of Sy are determined
by five ineguivalent 1-factors in Fig. 9 and 2-factors (a), (b), (c), (d), (9), (h), (k),
(m), (n) and (g) in Fig. 7.
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PROOF: The automorphism group is the Klein four-group generated by the
horizontal and vertical reflection. Vertices 2, 4, 6 and 8 constitute the orbite O1,
vertices 1 and 5 the orbite Oy and 3 and 7 the orbite Os; however, L(S,) has
five orbites: 1) {13,35,57,71}; 2) {36,38,72,74}; 3) {14,16,52,58}; 4) {24,68};
5) {26,48}. The number of orbites in Sy and L(S,) can easily be vertfied by means
of the Burnside Lemma.

Burnside Lemma: If G is a permutation group acting on a set A and 7(g) =
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[{z | g(z) = z}|, then the number of orbites of G is |é—‘ 2 geg M(9)-

In order to find all 1-factors we first take two edges of the subgraph of S,
induced by 0;. There are four such factors (Fig. 6. (a) and (b)), the cases (a)
and (b) being clearly in different equivalence classes. Then, there are two 1-factors
having no edges in the subgraph induced by 0; (Fig. 6 (c)). If we take now one
edge of that subgraph, there are two possibilities: if we take 24 or 68, we get four
1-factors (the fourth equivalence class — Fig. 6 (d)), while taking 26 or 48 we obtain
the last, fifth class (Fig. 6 (e)).
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We might again use the Burnside Lemma to verify that among fourteen 1-
factors there are five equivalence classes. If 1-factors of Sy are elements of the set
A, then the equivalence classes with respect to the mappings of factors induced by
the automorphisms of Sy are the orbites of A. All fourteen 1-factors are fixed by
the identity, no one is fixed by the two reflexions and six 1-factors are fixed by the

composition of reflexions; hence the number of orbites is % -20 = 5.
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All 2-factors of Sy of the form Cs or 2 Cy (those which we get by means of
1-factors) are displayed in Fig. 7. (a)—(n) and we’ll give a shortened survey of their
construction. Thus, 1-factors in the first or the second equivalence class cannot
form any sum because of the common edges, while the third class gives (a). In the
fourth class (7) and (8) (as well as (9) and (10)) are in the horizontal reflexion and
therefore ((7), (9)) and ((8), (10)) are equivalent (case (b)). Similarly, only one of
the two pairs ((7), (10)) and ((8), (9)) can be taken (case (c)), leaving no other
sum in that class. The fifth class gives two inequivalent 2-factors — (d) and (e).
The pairs formed by one factor of each of the first two classes give rise only to (f).
Taking the first and the third class we see that we should consider only ((1), (5))
and (1), (6)). The first case already appeared and the second is (g). Continuing
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in the similar way we find that the first and the fifth class generate only (h), the
second ane the third class only (i) and (j), while the second and the fourth give (k).
The case (q) is obtained by 1-factors taken from the third and the forth class. Now,
the only remaining possibility is that of combining factors of the last two classes.
Notice that horizontal reflexion sends (7) into (8), vertical reflexion maps it into
(9) and their composition maps (7) into (10), while (11) is mapped by the same
automorphisms into (12), (14) and (13) respectively. Thus we take only two new
cases — (m) and (n). Now, we can easily find that Sy contains only two inequivalent
triangles. The first one is, say, 368, and the remaining five vertices determine a
unique pentagon (case (0)). Let the second triangle be 174, and now the remaining
vertices induce two inequivalent pentagons (case (p) and (q))-

To make sure that all obtained 2-factors are inequivalent we should notice
that in the majority of cases two 2-factors which are isomorphic as graphs (e. g.
two octogons) do not have the same number of edges in the same orbites; but if they
do, then a 2-factor containing two adjacent edges of an orbite cannot be mapped
into 2-factor in which the edges of the same orbite are not adjacent ((m) and (n) is
such pair); finally, in rare occasions when it is necessary we may very easily directly
check out the inequivalence (e. g. (i) and (j)).

At the end we see that inequivalent complementary pairs are: ((a), (f)), ((b),

@), ((©), ®) (@), (), (&), (), (0), (B)), (1), (1)), while (m), (n) and (q) have

equivalent complements with respect to Ss, and that completes the proof.
Graph Ss: Fig. 8 shows this graph together with its complement.

Fig. 8

THEOREM 3. All nonisomorphic regular factorizations of Sz are determined
by two inequivalent 1-factors in Fig. 9 and 2-factors (a), (c) and (d) in Fig. 10.

PRrOOF: Let us first determine the automorphism group. There is only one
triangle in S3 — 128, and those vertices constitute an orbite. Besides the obvious
vertical reflexion (with respect to the axis 15), it is clear that the permutation
123(46)578 is also an automorphism. Those mappings generate the Klein group
and fix the vertices of the triangle. Trying with the other permutations in the set
{1,2,8} we come to a new automorphism (128)(375)(46) denoted by Ag, while A2 =
Ag gives the permutation (182)(357)(46) and A = A; (A; denotes the identity).
Those automorphisms generate all the rest, the total number being twelve, and all
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of them are presented in the next table:

A; : Identity Az: (128)(375)(46)
Ay:1(28)(37)(46)5, Ag: (18)234(57)6,
A3:123(46)578, Ag: (182)(357)46,
Ay:1(28)(37)456, A10 (12)(35)(46)78,
As: (128)(375)46, Aq1:(182)(357)(46),
Ag: (18)23(46)(57), Aqy: (12)(35)4678.
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Fig. 9

Here is, for example, Ag = A5 0 Az, A7 = As0 A3, Ag = A50 A4 and similarly
for Aj9 — A12. The orbites are: O; = {1,2,8}, O2 = {4,6}, O3 = {3,5,7}; the
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consequences of that are, for example, that the edge 46 in S is always fixed and
that the edges of the triangle 357 form an orbite in L(S3).

Looking for 1-factors we get only two inequivalent cases. In fact, there are
two equivalent 1-factors containing the edge 46 (Fig. 9 (a)) and twelve factors
without that edge (Fig. 9 (b)). These twelve 1-factors are separated into three
groups according to the edge of the triangle 357 they contain and the corresponding
automorphisms in every group are indicated (of course, we find them among those
which fix the considered edge of the triangle). It is sufficient now to notice that As
maps (3) into (7) and Az maps (7) into (11) to be sure that the three groups are
in the same equivalence class.

Consider now the first class as the first group of 1-factors and the three
groups of the second class as the second, the third and the fourth group. In order
to mahe 2-factors we can take 1-factors only from different groups. The factors
in the first group are fixed by A; if ¢ is odd, and mapped into each other if ¢ is
even. Thus, taking 1-factors from the first two groups we can reduce the number
of cases and get only the 2-factor in Fig. 10(a). Now, notice that every factor from
the third group has a symmetric mate in the fourth group. As (1) and (2) are
also symmetric, combining the first group with the third and the fourth one we see
that (1) combined with (9), (10), (11) and (12) gives just the same as (2) with (7),
(8), (13) and (14). But (9) and (10) and also (11) and (12) are equivalent under
Az, while A5 sends (9) into (11). Since all odd automorphisms fix (1), all those
2-factors are equivalent and since also A7 maps (5) into (9) and fixes (1) again, it
arises that they are equivalent to (a). If we continue in the similar way, we find that
combining the second group with the third and the fourth we first get the pair ((3),
(7)), (Fig. 10(b)) which has three equivalent mates and, of course, is not equivalent
to (a) because of the edge 46. Then, we get ((3), (10)) (Fig. 10 (c¢)) of the form 2
C4 (equivalent cases are ((4), (9)), ((5), (13)), (6), (14))). The next 2-factor is ((3),
(11)) (Fig. 10(d)); to see that it is equivalent to (b) we should notice its edges in the
triangle 357 and make sure that neither As nor A7 map it into (b). But the factor
((3), (13)) is equivalent to (b), because Ag maps (b) into it. (The interesting detail
is that Ag does not fix (3), but maps it into (13), and (7) into (3)). Taking 1-factors
from the last two groups we cannot get any new case. We have eight possibilities
and see, for example, that ((7), (12)) (which is equivalent to ((8), (11))) is of the
form 2 Cy and can be obta ned from (c) by As, that we can get (7), (13)) from (b)
by As, etc. Now, it remains only to look for the 2-factors of the form C5 U C5. We
first see that 357 cannot be taken and that two triangles having one edge in the
triangle 357 are symmetric, while 137 can be mapped, say, by As into 275. Let us
take 137. The two possible pentagons in the subgraph induced by the remaining
vertices are equivalent under Az which fixes chosen triangle and we take only the
case in Fig. 10(e). Finally, the remaining three triangles are also equivalent: let us
take, say, 146, getting the case in Fig. 10(f).

It can easily be verified that the complementary pairs are: (a) and (b); (c)
and (f), (d) and (e). This completes the proof.
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Graph Sy: We may imagine Sy as a cube and the edges of S, as “big” and
“small” diagonals of the cube. The automorphism group of S, is transitive on
vertices, but L(S4) has two orbites since a small diagonal cannot be mapped into

a big one.
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THEOREM 4. All nonisomorphic regular factorizations of Sy are determined
by 1-factors in Fig. 11 and 2-factors (a), (b), (¢) and (d) in Fig. 12.
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ProOF: In order to find the inequivalent 1-factors (Fig. 11) we may first
take that which consists only of big diagonals and thus cannot be equivalent to any
other one (case (a)). Factors consisting only of small diagonals can be constructed
in two inequivalent ways: by taking both diagonals from each of two opposite faces
of the cube (case (b)) or by choosing diagonals from four different faces (case (c)).
The last two possibilities are obviously inequivalent since the automorphisms of
cube preserve the belonging of a diagonal to a face. The last possible inequivalent
1-factor is that which has two big and two small diagonals (case (d)).

We can exceptionally find the inequivalent 2-factors of Sy directly (Fig. 12).
We should only notice that all 1-factors have an even number of edges in every
orbite and that 2-factors must satisfy the same condition. If a 2-factor contains
four big diagonals, the four small diagonals can be put in two or in four faces (case
(a) and (b)); clearly, such 2-factors are not equivalent. If a 2-factor has two big
diagonals, again two cases arise. Since every such 2-factor must contain two small
diagonals between those vertices which are not already on the big diagonals, we
can choose the last four small diagonals from four different faces (case (c)), or from
some two faces (case (d)). Finally, 2-factors containing only small diagonals can
also be constructed in two inequivalent ways: by taking both diagonals from each
of some two faces and one from every remaining face (case (e)), or by taking all
diagonals from four faces (case (f)).

It is easy to check out that after taking any triangle of Sy we cannot obtain a

pentagon and that {(a), (f)} and {(b), (e)} are complementary paris, while (c) and
(d) are selfcomplementary. This completes the proof.

Graph Ss: Graphs S5 and Sy are displayed in Fig. 13.

THEOREM 5. All nonisoinorphic reqular factorizations of Ss are determined
by four ineguivalent 1-factors in Fig. 14 and 2-factors (a), (b), (c¢), (f) and (g)
Fig. 15.
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PROOF: In order to find the automorphism group we should first notice the
two pairs of triangles of Sy with the common edges 18 and 45. Every automorphism
maps any such pair into the same or the other pair. The subgraph induced by the
vertices 1, 2, 8, 7 has four automorphisms, for every of them the position of vertices
3 and 6 is uniquely determined and there are two possible positions for the vertices
4 and 5; that means that eight automorphisms fix the edge 18. Taking also those
eight automorphims which map the edge 18 into 45 we get the total number of
sixteen automorpshims. In the next table we present some of them, actually those
which we need in the proof.

Ay: Identity

As: (18)(27)(36)(45), (vertical reflexion)

As: (14)(23)(58)(67), (horizontal reflexion)

Ay (15)(48)(26)(37), (As 0 Az)

As: (18)234567,

Ag: 123(45) 678,

Aq: (18)23(45)67.

It is obvious that {1,4,5,8} and {2, 3,6, 7} are the orbites; on the other hand,
the four edges joining the vertices of the first orbite of S5 constitute an orbite O;
in L(Ss). We also find that the sets of edges {27,36} and {26, 37} are orbites O-
and O3 and that the remaining eight edges determine the orbite Oy.

Taking both edges of Os and a pair of edges of O; we get two equivalent
1-factors (the first equivalence class — Fig. 14 (a)). Edges of O3 together with
the same pairs in O; give the second class (Fig. 14 (b)). If we take only edges
of O4, we see that there are four such 1-factors, which are equivalent under the
indicated automorphisms (Fig. 14 (c)). Finally, after checking that there is no
other possibility, we can construct the rest of 1-factors by taking exactly one edge
of O3. There are eight such 1-factors and they are given in Fig. 14 (d) together
with the automorphisms that map factors (9)—(12) and (13)—(16) into each other;

we should only notice, say, that (9) and (13) are equivalent to be sure that all those
eight factors are equivalent.
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In order to find 2-factors (displayed in Fig. 15) we start with the 1-factors in
the third equivalence class and get (a). As for fourth class, it will be suitable to
regard it as two different groups of 1-factors (two rows in Fig. 14), because 1-factors
in the same group cannot be combined. The indicated automorphisms tell us that,
for example, ((9), (14)), ((10), (13)), ((11), (16)) and ((12), (15)) are equivalent
and we take ((9), (14)) as case (b) and ((9), (15)) as (c). We must also clarify what
happens with ((9), (16)): it is equivalent to ((9), (15)) because As maps (9) into
(12) and horizontal reflexion maps (12) into (15), while the same automorphisms
map (16) through (13) into (9). If we now combine 1-factors of the first two classes,
we get (d). When considering the first and the third class we should notice that Ag
fixes (1) and (2), while A5 and A7 map them mutually; taking care of that we see
that there are only two new cases — (e) and (f). The first and the fourth class give
2-factors which are not equivalent to previous cases because of the different number
of edges in the orbites. But they are all mutually equivalent because A7 and Aj fix
(1) which then, combined with (11), (12), (15) or (16), gives equivalent cases; since
As and Ag map (1) into (2), it is clear that the remaining four pairs give nothing
new (the pair ((1), (15)) is presented as the case (g)). Taking now the second and
the third equivalence class we have again two edges in O;, two in O3 and four
edges in Oy, just as in cases (b) and (c). Since Ay fixes (3) and (4), while A5 and
Ag map them into each other, the pairs ((5), (6)), ((3), (7)), ((4), (5)) and ((4),
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(8)) are equivalent, but they are also equivalent to (b). The remaining four pairs
generate 2-factors which, being not equivalent to those just mentioned, also cannot
be equivalent to (c) because otherwise two nonadjacent edges in O; would have to
be mapped into a pair of adjacent edges. We take the pair ((3), (5)) as the case
(h). Since we cannot combine the second and the fourth equivalence class, we next
take the third and the fourth. There are eight possible pairs of 1-factors. The pairs
((5), (11)) and ((5), (16)) are equivalent because A3 mutually maps (11) and (16)
and fixes (5). But As maps these pairs into ((6), (10)) and ((6), (13)) and similarly
Ag and A7 map them into remaining possible 2-factors; we may choose, say, ((8),
(12)) as the case (i). At the end, we see that all triangles in S5 are equivalent and if
we take, for example, 136, the remaining vertices induce two pentagons; but since
Az o Ay maps one of them into another and fixes the triangle, we have only one
case of the form C5 U C5 (case (j)).

The coplementary pairs are: {(a), (d)}, {(b), (e)}, {(c), (7))}, {(£), (W)}, {(9),

(i)}, and this completes the proof.
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Graph 2K 4: The automorphisms of that graph allow arbitrary permutations
of vertices inside each of two sets of mutually nonadjacent vertices. Therefore, the
following theorem is obvious.

(3)
Fig. 15

THEOREM 6. The only three nonisomorpfic reqular factorizations of 2Ky are
those determined by any 1-factor, any 2-factor which is Cs and any 2-factor which
18 204.
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2. Graphs of Degree 5

These graphs are the complements of the graphs of degree 2. We should
remember that the automorphism group of C,, is dihedral group D,,.

Graph Cs: Edges of this graph can be regarded as diagonals of an octogon.

THEOREM 7. AIl nonisoynorphic reqular factorizations of Cy are determined
by its 1-factors in Fig. 16 and 2 factors in Fig. 17.

I
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ProOF: Since the diagonals join the vertices which are at distance 2, 3 or
4 in the octogon (we will call them small, middle and big diagonals), L(Cg) has
three orbites. We start with 1-factors that have four big diagonals (Fig. 16 (a)).
If we take two big diagonals whose endpoints are adjacent in the octogon, we get
the case (b), but if those endpoints are not adjacent we obtain 1-factor (c¢). Only
one big diagonal gives rise to 1-factor (d). The remaining cases, all presented in
Fig. 16 are: 1-factor consisting completely of middle diagonals (case (e)), 1-factor
having two middle and two small diagonals (case (f)), and that which consists only
of small diagonals (case (g)).

Now, we can find 2-factors following an idea mentioned in [3]; the procedure
is based upon the next fact:

LEMMA: If Gy and G5 have complements Gy and G5, then G; C G5 if and
only if G D Gbs.

Since every graph has the same automorphism group as its complement, we
may conclude that, instead of looking for all inequivalent 2-factors (and hence
3-factors) of Cg, we should only find all inequivalent ways in which Cg can be
embedded into the complements of all regular graphs of degree 3 on 8 vertices.
That means that we are to collect all cases when the octogon is a 2-factor of a
regular graph of degree 4 on 8 vertices. If we want to find, say, 3-factors of the
form S;, we will first determine all inequivalent 2-factors of the form Cg in S;. The
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edges of the graph A which is the complement of Cg with respect to S; and the edges
of S; together constitute Cg, where the graphs A and S; determine the position of
2-factor, and therefore also the 3-factor S;, in Cs. Since Cg appears thirty times
as a 2-factor of the graphs of degree 4, Cy has thirty inequivalent pairs of 2-factors
and 3-factors (Fig. 17). The construction of all such 2-factors completes the proof.

Ko R A 5
R L 7k 35 2
3 B G e
I
e 008 A S K

Fig. 17

L Graph 2C4: The diagonals of the quadrangles of 2 C4 induce an orbite in
L(2C4) - let us denote it by Oy, while Oy consists of the remaining edges.
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THEOREM 8. All nonisomorphic reqular factorizations of 2C4 are determined
by 1-factors in Fig. 18 and 2-factors in Fig. 19.

ProOF: There is only one 1-factor whose edges are in O; Fig. 18 (a)). The
second equivalence class is that consisting of 1-factors which take two edges from
01 (case (b)). In order to find inequivalent 1-factors with all edges in O2, denote
by 1, 2, 3,4 and 5, 6, 7, 8 the vertices of the two quadrangles of 2 Cy. Edges of O-
can map {1,2, 3,4} into any permutation of the set of vertices {5,6,7,8} and hence
there are 24 such 1-factors. Consider the factor in Fig. 18 (c). Any two of its edges
join a pair of vertices of the set {1,2, 3,4} which are not adjacent in 2C4 to a pair of
nonadjacent vertices of the set {5,6,7,8}. All eight such factors, as one can easily
see, are equivalent. Another possibility is to join a pair of nonadjacent vertices of
the first set to a pair of adjacent vertices of the second set (such case is (d)). To
see that (c¢) and (d) are not equivalent we should observe that any mapping of a
pair of edges in the factor (c), for example 15 and 37, into a pair of edges of an
equivalent 1-factor, would have required the mapping of the quadrangle 1573 into
a quadrangle which also contains two edges of O;; but it is obvious that no pair
of edges in 1-factor (d) belongs to such a quadrangle. On the other hand, it can
easily be checked that all sixteen 1-factors of type (d) are equivalent.

Of course, the inequivalent 2-factors (or 3-factors) can be found in the same
way as in the case of Cg and they are presented in Fig. 19. This completes the
proof.

Graph C3 U C5: Let us denote the vertices of the triangle of C5 U C5 by 1, 2,
3 and the vertices of the pentagon by 4, 5, 6, 7, 8.

THEOREM 9. All nonisomorphic regular factorizations of C3 U Cy are deter-
mined by its arbitrary 1-factor and 2-factors in Fig. 21.

ProoOF: A 1-factor of C3 U C5 must contain three edges which join vertices
1, 2, 3 to those of the set {4,5,6,7,8} and that is why any 1-factor has exactly
one diagonal of the pentagon 45678. The diagonals are equivalent under the auto-
morphism group of the pentagon and we take one of them, say 57. The remaining
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six cases of choosing the edges are also equivalent because the permutations of the
triangle map then into each other while the taken diagonal remains fixed. There
are thirty such equivalent 1-factors and one of them is given in Fig. 2b.

_ Of course, the 2-factors could be found in the same way as those of Cg and
2Cy; they are displayed in Fig. 21, completing the proof.

Fig. 19.

3. Other Regular Graphs on 8 vertices and the Summary of Results

There is only one regular graph of degree 6 on 8 vertices — the socalled cocktail-
party graph denoted by CP (4). Its inequivalent regular factors can be found by
embedding its complement into the complements of those regular factors in all
inequivalent ways: that was done in [3] and Fig. 22 shows all such factors. Those
3-factors that determine all nonisomorpic factorizations are marked by asterisk.

The case of Ky is trivial.
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- lga (a) (e) () ()
Fig. 20 Fig. 21

The following table indicates the number of nonisomorphic factorizations of
the graphs of degrees 3, 4, 5 and 6. The first column gives the total number, the
second one shows the number of factorizations generated by 1-factors, the third
column indicates the number of 2 — 2, 2 — 3 or 2 — 4 factorizations and the fourth
column gives the number of 3 — 3 factorizations of CP (4).

51 . 3 3 51 . 7 3 4
Ss : 3 3 Sy 15 5 10
S3: 11 Ss 5 2 3
54 : 2 2 S’4 : 8 4 4
S : 2 2 Sy : 9 4 5
2K, : 2 2 2K, : 3 1 2
Cs: 37 7 30 CP(4) : 26 2 12 12
20, : 16 4 12
C3 @] 05 : 8 1 7

cE(4) %@g
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