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ON (N, P,) AND (K,1,0) SUMMABILITY METHODS
Vinod K. Parashar
1.1 Let Za,,' be a given infinite series with the sequence of partial sums {s,}.
The Cesaro transform of order « of Xa,, is defined by
(1.1.1) se=85/A%, a> -1,

where S5 and AY are by the relations;

n

S5 =3 An e =Y Avls,

v=0 v=0
(1.1.2) Yo oAz =(1-2)7*", (2] <1).
n=0

The series Xa,, is said to be summable (C, @) to s, if s% — s, as n — o0, [2].
The series Ya, an is said to be summable (K, 1,a) to sum s, [5] if the series

™

oo .
1.1. — Bl gotl o / _Smnz
(1.1.3) Sl =B Y ST | e
= t

converges in some interval 0 < t < tg and limy—, ¢ f(a,t) = s, where

w/2 a=-1
B, =< (a+1)tsinfa+1)7r/2 —-1<a<0
1 a=0

where @ = —1, the method (K, 1, @) reduces to the method (X,1) [11].

Lunless or otherwise stated & denotes 38°.-
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The method (K, 1,q) is not regular when —1 < a <0 [5].

Let {p,} be a sequence of constants, real or complex, such that
n
P,=) P, #0, Pa=p.1=0,
v=0

and let us write

n

TTL Pn—vsv
1.1.4 n=— = .
(1.1.4) tn =5 EZ:O o

The series Xa,, is said to be summable (N, P,) to sum s, if lim, , ¢, exists
and is equal to s ([7], [10]).

In the special cases in which

_(n+a—-1\ _ T(n+a) )
a9 w= (U0 w0

. (m=tr)? >

prlogn, as n — 00,

The (N, p,) summability reduces to (C,a) summability, @« > —1, [3] § 5.13 and
harmonic summability methods [3], § 5.13 respectively.

The conditions for the regularity of the method of summation (N, p,,) defined
by (1.1.4), are

. Pn _
(1.1.7) nh—{%o P~ 0,
and
(1.1.8) Z |po| = O(prn), as n— oo, (see [3]).
v=0

If p, is real, non-negative and monotonic non-increasing, the conditions of
regularity (1.1.7) and (1.1.8) are autcmatically satisfied and the method (N,p,)
is then regular and hence the harmonic summability method is also regular. It is
known that summability (N,'/(,41)) implies summability (C,a) for every a > 0.

1.2. We set

(1.2.1) (Epnzn) ' = Sep2™ (lz| < 1; Cop=1)
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Then from (1.1.4) and (1.2.1), we get

n
(1.2.2) $n=_cn Ty
v=1
n
(1.2.3) an = e o(Ty =Ty 1)
v=1

In what follows we take ag = 0, so that Tp = 0.

2.1. Giving relation between (N, p,) and (R, 1, ) summabilties recently the
authors [2] have proved the following theorem:

THEOREM A. Xa, is (N,p) summable and if

n

(2.1.1) On =Z|Tk = Ty—1| = O(Pn),

k=1

then the series Ya, is summable (R,1,a) for —1 < a < 0, provided that p, is a
non-negative, non-increasing sequence such that P, — 0o, and

= 1
k=n+1
= }%—n f%
(2.1.3) éﬁMk+n <9(n), n>1;

(2.1.4) i 1_o (%) ;

(2.1.5) for a positive number p and n = [ut™*],7 = [t']

P, = O(P,P,).

It has been proved by Izumi [6] that for Fourier series, summability (K,1) is
equivalent to summability (R;). Since it is known that for Fourier series summabili-
ty (R,1) and (R;) are mutually exclusive [4], it follows that in general, summability
(K,1) and (R, 1) are also independent of each other. Therefore, the object of this
paper is to show that this Theorem A also holds for summability (K, 1, a).
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2.2. Our Main theorem is:

THEOREM 1. Let {p,} be a non-negative, non-increasing sequence, such
that P, — oo, and the conditions (2.1.2) through (2.1.5) hold. If Xa, is (N,pn)-
summable and if (2.1.1) holds, then Xa,, is also summable (K,1,a), for -1 < a < 0.

Combining Theorem 1 with Lemma 5 below, we also get the following inter-
esting and simple result.

THEOREM 2. Let {pn} be a positive, non-increasing sequence, such that
po =1, P, = oo and {pn+1/pn} is non-decreasing sequence and the conditions
(2.1.3) through (2.1.5) hold. If Xa,, is (N,pn) summable and if (2.1.1) holds, then
Yan, is also sumable (K,1,a), for -1 < a <0.

2.3. The following lemmas are pertinent for the proof of our theorems.

LeEMMA 1. ([1], Lema 1). If {p,} is a non-negative, non increasing sequence
such that the series 3 oo Py_n/v(v+1) converges, then £~ — 0, as n — 0.

LEMMA 2. ([1], Lemma 2). Let {p,} be a non-negative, non-increasing
sequence such that, for n > 1,

(2.3.1) 2 U(Z 1) (%) '

Then forn > 1,

232 S o (%)

LeEMMA 3. ([1], Lemma 3). Let {pn} be a non-negative, non-increasing
sequence such that {P,/n} is a null sequence. If Yay, is summable (N, py,) then

. _ > Tv_Tv—l _ Pn
(ii) W' =Y W, =o(P,).
v=1

LeEMMA 4. ([3], Theorem 22). If p(z) = Ep,z™ is convergent for |z| <1 and

(2.3.3) po=1, py>0, PIotls Pn
Pn Pn—1

(n >0), then
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(2.3.4) {p(x)} ' =14+ Ciz + Cox® +---

where Cp, > 0, forn=1,2,..., 3>  |Cp| < 1. If Sp, = o0, then 37 | |Cpn| = 1.
LEMMA 5. ([9], Lemma 2). If {p,} is a positive and non-increasing sequence

such that po = 1, P, — o0, and {pny1/pn} in non-decreasing sequence, then for
n >0,

(2.3.5) Z |C|—ZC —0( >

v=n+1

REMARK. The identity
oo n
(2.3.6) do= Y |C=>C,
v=n+1 v=0
is obtained by virtue of the Lemma 4.
LeEMMA. ([2], Lemma 9) Let {p,} be a non-negative sequence such that
P, = o0, and the conditions (2.1.2) to (2.1.4) of Theorem A hold. Then (N,p,) —

summability of the series Ya, to the sum s implies its (C,1) — summability to the
same sum. In particular, if T, = o(P,), then S} = o(n).

LEMMA 7. Let ®(n,t) = [ ZSI00% gy Then

t 2tanu/2
(2.3.7) ®(n,t) = O(1/nt)
and
(2.3.8) A™S(n, ) = 0 (tmn_l)

where A™®(n,t) denotes the m-th difference of ®(n,t) with respect to n and m is
a non-negative number.

™

£
PRrROOF. ®(n,t) =/2i;nTT;u/2du = 2(tant/2)_1/sinnu du, t<&<m
t

= (2tant/2)"" — [_cosnu]j =

= O(1/nt).
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Again

sin nu
o] =A _
(n,2) [/ 2tanu/2du]
t

_ / sinnu — sin(n + 1)u

d
2tanu/2 “

t
™

_ _/ 2cos(n + 1/2)usinu/2
B 2tanwu/2

du,

™

= —% /cos(n + 1)u + cosnu)du,
i
_t [sin(n + 1)t 4 sinnt]
2| (n+1)t nt |’

Hence

A™®(n,t) = A" 1®(n,t) = t/2A™ ! [

m—1
-o(5)
n

sin(n + 1)t  sinnt
(n+1)t nt

by virtue of

. t P
A" (SIZtn ) = O(n™?t™"7), (see Obrechkoff [§] Lemma 1).

This completes the proof.
LEMMA 8. Let G,(t) =ttt 320 (A% ®(n,t), —1 <a <0. Then
(2.3.9) G,(t) = O(1/v),

and for positive integer k,

(2.3.10) ARG,(t) =0 (—) .

Proor. Let G(t) = to41 (ZZJ;{H—ZZO:HPH) = U; + U,, say, where
)
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Now by (2.3.8) we have for -1 < a < 0,

Up =ttt > A2 (n,t)
n=v+p+1
=0 (t“(v +p+1)7t Z (n— v)a_l)
n=v+p+1

= 0(t*v™'p%) = O(v™),

and applying Abel’s transformation to U; we have

P
U, =ttt Z A2 (n + v, t),

n=0
p—1
= totl Z A2®(n +v,t) + 1T ASB(p + v, 1)

n=0

p—1
=0 (ta+1 > Ax(n+ u)—a> +0(w™)

n=2

+ 0> p* Ty + O™ = O(v™h).

Hence, G,(t) = O(v™!), for =1 < a < 0. When a = 0 G,(t) =t ®(v,t) =
O(v™1). Similarly, we hawe the result when a = —1.

Now
o0
Gy(t) = t*TH Y~ A= ®(n, 1)

n=v
=1t " A2 B(n + o, 1),

n=0

hence by using the method of proof of (2.3.9), we have

ARG, () = 177 3 Az a0, =0 (1),

v
n=0

Hence, the Lemma.

LEMMA 9. Let K,(t) =377 G,(t), then

n=y - N

(2.3.11) K,(t) =0 't™).
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Proor. We have

K,(t) = i Gn(t) = o+ f‘, i Ay
n=v n=v k=n
= tot! i i A ®(n + k,t)
n=v k=0

o o0
=t AT " B(n + k1),
k=0 n=v

the change of order of summation can be easily justified. To prove the lemma we
just show that

York(t) = D (n+k,1) = O((v +k)~'t7?)

n=v
We have,
L [ sin(n + k)z
S a(n + k.1 ‘Z/ e
n=v =
1 3
= k)xd. t
;}2tant/2/sm(n+ )xdz, <€E<m,

M8“

= (2tant/2)"" [ W]}O((Utf@)’

n

v

since Yoo gosnt — (g (L),

n nt
Now for —1 < a < 0, we write

oo P o
N AT k() =D+ > =Vi +Vh, say.
k=0 k=0 p+1

We have

Va=0 [t Y kN w+ k)
k=p+1
=0(w+p+1) 't 1p*)=0w 't "), and
p—1

Vi =t AR AL (ko () + 17 Ay, (1) = O™ '),
k=0
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Hence, (2.3.11) follows for —1 < a < 0. The result for @ = 0 is quite obvious. This

completes the proof.

LeEMMA 10. If S} = o(n), then we have

tott i S2®(n,t) = i 5,G (1)
n=1

n=1
where

—ta“ZA“ 1®(v,t) (-1<a<0).

ProOOF. We have

t““ZSa (n,t) —ta+12<1>nt2n: “Lsg,
k=1

n+1

= ta+1 Z Sk Z Aﬁ:}q’(n; t)7
=k
o)

Z skGr(t

k=1

Here we shall prove the change of order of summation is justified.

purpose it is sufficient to prove that, for fixed ¢ > 0,

”_Zsk Z A%, ®(n,t) = o(1), as N — .

= n=N+1
Using Abel’s transformation, we have

N-1

o
Sp > AXTR®(n,t)+ Sy Z A%~ L ®(n,t)
k=1 n=N+1 N=n+1

For this

:( 1|3,6|N YN - K)*~ >+0(NN—1)=0(1), as N — oo.

k=1

This proves the lemma.

LEMMA 11. Let G,(t) and K,(t) be the same as defined in lemmas 8 and 9

respectively. If s, Kny1(t) = o(1), n — oo, then the convergence of ¥ oo,

implies the convergence of Y o | $pGp(t) and

Z an(Kn(t) = Z 5nGn(t)

an K, (1)
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The proof of this lemma, follows from the identity

stGv(t) = Zava(t) = 8 Kmy1(t).

LemMA 12, If p, is such that it satisfies all the conditions of the theorem
(2.1.3), then the series

(2.3.12) i enKnio(t) = Hy(t),
n=0

is absolutely convergent and for m = 0,1,2,

(2.2.13) A™H, () = O (t;;:l) .

where A™H,(t) denote the mth difference of H,(t), with respect to v.

Absolute convergence of (2.3.12) follows from the hypotheses (2.1.2) since
¢, < 00. To prove (2.3.13), we have

A™H, () = A™ (i cnKn+v(t)> — Al (i cnKn+v(t)>
n=0 n=0

= A™m-1 i ann+v(t) = i CnAm_lGn-l-U(t)
n=0

n=0

:< + > )anm—IGn+v(t)=H51’(t)+H52)(t)a
n=0

== n=r+1

say.
Now, by hypotheses and lemmas 8 and 11, we have, for m =1,2,...,

H(2)(t) = Z A" G () = ( Z |c"|(7t1mT_v)>

n=71+1 n=1+1

tmfl S tmfl
:0(7v+7+1) > |C"|:O(UP,>'

n=7+1

And by applying Abel’s transformation and lemmas 5 and 8, we have, m =1,2,...,

T—1
HO ) = dp A" Gy () + dA™ Gy (1)

n=0

—1
T 1 tm tm—l tm—l
‘O(T;JE(nw)) +O(vPT ) _O<vPT)




On (N, P,) and (K, 1, a) summability methods 155

By hypothesis, and for m = 0,

t)=Hy =Y cnKnpo(t)
n=0
T oo
= Z cnKnio(®) + D cnKnyo(t),

n=1+1

1 oo
= Zd Hn+v +d Kn+v+1( ) +0 (E Z |cn|)

n=r+1
1 1 1 1 1
=0 (ET;)F”) +0 (vtPT> +0 (vtPT) =0 (vtPT) ’

by hypotheses and lemmas 5 and 9.
2.4. Proof of theorem 1. We may assume, without loss of generality that
Tn = (Pn), as n — oo. By virtue of Lemmas 6 and 10, we have

o+t f: S2®(n,t) = i 5,G
n=1

n=1

Again, by (1.2.2) and lemma 6, we have, as n — oo

n
S, Kn+1 — n+1 Z Cn—v 'u

v=1

:0<(ni1 >Z|cn U|+0(”")—o(1)

for fixed ¢ > 0 and by hypothesis (2.1.2) and (2.1.3) and Lemma 1.

Therefore, by virtue of lemma 11, it is sufficient to prove that ¥a, K, (¢)
converges in 0 < t < to and tends to zero as t — +0.

Employing (1.2.3), we have

> anKn(t) = Z Kn(t) Z env(Ty — Ty_1)
n=1

=1
_ZT Tvl chv
v=1

the interchange of order of summations being legitimate, since the double series is
absolutely convergent.

Since by hypothesis and the fact that . |c,| < oo for every fixed ¢ > 0,

we have
o0
Z|T =T, 1|Z|cn nto(t)] = <Z |T_Tv—1|>-
v=1

v=1
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Now, as n — o0,

n

) n—1 oV
Z Ty = Ty_1] = O(n"toy, +0< o +1)>

v= 1 v=1
n—1 P
=0()==2 1 Y =0(1
0(1)—" +0( );U(UH) 0(1),
by hypotheses and lemmas 1 and 2.
Thus
f(Oé,t) = Z(Tv - Tv—l) Z Cn—vKn(t) = Z(Tv - Tv—l)Hv(t)
v=1 n=v v=1

(2.4.2) (i i ) T, — T, 1) H, (t)

v=1v=n+1
=31 + Xy, say,

Now

o

> (T-Ty

v=n+1

v=n+1

|| =

(2.4.3)

1

(5 sk

v=n-+1

ov_ 0On
vlv+1l) n+1

-o[5%]-0(%).

-0~

by hypotheses and lemmas 2 and 12.

Next by lemma 2, we hawe

n

S =Y (T, —To1)Hy(t)

v=1

n

= (Wy — Wop1JvH, (%)

v=1

= Z Wy[vH, (t) — (v — 1)Hy_1(t)] — nWyp i1 Hn (1)

_—ZH v[Hy_1(

ZW Hv 1 - TLWTH_lHn(t)

= —21,1 + X120 — nWii1 Hy(2), where, by Lemma 3 (ii) and 12,
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21 1= ZUW AHv 1 i { 3 ,U/Wu} A2Hv—1(t)AHn(t) iUWv

v=1 v=1 v=1

o) (5
= o(1)uP, + o(1)p, = o(1)

since Y0 oW, =0 (30, v—) 0(n, P,), and by applying Abel’s transforrma-
tion twice, writng W/ = > 1 W and by virtue of Lemma 1, 3 (ii) and 11, we
hawe

21,2_i<ZW'>A2H“ t) + AH,( ZW’+H

v=1 \m=1
n n
t 1 P,
=0 (ZUPUE) to <nPT ZP”) to (ntPT)
v=1 v=1
P

=o(l)puP, +0(1)P, + 0(1)7“ =o(1).
Hence,
(2.4.4) Z1 =o(1)

Therefore, from (2.4.2), (2.4.3) and (2.4.4), we have
b
fla,t) =0o(1) + 0(1)7, as t — 0.

Consequently, lim;_,q sup f(at) < 0(1)%, being arbitrary large and O (1) inde-
pendent of p we get finally

fla,t) = 0, as t — 0.

This completes the proof of our theorem.
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