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1. The paper [1] of S. B. Presi¢ shows a possibility of assignment of an
equational formal theory detoned by ©(~), to any formal theory ©. An essential
relation between © and ©(~) is given by assertions: (i) a binary predicate denoted
by ~ is formalization of the metatheoretic equiconsequence (or interdeducibility)
relation of © (cf. [1] Theorem 1.) and (ii) © isomorphically embedded in ©(~)
by mapping f: For(©) — For(0O(~)) defined by f(4A) = A ~ T (cf. [1] Lemma
3.) On the other hand, sufficient conditions (cf. [1] Condition 1. and Condition
2.) under which the converse of (ii) is valid, are given also there. Then the formal
theory ©(~), which we shall call an equational reformulation of ©, is of particular
importance for our further exposure. In other words, it is also established that
every proof within the formal theory © can be translated into (completable) proof
of ©(~) and the converse too, provided that conditions 1. and 2. are fulfilled.

2. Let us assign the coresponding equational formal theory Io(~) to the
intuitionistic propositional calculus I formulated as in [2] p. 433. Io(~) will be
equational reformulation of the formal theory Iy too, because conditions 1. and 2.
are satisfied (Cond. 2. is satisfied by deduction theorem, [2] p. 433). In this case,
we should have in mind that

(0) |54 © B iff |54 ~ B (by [1] Theorem 4. (2°))

for any propositional formulas A, B, where we write A < B for (A = B)A(B = A).
3. The following are axioms of Iy(~).
a) A~ A; A& B~ B&A; A& (B&C) ~ (A&B)&C; AL T ~ A4
A& (A= B)~ A& (A= B)&B;
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b)A=> (B=>A)~T,;(A=>B=>0)=>(A=B)=>A=>0)~T,
A=>(B=>AANB)~T; ANB=>A~T; AANB= B~ T,;
A=>AVB~T;B=>AVB~T;4A=>C)=>(B=>0C)=>
=2 (AVB=C)~T;(A=B)=> ((A=-B)=>-4)~T
A= (A=>B)~T

Rules of inference of Iy(~) are:

A~B A~BB~C A~BC~D

(CONGR) B~A" A~C ' A&C ~B&D’

Notice that these are axiom schemes and rule schemes each with infinitely
many instances.

Using the relation (0) and known facts of the intuitionistic propositional cal-
culus, it is not difficult to examine that the following formulas are theorems of

Iy(~):
AVB~BVAANB~BAAAV(BVC)~(AVB)VC,
ANBAC)~(AANB)ANC,(AANB)VB~B,AN(AVB) ~ A,
AN(A=B)~AANB,(A=B)AB~B,(A=>B)A(A=>C)~A=BAC,
(A= AANB~B /A= (-(A=> A)) ~-A.

This means that all axioms of the pseudo-Boolean algebras (cf. for example
[3]) are satisfied in the formal theory Io(~).

A~B A~BC~D
Of course, rules =54~=5 and 4757 5>5 are valid in Io(~), where o can be each

of the following symbols V, A and =-.

In accordance with [3] (cf. p. 58, 124),we can introduce a partial ordering
relation in the pseudo-Boolean algebra (A,N,U,D,—): a < b iff (def) aUb = b.
Alsoc<aDbiffanc<b(00). Let 1 = (def) a D a and 0 = (def) — 1.

LEMMA 1. Let (A, U, N, D, —) be the psudo-Boolean algebra. Then for
every a,b,c € A:
(I)anl=a,aU0=a; (2)0<a<1;(3)anb<b,a<aUb; (4) ifb<e,
thenanb<anNe; (5)an(adb)=an(aDdb)Nb; (6) ad(bDa)=1;
N@d>®boe)d((adb)d(ade)=1;(8) (anb)Da=1;
9) (anb)Db=1: (10)aD(bD(and))=1; (11) aD (aUb) =1
12) b2 (aUb)=1;(13) (aDe) D ((bDe) D ((aUb) D) =1;
4) (aDb)D((adD=b)D—a)=1;(15) —aD(aDb)=1.
ProoF. We will prove, for example, (2), (3), (6) and (13).

(
(
(
(1

(2) (an1)Ul=1 (by axiom of PBA (pseudo-Boolean algebra))
iff an1 <1 (by definition of <)
a<1 (by (1))
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Also =1 =0 < —a (by [3] Ch. I, 12.3.). So, for everya € A0 <a < 1.

(3) (anb) Ub =10 (by axiom of PBA)
iff (3.1) and < b (by definition of <)

a=an(aUb) (by axiom of PBA)
<aUb (by (3.1))

(6) bna < a (by (3))

iff a <b D a (by (00))

iff an1 <b>Da (by (1))

iff 1 <a>D(bDa) (by (00))

But a D (bDa) <1 (by (2). So,1=a D (b D a) (by antisymmetry of <).

(13) (ade)N(bDec)=(aUb) Dec (by [3] Ch. I, 12.2. (17))

then (bD¢c)N(aDe) <(aUb)D

if (@ade)<(bDe)D ((an)DC) (by (00))

it (@ade)N1<(BdDe)D ((aUb) D) (by (1))

iff 1<(@>¢)D((bD¢)>D((aub)De)) (by (00))

So, 1=(aDc)D((bDc)D((aub) Dec)) (by (2) and antisymmetry of <).

So, all axioms of Iy(~) are satisfied in the psuedo-Boolean algebra { For (1), V
A, =, ). Of course, rules of inference (CONGR) are valid too.

The consequence of the above assertions is the following statement.

THEOREM 1. |mA ~ B iff A = B in the pseudo-Boolean algebra
(For (Iy),V, A, =, ).

4. Now, similarly as in the preceding case, we will assing the corresponding
formal theory K (~) to the classical first-order predicate calculus K (formulated as
in [2] p. 108, with the axioms for equality

Vz==z

(2 z=y= (A= Az/y)),
and all generalizations of (1) and (2)). The formal theory K(~) will be an equa-

tional reformulation of K, because conditions 1. and 2. are satisfied (Cond. 2. is
satisfied by deduction theorem [2] p. 109).

Using [1] Theorem 4. (2°) again we have (000)|zA < B iff I ®yA ~ B for
any first-order formulas A, B.

5. The axioms of K(~) are as follows:

a) the same as 3. a);

b) A ~ T (where A is any axiom of the classical propositional calculus);
Vz(A = B) = (VA = VzB) ~ T; V2 A = A(z/t) ~ T (where t is any term free
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for  in A); A = VzA ~ T (where the variable z is not free in A); z =z ~ T;
r=y= (A= Alz/y)) ~T; V2T ~ T.

Rules of inference of K(~) are (CONGR) also.

Using the relation (000) and known facts of the classical first-order predicate

calculus, we can establish that following formulas are theorems of K (~):
AVB~BVA; ANB~BAA; AV(BVC)~(AVB)VC;
ANBAC)~(AANB)ANC; (ANB)VB~B; AAN(AV B) ~ A4;
(AVB)AC~(ANC)V(BAC); (AANB)VC ~(AVC)AN(BVCC);
AV—-A~T; AAN-A~F (where we write F for =T); JzF ~ F;
AV 3IzA ~3zA; Jx(AAB) ~3zAA B (the variable z is not free in B);

JzIyA ~ FyzA; A(z/y) A (mA)(z/y) ~ F (y is any variable free for z in

Ayz=xz~T;z=y~ 3z (r =2Az=y). It means, all axioms of the cylindric

algebras (cf. [4]) are satisfied in the formal theory K (~). Naturally, rules ﬁﬁ:f 5

A~B A~BC~D 21 .
g5 and 4555 s are valid in K (~) too (o is V or A).

LEMMA 2. If we let a D b and opa denote —a U b and —cy, — a, respectively,
and if (A,U,N,—,0,1, ¢k, drm)k,m<a is the cylindric algebra of dimension o, then
for every a,b,c € A and k,m < «:

(I)anl=a; ((2)an(adb)=an(adbnNb; (B)ad((Dda)=1;
4 (adDec)D((adb)DdD(ade)=1; (5)(andb)Dda=1;

(6) (anb)Db=1; (MNadD(®D(and)) =

®)a>d(aUb)=1; (9)bD(aUb)=1

(10) (aDe)D((bDe) D((aUb)De) =1;

(11) (maDb) D ((—a D =b) Da)=1;
(
(
(
(

13) aD oka =1 (where form of a is cgxb or ogb)
4)oraDdska=1; (15) dw =1; (16) dim D (a D sk a) = 1;
17) oxl = 1 (sk, is m-for-k substitution).

ProoOF. (1) — (11) is provable in BA (Boolean algebra).

)
)
12) or(a D b) D (ora D oxb) = 1;
)
)

(12) 1=(cx —aUc,—b)U—(cp —b) (in BA)
=c¢p(—aU—-b)U —(¢r, — b) (by [4] Theorem 1.2.6.)
=c¢p((lan=b)U—a)U—(cx —b) (in BA)

(ecx(an=b)Uck —a)U—(c, —b) (by [4] Th. 1.2.6.)
=or(a D b) D (ora D orb) (in BA)

(13) 0=—cbNegb (in BA)
= ¢ (—crbNegd) (by axiom of CA (cylindric algebra))
= ¢ — cpbN b (by axiom of C'A)
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Let a be denote for cxb. Then 0 = ¢, —aNa,ie. 1 = —(cx —aNa) =a D oxa.
Similarly, when form of a is ogb.

(14) Let k =m. opa D sk a=c;, —aUska

=¢ —aUa (by def. of substitution [4] 1.5.1.)
=(—aUck —a)Ua (by axiom of C'A)
=1 (in BA)

Let k #m. cy —aUsk a=cy —aUcg(dem Na) (by def. of substitution [4] 1.5.1)

= cg(—a U (dgm Na)) (by [4] Th. 1.2.6.)
= cp(—aUdgy) (in BA)

= ¢ — aUcpdgm (by [4] Th. 1.2.6.)
=c¢;—aUl (by [4] Th. 1.3.2.)

=1 (in BA)

(15) is an axiom of C'A.
(16) and (17) can be proved similarly.

Consequently, all axioms of K (~) are satisfied in the free cylindric algebra of
(first-order) formulas (with equality) (For (K),V,A, =, F,T,3zk, Tk = Tm)k,m<w-
Rules of inference (CONGR) are valid too.

The immediate consequence of the above assertions is the following statement.

THEOREM 2. ImA ~ B iff A = B in the free cylindric algebra of formulas

(FO"’ (K)7 V: /\7 ™ F: T7 EIIEk, T = -'L'm)k,m<w-
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