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T. E. Nordahl, in [5], considered the commutative @-semigroups. C. S.
H. Nagore, [4] extended Nordahl’s results on quasi-commutative semigroups. A.
Cherubini-Spoletini and A. Varisco consider Putcha’s @)-semigroups. The defini-
tion of weakly commutative semigroup has given by M. Petrich in [6]. Here, we give
the definition of @,-semigroup i.e. a semigroup in which every proper right ideal
is a power joined semigroup and we give as well some characterizations of weakly
commutative @,-semigroups, (Theorem 3.1.).

In section 1. we characterize semilattices of groups. In section 2. we consider
archimedean weakly commutative semigroups. A weakly commutative semigroup
which does not have prime ideals is characterized by Theorem 2.1. This theorem
is a generalization of G. Thierrin’s result, [11]. By Theorem 2.3. are characterized
weakly commutative semigroups with an idemotent which are archimedean. This
theorem is an extension of T. Tamura and N. Kimura’s result in [10]. G. Thierrin
and G. Thomas in [12], too, give a characterization for these semigroups. In section
3. we give the definition of @),-semigroup. This notion is another generalization of
the notion of power joined semigroup. The description of weakly commutative
@ --semigroups is given by Theorem 3.1.

For undefined notions we reffer to [2] and [7].

1. Semilattices of groups

Here, we will characterize the semilattices of groups using the notion of weakly
commutative semigroup.

DEFINITION 1.1. [6]. A semigroup S is weakly commutative if for every a,
b € S there exist z, y € S and n € N such that

(1.1) (ab)"™ = za = by.
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Denote with 7 the class of all weakly commutative semigroups.

THEOREM 1.1. Let S be a semigroup. Then S is a semilattice of groups if
and only if S € w and S is a (left, right, intra-) regular.

PROOF. Let S be a regular semigroup. Then for every a € S there exists
x € S such that a = aza. Hence, a = (az)"a, for every n € N. As S € m, then
for a and z there exist m € N and z € S such that (az)™ = za, so a = (ax)™a =
za? € Sa?. Hence, S is a left regular semigroup. Similarly we have that S is a right
regular semigroup. By Theorem 12. [8] we have that S is a semilattice of groups.

The converse follows by Theorem 12. [8].

COROLLARY 1.1 Let S be a semigroup. Then S is a (left, right) simple and
S € wif and only if S is a group.

2. Archimedean semigroups

DEFINITION 2.1.  [10]. A semigroup S is left (right) arhimedean is for
every a,b € S there exist z,y € S and n € N such that a” = zb, b" = ya,
(a™ = bz, b™ = ay). S is an archimedean semigroup if for every a,b € S there exist
z,u,y,v €S and n € N such that a™ = zby, b™ = uav.

LEMMA 2.1. Let S € w. Then, the following conditions are equivalent:
(i) S is left archimedean,
(if) S is right archimedean,

(iii) S is archimedean.

PROOF. (i) = (ii). Let for every a, b € S exist z, y € S and n € N such that
(2.1) a”™ = zb, b" = ya.

As S € 7, then for x and b there exist m € N and z, u € S such that

(2.2) (xb)™ = bz = ux.
Similarly
(2.3) (ya)* = av = wy

for some k € N and v, w € S. From (2.1) and (2.2) we have that
(2.4) a™ = (zb)™ = bz.
From (2.1) and (2.3) we have

(2.5) bt = (ya)* = av.
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From (2.4) and (2.5) it follows
anmk — (bz)k, bnmk — (av)m‘

Hence, S is a right archimedean semigroup. Similarly to the previous, it can be
proved that (ii7) = (4). (i) = (¢4i) follows immediately.

COROLLARY 2.1. A weakly commutative archimedean semigroup has one
idempotent at most.

LEMMA 2.2. Let S be a weakly commutative archimedean semigroupt. Then
every semiprime ideal from S is two-sided.

PrROOF. Let S € 7w and R be a right ideal of S and R is semiprime. For
arbitrary a € R, b € S there exist x, y € S and n € N such that (ba)" = ax € R,
hence ba € R. Similarly, for a left ideal of S.

THEOREM 2.1. Let S be a semigroup. Then S is weakly commutative and S
does not have proper prime ideals if and only if S is a left and right archimedean
semigroup.

PRrROOF. Let S be a weakly commutative semigroup that does not have proper
prime ideals. Let (a) be a cyclic semigroup generated by a € S. Denote with S,
the set of all z € S such that they divide from the left side some element from (a).
The set S, is non-empty since (a) C S,. The set S, a subsemigroup of S. For z,
y €S, exist u, w € S* and h € N such that uzr = a”, wy = a” and exist v € S! and
k € N such that yv = a¥, (Lemma 2.1.), so u(zy)v = a"**  (Lemma 2.1.). Hence,
zy € S,. Take S\S, # 0 and z € S\S,, a € S. The element az is not in S,, (if
az € S,, then there exist u € S such that uaz € (a), so z € S,, which is impossible).
Hence, az € S\S,, so S\S, is a left ideal of S. Since S, is a subsemigroup of S, so
S\S, is a prime ideal of S, hence it is two-sided, (Lemma 2.2.). Let a, b€ S. As S
does not have proper prime ideals it follows that S\S, = 0, i.e. S = S, and there
exist u € S* and h € N such that a” = ub. Analogously b* = va, (k € N,v € S!).
Hence, S is a left archimedean semigroup. If can be proved, in a similar way, that
S is a right archimedean semigroup.

Conversely, let S be a left and right archimedean semigroup. Then S is weakly
commutative. Let S has a proper prime ideal I and let a € I, b € S\I. Then there
exist x € S and n € N such that b” = ax € I, so b € I, which is impossible.

LEMMA 2.3. Let S € 7 be a archimedean semigroup with the idempotent e,
then €S is a group and eS = Sd = SeS hold.

Proor. Let a € eS. Then a = ex for some x € S. From this we have
ea = €2r = ex = a, 50 e is a left identity for eS. S is an archimedean semigroup,
then it exists y € S such that e = ya, (Lemma 2.1.) i.e. e = (ey)a. Hence, a has
in eS an inverse element relatively to e. It follows that eS is a group with identity

e. For arbitrary a € eS, a = ex holds, x € S, so a = eex € SeS. Similarly for
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arbitrary b € SeS is b = uev, (u,v € S), i.e. b = u(ev)e = (uev)e € Se, because e
is an identity in eS. Hence,

(2.6) eS C SeS C Se.
We prove that

(2.7 Se C SeS CeS

analogously. From (2.6) and (2.7) we have that eS = Se = SeS.
By using the Theorem of Clifford (Theorem 4; 19. [2]) it can be easily verified.

LEMMA 2.4. If S is an ideal extension of a weakly commutative archimedean
semigroup with identity by a nil-semigroup, then S is weakly commutative semi-
group.

The following theorem is an extension of the result of T. Tamura and N.
Kimura [10].

THEOREM 2.3. Let S be a semigroup. Then S is a weakly commutative
archimedean with an idempotent if and only if S is a group or S is an ideal extension
of a group by a nil-semigroup.

PrROOF. Let S be a weakly commutative archimedean semigroup with the
idempotent e. If S is simple, then S is a group (Corollary 1.1.). If S is not simple,
take the ideal I = SeS and the factor-semigroup of Rees S/I. From Lemma 2.3. I
is a group. Since S is an archimedean semigroup, so for every a € S, b € I there
exist a natural number n and z € S such that a™ = bz holds, (Lemma 2.1.). From
this we have that a™ € I. Hence, S/I is a nil-semigroup. If e is a zero in S then
S/I =S, so S is a nil-esmigroup itself, because I contains only e.

Conversely, let S be an extension of the group I by a nil-semigroup ). From
Lemma 2.4. S is a weakly commutative semigroup. Obviously, S contains only one
idempotent (an identity from I). Let us prove that S is an archimedean semigroup.
The semigroup S/ is a nil-semigroup, and, as S/I = @, it follows that for arbitrary
a, b € S there exist h and k such that a”, b* € I. But, I is a group, so there exist
z, y € I such that a® = b*zx, b* = a"y. Hence, S is a right archimedean semigroup,
so from Lemma, 2.1. it is archimedean. The assertion follows immediality if S is a

group.

LEMMA 2.5. Let S be an archimedean weakly comutative semigroup without
idempotents. Then a # ab, for every a, b € S.

PrOOF. Let S be an archimedean weakly commutative semigroup without
idempotents. Assume opposite, i.e. a = ab. Then for a and b there exist z € S and
n € N such that " = ax holds, (Lemma 2.1.), and so a = ab = ab®? = --- = ab™, so
a = a’z. Hence, the element a is a right regular, so it is regular, (Theorem 1.1.).
It follows that S has an idempotent, which is impossible.
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3. Q,.-Semigroups

DEFINITION 3.1. [6]. A semigroup S is a power joined if for every a, b € S
there exist m, n € N such that a™ = b".

Obviously, a power joined semigroup is weakly commutative.

Immediately follows

LEMMA 3.1. Let S be a semigroup. Then the following conditions are equiv-
alent:

(i) S is power joined,

(ii) Every ideal from S is a power joined semigroup,

(iii) Every right (left) ideal of S is a power joined semigroup.

T. E. NORDAHL, [5] considered commutative @)-semigroups. We give here

the definition of @),-semigroup, which is another generalization of a power joined
semigroup.

DEFINITION 3.2. A semigroup S is @Q,-semigroup (Q,-semigroup) if every
proper right (left) ideal of S is a power joined semigroup.

Q,-semigroup is @)-semigroup. The converse is not true. For example, the
semigroup S given by

e 8 2 |
Q& & |
e e 8 |0
QO |

a
b
c
d

is a @-semigroup. But, the right ideal {a, d} is not a power joined semigroup, so S
is not a @,-semigroup.

The following theorem describes weakly commutative @ ,-semigroups.

THEOREM 3.1. Let S be a semigroup. Then S is a weakly commutative
Q--semigroup if and only if one of the tree possibilites hold:

1° S is a power joined semigroup,
1° S is a group,

3° S = M UG and the identity e of the group G is a left identity of S and M
is the unique maximal prime ideal of S and M is a power joined semigroup.

PRrOOF. Let S be an archimedean weakly commutative ),.-semigroup. Then
S has one idempotent at most, (Corollary 2.1.). If S does not have an idempotent,
then from Lemma 2.5. for every a € S is a € aS. From this, we have that aS
is a proper right ideal of S. Hence, aS is a power joined semigroup. For b € §
there exists n € N such that b” € aS, (Lemma 2.1) and obviously there exists
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m € N such that a™ € aS. aS is a power joined semigroup, then there exist r,
s € N such that a™" = b™*. Hence, in this case S is a power joined semigroup. If
S has an idempotent e, then from Lemma 2.3. eS is a group-ideal of S. If eS # S,
then eS is a proper ideal of S, eS is power joined, so eS is a periodic group. So,
S is a nil-extension of a periodic group, (Theorem 2.3.). From this eS is a power
joined semigroup with one idempotent. If es = S, then S is a group. If S is not
an archimedean semigroup then from Theorem 2.1. S has a proper prime ideal.
Denote with M the union of all proper prime ideals of S. Then M is a maximal
prime ideal of S and M is a power joined semigroup. If M = S, then S is a power
joined semigroup. If M ¢ S, then for x € S\M is 22 € S\M and as M is a
maximal ideal of S, M U J(z) = M U J(z?) = S, so x = x? or x = 2°t or © = t;2°
or & = tyz’ts, for some t, ty, ty, t3 € S\M. From the Theorem 1.1 we have that
in each of these cases z is a regular element, i.e. S\M is a regular semigroup, so it
contains idempotents. It can be easily verified that S\ M has only one idempotent.
Hence, S\ M is a group. So if M € S, then

(*) S=MUG

where M is a unique maximal prime ideal which is a power joined semigroup and
G is a group. We distinguish now two cases:

(i) eS = S. Then for each z € Sis z = es, for som z € S and ex = e(es) = z.
Hence, e is a left identity of S, aod in this case S is of the type 3°.

(ii) eS € S. Then €S is a power joined semigroup. From (*) we have that
eS=eMUeG=eMUG.

It follows that G C eS, so S = M UeS which means that in this case S is a power
joined semigroup.

Conversely, let 3° holds. If a, b € M then there exist z, y € M and n € N such
that (ab)” = za = by, because M is power joined. If a, b € G then (ab)” = za = by
for some x,y € Gandn € N. If a€ M, b € G, then bab € M, so

(ab)** = [a(bab)]* = za = baby, for some k € N and some z,y € M.

Hence, S is a weakly commutative semigroup. Take an arbitrary proper right ideal
R from S. If R C M, then R is a power joined semigroup, so S is a J,.-semigroup.
If RNG # 0, then G C R and we have that e € R. Hence, R = S, which is
impossible. In the other cases the assertion immediately follows.

Note that Lemma 3.1. holds if we change the term “ideal” with the term
“quasi-ideal” (“bi-ideal”), (for definitions of a quasi-ideal and bi-ideal see [2] or
[9]). Hence, the notion of a power joined semigroup could be generalised in the
following way:

DEFINITION 3.3. A semigroup S is a (),-semigroup (Qp-semigroup) if every
proper quasi-ideal (bi-ideal) of S is a power joined semigroup.
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Denote with P, Qp, Qr, Qi, Qq, @ the classes of all power joined, @3-, @,
Qi-, Q4-, Q-semigroups. The we have

LEMMA 3.2. PCQpyCQRCQ,UQ CQ.
From the Theorem 3.1. its dual theorem and lemma 3.2. immediately follows

THEOREM 3.2. Let S be a weakly commutative archimedean semigroup with
no idempotents, then the following conditions are equivalent:
(i) S is power joined,

(ii) S is Qp-semigroup,
(iii) S is Q,-semigroup,
(iv) S is Q;-semigroup,
(v) S is Qq-semigroup.
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