New York Journal of Mathematics

New York J. Math. 31 (2025) 223-237.

Left braces of size p^2q^2

Teresa Crespo

ABSTRACT. We consider relatively prime integer numbers *m* and *n* such that each solvable group of order *mn* has a normal subgroup of order *m*. We prove that each brace of size *mn* is a semidirect product of a brace of size *m* and a brace of size *n*. We further give a method to classify braces of size *mn* from the classification of braces of sizes *m* and *n*. We apply this result to determine all braces of size p^2q^2 , for *p* and *q* odd primes satisfying some conditions which hold in particular for *p* a Germain prime and q = 2p + 1.

CONTENTS

1.	Introduction	223
2.	Left braces of size mn , for $gcd(m, n) = 1$	224
3.	Braces of size p^2 , for p an odd prime number	226
4.	Groups of order p^2q^2	227
5.	Left braces of size p^2q^2	228
Acknowledgments		237
References		237

1. Introduction

.

- .

In [10] Rump introduced braces to study set-theoretic solutions of the Yang-Baxter equation. A (left) brace is a triple $(B, +, \cdot)$ where *B* is a set and + and \cdot are binary operations such that (B, +) is an abelian group, (B, \cdot) is a group and

$$a \cdot (b+c) + a = a \cdot b + a \cdot c,$$

for all $a, b, c \in B$. We call (B, +) the additive group and (B, \cdot) the multiplicative group of the left brace. The cardinal of *B* is called the size of the brace. If (B, +) is an abelian group, then (B, +, +) is a brace, called trivial brace.

Let B_1 and B_2 be left braces. A map $f : B_1 \to B_2$ is said to be a brace morphism if f(b + b') = f(b) + f(b') and $f(b \cdot b') = f(b) \cdot f(b')$ for all $b, b' \in B_1$. If f is bijective, we say that f is an isomorphism. In that case we say that the braces B_1 and B_2 are isomorphic.

- - -

Received January 30, 2024.

²⁰¹⁰ Mathematics Subject Classification. 16T25, 20D20, 20D45.

Key words and phrases. Left braces, Sylow subgroups, semidirect product, Germain primes.

This work was supported by grant PID2019-107297GB-I00, Ministerio de Ciencia, Innovación y Universidades.

We recall the definition of direct and semidirect product of braces as defined in [5] and [11]. Let $(B_1, +, \cdot)$ and $(B_2, +, \cdot)$ be braces and $\tau : (B_2, \cdot) \rightarrow Aut(B_1, +, \cdot)$ be a group morphism. Define in $B_1 \times B_2$ operations + and \cdot by

 $(a,b) + (a',b') = (a + a', b + b'), \quad (a,b) \cdot (a',b') = (a \cdot \tau(b)(a'), b \cdot b').$

Then $(B_1 \times B_2, +, \cdot)$ is a brace which is called the semidirect product of the braces B_1 and B_2 via τ and will be denoted $B_1 \rtimes_{\tau} B_2$. If τ is the trivial morphism, then $(B_1 \times B_2, +, \cdot)$ is called the direct product of B_1 and B_2 .

We recall that, for a left brace $(B, +, \cdot)$ and each $a \in B$, we have a bijective map $\lambda_a : B \to B$ defined by $\lambda_a(b) = -a + a \cdot b$ which satisfies $\lambda_a(b + c) = \lambda_a(b) + \lambda_a(c)$, $a \cdot b = a + \lambda_a(b)$, $\lambda_{a \cdot b} = \lambda_a \circ \lambda_b$, for any a, b, c in B.

Left braces have been classified for sizes p^2 , p^3 , for p a prime number ([3]); pq and p^2q , for p and q odd prime numbers ([1, 2, 4, 9]); $2p^2$, for p an odd prime number ([6]); 8p, for p an odd prime number $\neq 3, 7$ ([7]) and for 12p, for p an odd prime number ≥ 7 ([8]). In this paper we consider relatively prime integer numbers m and n such that each solvable group of order mn has a normal subgroup of order m. We prove that each brace of size mn is a semidirect product of a brace of size m and a brace of size n. We further give a method to classify braces of size mn from the classification of braces of sizes m and n. This is a generalization of the result obtained in [8] in the case in which m is prime. We apply our result to describe all braces of size p^2q^2 , for p and q odd primes satisfying $q > p, q \ge 5, p \mid q - 1, p \nmid q + 1, p^2 \nmid q - 1$. We note that these conditions hold in particular when p is an odd Germain prime and q = 2p + 1.

2. Left braces of size mn, for gcd(m, n) = 1

In this section we consider relatively prime integer numbers *m* and *n* and assume that each solvable group of order *mn* has a normal subgroup of order *m*. We prove that each brace of order *mn* is a semidirect product $B_1 \rtimes_{\tau} B_2$, where B_1 is a brace of size *m*, B_2 is a brace of size *n* and $\tau : (B_2, \cdot) \rightarrow \text{Aut}(B_1, +, \cdot)$ is a group morphism. Moreover, given such B_1 and B_2 , we determine when two group morphisms $\sigma, \tau : (B_2, \cdot) \rightarrow \text{Aut}(B_1, +, \cdot)$ provide isomorphic braces.

Theorem 2.1. Let *m* and *n* be relatively prime integer numbers such that each solvable group of order *mn* has a normal subgroup of order *m*. Then each brace of size *mn* is a semidirect product of a brace of size *m* and a brace of size *n*.

Proof. Let $(B, +, \cdot)$ be a brace of size mn. Let B_1 and B_2 be its unique additive subgroups of size m and n, respectively. In particular B_1 and B_2 are characteristic subgroups in (B, +). Since, for each $a \in B$, λ_a is an automorphism of (B, +), it leaves B_1 and B_2 setwise invariant. This implies that, for $a, b \in B_1$, we have $ab = a + \lambda_a(b) \in B_1$, as $\lambda_a(b) \in B_1$. Similarly, this can be applied to B_2 . So, B_1 and B_2 are subbraces of B and B_1 and B_2 are complements of one another. Let $a \in B_1$ and $b \in B_2$, then

$$ba = {}^{b}ab \Rightarrow b + \lambda_{b}(a) = {}^{b}a + \lambda_{ba}(b).$$

Since the multiplicative group of a brace is always solvable (see [5] Theorem 5.2), our hypothesis implies that (B_1, \cdot) is a normal subgroup of (B, \cdot) , hence ${}^{b}a \in B_1$. Using again that the λ -action leaves B_2 setwise invariant, we obtain $\lambda_{ba}(b) \in B_2$. A comparison of the components shows ${}^{b}a = \lambda_b(a)$, i.e. under the λ -action, (B_2, \cdot) acts by automorphisms of $(B_1, +)$ and (B_1, \cdot) , that is, by brace automorphisms. Analogously

$$ab = ba^b \Rightarrow a + \lambda_a(b) = b + \lambda_b(a^b),$$

where $\lambda_a(b) \in B_2$, $\lambda_b(a^b) \in B_1$. Comparing components, we obtain $\lambda_a(b) = b$. Therefore $ab = a + \lambda_a(b) = a + b$ for $a \in B_1$, $b \in B_2$. Also, $ba = {}^ba + \lambda_{ba}(b) = {}^ba + b = \tau_b(a) + b$ for an action $\tau : B_2 \to \operatorname{Aut}(B_1)$.

Finally, for $a, a' \in B_1; b, b' \in B_2$, we have

$$(a+b)(a'+b') = ab(a'+b') = a(ba'-b+bb') = a(\tau_b(a')+bb') = a\tau_b(a') - a + a(bb') = a\tau_b(a') + bb',$$

where we have use the brace condition in the second and fourth equalities. Hence

$$B \to B_1 \rtimes_{\tau} B_2$$
; $a + b \mapsto (a, b)$

is indeed a brace morphism.

We want to see now when two semidirect products of braces B_1 and B_2 of coprime orders are isomorphic.

Proposition 2.2. Let B_1, B_2 be braces with $gcd(|B_1|, |B_2|) = 1$. Consider semidirect products $B_{\sigma} := B_1 \rtimes_{\sigma} B_2, B_{\tau} := B_1 \rtimes_{\tau} B_2$, for morphisms $\sigma, \tau : (B_2, \cdot) \rightarrow Aut(B_1, +, \cdot)$. An isomorphism $h : B_{\sigma} \rightarrow B_{\tau}$ is of the form (h_1, h_2) , where $h_i \in Aut(B_i), i = 1, 2$, and h_1 and h_2 satisfy

$$\tau h_2 = {}^{h_1} \sigma$$

Proof. The coprimality of $|B_1|$ and $|B_2|$ implies that the B_i are subbraces of B_{σ} and B_{τ} and furthermore, $(B_1, +)$ (respectively $(B_2, +)$) is the only subgroup of order *m* (respectively *n*) in $(B_{\sigma}, +)$ and $(B_{\tau}, +)$. Hence an isomorphism $h : B_{\sigma} \to B_{\tau}$ is of the form (h_1, h_2) , where $h_i \in \text{Aut}(B_i), i = 1, 2$. For $a, a' \in B_1, b, b' \in B_2$, we have

$$h((a,b) \cdot (a',b')) = h(a\sigma(b)(a'),bb') = (h_1(a\sigma(b)(a')),h_2(bb'))$$

and

$$\begin{array}{lll} h(a,b) \cdot h(a',b') &=& (h_1(a),h_2(b)) \cdot (h_1(a'),h_2(b')) \\ &=& (h_1(a)\tau(h_2(b))(h_1(a')),h_2(b)h_2(b')). \end{array}$$

We obtain

$$h_1(\sigma(b)(a') = \tau(h_2(b))(h_1(a')).$$

Replacing a' by $h_1^{-1}(a')$ results in the equation

$$h_1(\sigma(b)(h_1^{-1}(a')) = \tau(h_2(b))(a').$$

As a' and b are arbitrary, this implies

$$\tau h_2 = {}^{h_1} \sigma.$$

3. Braces of size p^2 , for p an odd prime number

In [3] Bachiller obtained the classification of braces of sizes p^2 and p^3 , up to isomorphism, for p a prime number. We recall it for braces $(B, +, \cdot)$ of size p^2 , for p odd. We note that in this case (B, \cdot) is isomorphic to (B, +). For each brace, we give the group of brace automorphisms and an explicit isomorphism from (B, \cdot) to (B, +).

3.1. $(B, +) \simeq \mathbf{Z}/(p^2)$. There are two braces, up to isomorphism, with additive group isomorphic to $\mathbf{Z}/(p^2)$, the trivial one and a brace with \cdot defined by

 $x_1 \cdot x_2 = x_1 + x_2 + px_1x_2.$ In both cases, $(B, \cdot) \simeq \mathbf{Z}/(p^2)$. In the trivial case, we have

Aut
$$B = \operatorname{Aut}(\mathbf{Z}/(p^2)) \simeq (\mathbf{Z}/(p^2))^*$$
.

In the nontrivial case, we have

$$\operatorname{Aut} B = \{k \in (\mathbf{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}$$

and an isomorphism from (B, \cdot) into $\mathbb{Z}/(p^2)$ is given by $n \mapsto n - pn(n-1)/2$.

3.2. $(B, +) \simeq \mathbf{Z}/(p) \times \mathbf{Z}/(p)$. We write the elements in $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ in vector form. There are two braces, up to isomorphism, with additive group isomorphic to $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, the trivial one and a brace with \cdot defined by

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + y_1 y_2 \\ y_1 + y_2 \end{pmatrix}.$$

In both cases, $(B, \cdot) \simeq \mathbf{Z}/(p) \times \mathbf{Z}/(p)$. In the trivial case, we have

$$\operatorname{Aut} B = \operatorname{Aut}(\mathbf{Z}/(p) \times \mathbf{Z}/(p)) \simeq \operatorname{GL}(2, p).$$

In the nontrivial case, we have

Aut
$$B = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : b \in \mathbf{Z}/(p), d \in (\mathbf{Z}/(p))^* \right\}$$

and an isomorphism from (B, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ is given by

$$\binom{x}{y} \mapsto \binom{x - y(y - 1)/2}{y}.$$

4. Groups of order p^2q^2

We assume now that p and q are primes satisfying p > 2, q > p and $q \ge 5$. These hypotheses imply that a group G of order p^2q^2 has a unique normal q-Sylow subgroup S_q of order q^2 . Indeed, the number n_q of q-Sylow subgroups of G satisfies $n_q \in \{1, p, p^2\}$ and $n_q \equiv 1 \pmod{q}$. Clearly $q \nmid p - 1$ and $q \mid p^2 - 1$ implies $q \mid p - 1$ or $q \mid p + 1$ but, if q > p, the second condition holds only for p = 2 and q = 3. We obtain that a group of order p^2q^2 is the semidirect product of a normal subgroup S_q of order q^2 and a subgroup S_p of order p^2 . It is then determined by a group G_1 of order q^2 , a group G_2 of order p^2 and a morphism $\tau : G_2 \to \operatorname{Aut}(G_1)$. We note that triples (G_1, G_2, τ) and (G'_1, G'_2, τ') provide isomorphic groups of order p^2q^2 if and only if there exist isomorphisms $f : G_1 \to G'_1, g : G_2 \to G'_2$ such that ${}^f \tau = \tau'g$. The groups of order p^2q^2 may then be described by determining the equivalence classes of morphisms $\tau : G_2 \to \operatorname{Aut}(G_1)$ under the relation

$\tau \sim \tau' \Leftrightarrow \exists (f,g) \in \operatorname{Aut} G_1 \times \operatorname{Aut} G_2 : f_{\tau} = \tau'g.$

Let us further assume that p and q satisfy $p | q-1, p \nmid q+1$ and $p^2 \nmid q-1$. If $G_1 \simeq \mathbf{Z}/(q^2)$ then Aut $G_1 \simeq (\mathbf{Z}/(q^2))^* \simeq \mathbf{Z}/q(q-1)$. The assumptions p | q-1 and $p^2 \nmid q-1$ imply that Aut G_1 contains a unique subgroup of order p but no subgroup of order p^2 . If $G_1 \simeq \mathbf{Z}/(q) \times \mathbf{Z}/(q)$, then Aut $G_1 \simeq \operatorname{GL}(2,q)$ and $|\operatorname{GL}(2,q)| = (q+1)q(q-1)^2$. The assumptions $p | q-1, p \nmid q+1$ and $p^2 \nmid q-1$ imply that Aut G_1 contains elements of order p but no element of order p^2 .

Since τ and $f\tau$, for $f \in GL(2, q)$, give isomorphic groups of order p^2q^2 , we need to determine the subgroups of order p of GL(2, q), up to conjugation. This is done in the following lemma which is easy to prove.

Lemma 4.1. For λ a fixed generator of the unique subgroup of order p of $\mathbf{Z}/(q)^*$, a system of representatives of the conjugation classes of subgroups of order p of GL(2, q) is

$$\left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & \lambda \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^{-1} \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda^k \end{array}\right) \right\rangle, \tag{4.1}$$

for k running over a system of representatives of elements of $(\mathbb{Z}/(p))^*$, different from 1 and -1, under the relation $k \sim \ell$ if and only if $k\ell \equiv 1 \pmod{p}$.

The number of subgroups of order p of GL(2, q) up to conjugation is then (p + 3)/2.

We may now describe the groups of order p^2q^2 for primes p and q satisfying the following conditions.

$$q > p, p > 2, q \ge 5, p \mid q - 1, p \nmid q + 1, p^2 \nmid q - 1.$$
 (4.2)

Lemma 4.2. Let p and q satisfying (4.2). Let G be a group of order p^2q^2 and let us denote by S_a the unique q-Sylow subgroup of G.

1) Assume $S_q \simeq \mathbf{Z}/(q^2)$ and let α denote a fixed generator of the unique subgroup of order p of $(\mathbf{Z}/(q^2))^*$. In this case, G is isomorphic to one of the following groups.

1.1) $\mathbf{Z}/(p^2q^2);$

1.2) $\mathbf{Z}/(q^2) \rtimes \mathbf{Z}/(p^2)$ with product given by

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 + \alpha^{y_1} x_2, y_1 + y_2);$$

1.3)
$$\mathbf{Z}/(pq^2) \times \mathbf{Z}/(p);$$

1.4) $\mathbf{Z}/(q^2) \rtimes (\mathbf{Z}/(p) \times \mathbf{Z}(p))$ with product given by

$$\left(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}\right) \cdot \left(x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}\right) = \left(x_1 + \alpha^{y_1} x_2, \begin{pmatrix} y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}\right).$$

- 2) Assume $S_q \simeq \mathbf{Z}/(q) \times \mathbf{Z}/(q)$ and let λ denote a fixed generator of the unique subgroup of order p of $(\mathbf{Z}/(q))^*$. In this case, G is isomorphic to one of the following groups.
 - 2.1) **Z**/(p^2q) × **Z**/(q);
 - 2.2) one of the (p+3)/2 groups $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p^2)$ with product given by

$$\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),z_1\right)\cdot\left(\left(\begin{array}{c}x_2\\y_2\end{array}\right),z_2\right)=\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right)+M^{z_1}\left(\begin{array}{c}x_2\\y_2\end{array}\right),z_1+z_2\right),$$

where M denotes one of the matrices in (4.1).

- 2.3) $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq);$
- 2.4) one of the (p + 3)/2 groups $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$, with product given by

$$\left(\binom{x_1}{y_1},\binom{z_1}{t_1}\right)\cdot\left(\binom{x_2}{y_2},\binom{z_2}{t_2}\right)=\left(\binom{x_1}{y_1}+M^{z_1}\binom{x_2}{y_2},\binom{z_1+z_2}{t_1+t_2}\right),$$

where M denotes one of the matrices in (4.1);

2.5) $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_{\lambda} (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$ with product given by

$$\left(\begin{pmatrix}x_1\\y_1\end{pmatrix},\begin{pmatrix}z_1\\t_1\end{pmatrix}\right)\cdot\left(\begin{pmatrix}x_2\\y_2\end{pmatrix},\begin{pmatrix}z_2\\t_2\end{pmatrix}\right)=\left(\begin{pmatrix}x_1+\lambda^{t_1}x_2\\y_1+\lambda^{z_1+t_1}y_2\end{pmatrix},\begin{pmatrix}z_1+z_2\\t_1+t_2\end{pmatrix}\right).$$

5. Left braces of size p^2q^2

In this section we consider primes p and q satisfying the conditions in (4.2). At the beginning of Section 4, we have seen that, under these assumptions, $m = q^2$ and $n = p^2$ satisfy the conditions in Theorem 2.1. Hence, every brace of size p^2q^2 is the semidirect product of a brace B_1 of size q^2 and a brace B_2 of size p^2 . We use the description of braces of order p^2 recalled in Section 3 and Proposition 2.2 to determine all braces of size p^2q^2 , for p and q satisfying the conditions (4.2). We note that, in particular, these conditions are satisfied when p is an odd Germain prime and q = 2p + 1.

For the description of the multiplicative groups of the braces of size p^2q^2 given below we shall use the explicit isomorphism from (B_2, \cdot) to $(B_2, +)$ given in Sections 3.1 and 3.2, respectively. Using these isomorphisms, one may prove that the description of the action of Aut B_2 on (B_2, \cdot) looks the same as its action on $(B_2, +)$ (see [9] Lemma 7).

5.1. $(B_1, +) = \mathbb{Z}/(q^2)$ and $(B_2, +) = \mathbb{Z}/(p^2)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2),$$
(5.1)

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2$.

5.1.1. B_1 trivial brace. In this case, Aut $B_1 = (\mathbf{Z}/(q^2))^*$. Since Aut B_1 is abelian, $h_1 \tau = \tau$, for every morphism τ from (B_2, \cdot) to Aut B_1 .

The morphisms from $\mathbf{Z}/(p^2)$ to Aut B_1 are τ_i defined by $1 \mapsto \alpha^i$, for α a fixed generator of the unique subgroup of order p of Aut B_1 , $0 \le i \le p - 1$, where i = 0 corresponds to the trivial morphism.

If B_2 is trivial, for $h_2 \in \text{Aut} B_2$ defined by $h_2(1) = i$, with $p \nmid i$, we have $\tau_i = \tau_1 h_2$. We obtain then two braces, the first one is the direct product of B_1 and B_2 , with multiplicative law given by

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \tag{5.2}$$

and the second one has multiplicative law given by

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1 + \alpha^{x_2} y_1, x_2 + y_2), \tag{5.3}$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2; \alpha$ a fixed element of order p of $(\mathbf{Z}/(q^2))^*$. If B_2 is nontrivial, Aut $B_2 = \{k \in (\mathbf{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}$ and, for the morphisms τ_i defined above we have $\tau_i h_2 = \tau_i$, for each $h_2 \in \text{Aut } B_2$. We obtain p braces, including the direct product one. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p^2)$ given in Section 3.1 and that α has order p, their multiplicative laws are given by

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1 + \alpha^{ix_2}y_1, x_2 + y_2 + px_2y_2),$$
(5.4)

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2; i = 0, ..., p - 1; \alpha$ a fixed element of order p of $(\mathbb{Z}/(q^2))^*$.

5.1.2. B_1 nontrivial brace. In this case, Aut $B_1 = \{k \in (\mathbb{Z}/(q^2))^* : k \equiv 1 \pmod{q}\} \simeq \mathbb{Z}/(q)$. Then the unique morphism τ from $(B_2, \cdot) \simeq \mathbb{Z}/(p^2)$ to Aut B_1 is the trivial one. We obtain two braces which are direct products of B_1 and B_2 , where B_2 is either trivial or nontrivial. Their multiplicative laws are given by

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1 + qx_1y_1, x_2 + y_2), \tag{5.5}$$

$$(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1 + qx_1y_1, x_2 + y_2 + px_2y_2), \tag{5.6}$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2$.

Summing up, we have obtained the following result.

Theorem 5.1. Let p and q be primes satisfying $q > p, q \ge 5, p | q - 1, p \nmid q + 1$ and $p^2 \nmid q - 1$. There are p + 4 braces with additive group $\mathbf{Z}/(p^2q^2)$. Four of them have multiplicative group $\mathbf{Z}/(p^2q^2)$ and the remaining p have multiplicative group $\mathbf{Z}/(q^2) \rtimes \mathbf{Z}/(p^2)$.

5.2. $(B_1, +) = \mathbf{Z}/(q^2)$ and $(B_2, +) = \mathbf{Z}/(p) \times \mathbf{Z}/(p)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$(x_1, \binom{y_1}{z_1}) + (x_2, \binom{y_2}{z_2}) = (x_1 + x_2, \binom{y_1 + y_2}{z_1 + z_2}),$$
 (5.7)
for $x_1, x_2 \in B_1; \binom{y_1}{z_1}, \binom{y_2}{z_2} \in B_2.$

5.2.1. B_1 trivial brace. In this case, Aut $B_1 \simeq (\mathbf{Z}/(q^2))^*$. Since Aut B_1 is abelian, we have ${}^{h_1}\tau = \tau$, for every morphism τ from G_2 to Aut B_1 and $h_1 \in \text{Aut } B_1$. If B_2 is trivial, every nontrivial morphism $\tau : \mathbf{Z}/(p) \times \mathbf{Z}/(p) \to (\mathbf{Z}/(q^2))^*$ is equal to $\tau_0 h_2$, for $h_2 \in \text{Aut } B_2 \simeq \text{GL}(2, p)$ and τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \alpha, \tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$, for α a fixed element of order p in $(\mathbf{Z}/(q^2))^*$. We obtain one brace whose multiplicative law is given by

$$(x_1, {y_1 \choose z_1}) \cdot (x_2, {y_2 \choose z_2}) = (x_1 + \alpha^{y_1} x_2, {y_1 + y_2 \choose z_1 + z_2}),$$
 (5.8)

where α is an element of order p in Aut B_1 . Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2, \binom{y_1 + y_2}{z_1 + z_2}),$$
(5.9)

If B_2 is nontrivial, Aut $B_2 = \{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : d \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p) \}$. Every nontrivial morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is equal to $\tau_0 g$, for $g \in GL(2, p)$ and τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \alpha, \tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 1$, for α a fixed element of order pin Aut B_1 . By computation, we obtain that, for $g_1, g_2 \in GL(2, p)$, we have $\tau_0 g_1 = \tau_0 g_2$ if and only if the first rows of g_1 and g_2 are equal. We obtain then that the set of nontrivial morphisms τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is precisely $\{\tau_0 \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p) \} \cup \{\tau_0 \begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix} : b \in (\mathbf{Z}/(p))^* \}$. Now, for $\tau := \tau_0 \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \tau' := \tau_0 \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix}$, there exists $h_2 \in Aut B_2$ such that $\tau' h_2 = \tau$ if and only if a'/a is a square; for $\tau := \tau_0 \begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix}, \tau' := \tau_0 \begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix}$, there always exists $h_2 \in Aut B_2$ such that $\tau' h_2 = \tau$; for $\tau := \tau_0 \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, \tau' := \tau_0 \begin{pmatrix} 0 & b' \\ 1 & 0 \end{pmatrix}$, there exists no $h_2 \in Aut B_2$ such that $\tau' h_2 = \tau$. We obtain then three braces. By considering the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section 3.2, their multiplicative laws are given by

$$(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{y_1 - z_1(z_1 - 1)/2} x_2, \begin{pmatrix} y_1 + y_2 + z_1 z_2 \\ z_1 + z_2 \end{pmatrix}),$$
(5.10)

$$(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + \alpha^{a(y_1 - z_1(z_1 - 1)/2)} x_2, \binom{y_1 + y_2 + z_1 z_2}{z_1 + z_2}),$$
(5.11)

and

$$(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{z_1} x_2, \begin{pmatrix} y_1 + y_2 + z_1 z_2 \\ z_1 + z_2 \end{pmatrix}),$$
(5.12)

respectively, where α is a fixed element of order p in Aut B_1 and a is a fixed quadratic nonresidue modulo p. Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2, \binom{y_1 + y_2 + z_1 z_2}{z_1 + z_2}),$$
(5.13)

5.2.2. B_1 nontrivial brace. In this case, Aut $B_1 = \{k \in (\mathbb{Z}/(q^2))^* : k \equiv 1 \pmod{q}\} \simeq \mathbb{Z}/(q)$. Then the unique morphism τ from $G_2 \simeq \mathbb{Z}/(p) \times \mathbb{Z}/(p)$ to Aut B_1 is the trivial one. We obtain then just two braces which are the direct product of B_1 and B_2 , corresponding to B_2 trivial and B_2 nontrivial. Their multiplicative laws are given by

$$(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2 + qx_1x_2, \binom{y_1 + y_2}{z_1 + z_2}),$$
(5.14)

$$(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2 + qx_1x_2, \binom{y_1 + y_2 + z_1z_2}{z_1 + z_2}),$$
(5.15)

Summing up, we have obtained the following result.

Theorem 5.2. Let p and q be primes satisfying q > p, $q \ge 5$, p | q - 1, $p \nmid q + 1$ and $p^2 \nmid q - 1$. There are eight braces with additive group $\mathbf{Z}/(pq^2) \times \mathbf{Z}/(p)$. Four of them have multiplicative group $\mathbf{Z}/(pq^2) \times \mathbf{Z}/(p)$ and the remaining four have multiplicative group $\mathbf{Z}/(q^2) \rtimes (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$.

5.3. $(B_1, +) = \mathbf{Z}/(q) \times \mathbf{Z}/(q)$ and $(B_2, +) = \mathbf{Z}/(p^2)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$\left(\binom{x_1}{y_1}, z_1\right) + \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + x_2}{y_1 + y_2}, z_1 + z_2\right),$$
 (5.16)

for $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in B_1, z_1, z_2 \in B_2.$

5.3.1. B_1 trivial brace. In this case, Aut $B_1 = GL(2, q)$. Every morphism from $\mathbf{Z}/(p^2)$ to Aut $B_1 = GL(2, q)$ is equal to $h_1\tau$ for some $h_1 \in Aut B_1$ and τ defined by $\tau(1) = M^{\ell}$ for *M* one of the matrices in (4.1) and $1 \le \ell \le p - 1$.

If B_2 is trivial, Aut $B_2 = \text{Aut } \mathbb{Z}/(p^2)$. For $\tau : \mathbb{Z}/(p^2) \to \text{Aut } B_1$ defined by $\tau(1) = M$ and $h_2 \in \text{Aut } \mathbb{Z}/(p^2)$, we have $\tau h_2(1) = M^{h_2(1)}$. Hence for morphisms τ, τ' with $\tau(1) = M$ and $\tau'(1) = M^{\ell}$, one has $\tau \sim \tau'$. We have then one brace for each conjugation class of subgroups of order p in GL(2, q). We obtain (p+3)/2 braces, whose multiplicative laws are given by

$$\left(\begin{pmatrix}x_1\\y_1\end{pmatrix}, z_1\right) \cdot \left(\begin{pmatrix}x_2\\y_2\end{pmatrix}, z_2\right) = \left(\begin{pmatrix}x_1\\y_1\end{pmatrix} + M^{z_1}\begin{pmatrix}x_2\\y_2\end{pmatrix}, z_1 + z_2\right),\tag{5.17}$$

for *M* one of the matrices in (4.1). Besides, we obtain the direct product of B_1 and B_2 whose multiplicative law is given by

$$\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, z_1 \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, z_2 \right) = \left(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}, z_1 + z_2 \right),$$
(5.18)

If B_2 is nontrivial, we have Aut $B_2 = \{k \in (\mathbb{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}$. Since a nontrivial morphism τ from (B_2, \cdot) to Aut B_1 sends 1 to an element of order p, we have $\tau h_2 = \tau$ for $h_2 \in \text{Aut } B_2$. As noted above, a nontrivial morphism τ from $\mathbb{Z}/(p^2)$ to Aut B_1 is equal to ${}^{h_1}\tau$ for some $h_1 \in \text{Aut } B_1$ and τ defined by $\tau(1) = M^{\ell}$ for M one of the matrices in (4.1) and $1 \leq \ell \leq p - 1$. Let us see if for some $\ell \in \{2, ..., p-1\}$ and some matrix M in (4.1), the matrices M and M^{ℓ} are conjugate by some element in GL(2, q). This is so only for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $\ell = p - 1$. In this case, there are p - 1 braces for each matrix M different from $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and (p - 1)/2 for this last one. By considering the isomorphism from (B_2, \cdot) into $\mathbb{Z}/(p^2)$ given in Section 3.1 and taking into account that M denotes a matrix of order p, we obtain $\frac{p+1}{2}(p-1) + \frac{p-1}{2} = \frac{(p-1)(p+2)}{2}$ braces whose multiplicative laws are given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1}{y_1} + M^{\ell z_1} \binom{x_2}{y_2}, z_1 + z_2 + p z_1 z_2\right),$$
(5.19)

for *M* one of the matrices in (4.1) and with $1 \le \ell \le p - 1$, for $M \ne \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$; $1 \le \ell \le (p-1)/2$, for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$.

Besides, we obtain the direct product of B_1 and B_2 whose multiplicative law is given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + x_2}{y_1 + y_2}, z_1 + z_2 + pz_1z_2\right),$$
(5.20)

5.3.2. B_1 nontrivial brace. If B_1 is nontrivial,

Aut
$$B_1 = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \right\} : b \in \mathbf{Z}/(q), d \in (\mathbf{Z}/(q^2))^* \right\}.$$

The matrices of order p in Aut B_1 are conjugate to some diagonal matrix of the form $\begin{pmatrix} d^2 & 0 \\ 0 & d \end{pmatrix}$ with d an element of order p in $(\mathbf{Z}/(q))^*$. For λ a chosen element of order p in $(\mathbf{Z}/(q))^*$, the morphisms τ from $\mathbf{Z}/(p^2)$ to Aut B_1 are given by $\tau(1) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}^{\ell}$, for $1 \le \ell \le p - 1$. We note that $\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^k \end{pmatrix}^2$, with k = (p+1)/2. If B_2 is trivial, for $\tau : \mathbf{Z}/(p^2) \to \text{Aut } B_1$ defined by $\tau(1) = M$, we have $\tau h_2(1) = M^{h_2(1)}$. Hence for morphisms τ, τ' with $\tau(1) = M$ and $\tau'(1) = M^{\ell}$, one has $\tau \sim \tau'$. We may then reduce to the case where $\tau(1) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$ and we obtain one brace whose multiplicative law is given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + \lambda^{2z_1} x_2 + \lambda^{2z_1} x_1 x_2}{y_1 + \lambda^{z_1} y_2}, z_1 + z_2\right).$$
(5.21)

Besides, we have the direct product whose multiplicative law is given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + x_2 + x_1 x_2}{y_1 + y_2}, z_1 + z_2\right).$$
(5.22)

If B_2 is nontrivial, we have $\operatorname{Aut} B_2 = \{k \in (\mathbb{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}$, as above. For $h_2 \in \operatorname{Aut} B_2$ and $\tau : (B_2, \cdot) \to \operatorname{Aut} B_1$, we have $\tau h_2 = \tau$. We

obtain then p-1 braces. By considering again the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p^2)$ given in Section 3.1 and taking into account that $\tau(1)$ is a matrix of order p, their multiplicative laws are given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + \lambda^{2\ell z_1} x_2 + \lambda^{2\ell z_1} x_1 x_2}{y_1 + \lambda^{\ell z_1} y_2}, z_1 + z_2 + p z_1 z_2\right), \quad (5.23)$$

where λ is a fixed element of order p in $(\mathbf{Z}/(q))^*$ and $1 \le \ell \le p - 1$. Besides, we have the direct product whose multiplicative law is given by

$$\left(\binom{x_1}{y_1}, z_1\right) \cdot \left(\binom{x_2}{y_2}, z_2\right) = \left(\binom{x_1 + x_2 + x_1 x_2}{y_1 + y_2}, z_1 + z_2 + p z_1 z_2\right).$$
(5.24)

Summing up, we have obtained the following result.

Theorem 5.3. Let p and q be primes satisfying $q > p, q \ge 5, p \mid q - 1, p \nmid q + 1$ and $p^2 \nmid q - 1$. There are $(p^2 + 4p + 9)/2$ braces with additive group $\mathbf{Z}/(p^2q) \times \mathbf{Z}/(q)$.

- a) There are four such braces with multiplicative group $\mathbf{Z}/(p^2q) \times \mathbf{Z}/(q)$;
- b) for each of the matrices M in (4.1) different from $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{(p+1)/2} \end{pmatrix}$, there are p such braces with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p^2)$;
- c) for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, there are (p + 1)/2 such braces with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p^2)$;
- d) for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{(p+1)/2} \end{pmatrix}$, there are 2p such braces with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p^2)$.

5.4. $(B_1, +) = \mathbf{Z}/(q) \times \mathbf{Z}/(q)$ and $(B_2, +) = \mathbf{Z}/(p) \times \mathbf{Z}/(p)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 \\ t_1 + t_2 \end{pmatrix}$$
for $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in B_1; \begin{pmatrix} z_1 \\ t_1 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \in B_2.$
(5.25)

5.4.1. B_1 trivial brace. In this case, Aut $B_1 = GL(2, q)$. A nontrivial morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 either has an order p kernel or is injective. In the first case, it is equal to ${}^{h_1\tau}$ for some $h_1 \in \operatorname{Aut} B_1$ and τ defined by $\tau(u) = M$, $\tau(v) = \operatorname{Id}$, for some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, where M is one of the matrices in (4.1). In the second case, it is equal to ${}^{h_1\tau}$ for some $h_1 \in \operatorname{Aut} B_1$ and τ defined by $\tau(u) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \tau(v) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, for an element λ of order p in $(\mathbf{Z}/(q))^*$ and some basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$. Indeed, all subgroups of order p^2 of GL(2, q) are conjugate, as they are the p-Sylow subgroups of GL(2, q), and $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ are a basis of the subgroup of order p^2 whose elements are diagonal matrices.

If B_2 is trivial, we have Aut $B_2 = GL(2, p)$. For τ defined by $\tau(u) = M$, $\tau(v) = Id$, for some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, we have $\tau = \tau_0 h_2$, for h_2 defined by $h_2(u) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, h_2(v) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = M, \tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = Id$. We obtain then (p + 3)/2 braces whose multiplicative laws are given by

 $\left(\begin{pmatrix} x_1\\ y_1 \end{pmatrix}, \begin{pmatrix} z_1\\ t_1 \end{pmatrix}\right) \cdot \left(\begin{pmatrix} x_2\\ y_2 \end{pmatrix}, \begin{pmatrix} z_2\\ t_2 \end{pmatrix}\right) = \left(\begin{pmatrix} x_1\\ y_1 \end{pmatrix} + M^{z_1}\begin{pmatrix} x_2\\ y_2 \end{pmatrix}, \begin{pmatrix} z_1+z_2\\ t_1+t_2 \end{pmatrix}\right),$ (5.26)

for *M* one of the matrices in (4.1). In the case when τ is injective, for an adequate h_2 , we have $\tau = \tau_0 h_2$, for τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, where λ is a fixed element of order *p* in $(\mathbf{Z}/(q))^*$. We obtain then one brace whose multiplicative law is given by

$$\left(\begin{pmatrix}x_1\\y_1\end{pmatrix},\begin{pmatrix}z_1\\t_1\end{pmatrix}\right)\cdot\left(\begin{pmatrix}x_2\\y_2\end{pmatrix},\begin{pmatrix}z_2\\t_2\end{pmatrix}\right) = \left(\begin{pmatrix}x_1+\lambda^{l_1}x_2\\y_1+\lambda^{z_1+l_1}y_2\end{pmatrix},\begin{pmatrix}z_1+z_2\\t_1+t_2\end{pmatrix}\right),$$
(5.27)

for λ a fixed element of order p in $(\mathbf{Z}/(q))^*$. Besides, we have the direct product, whose multiplicative law is given by

$$\left(\binom{x_1}{y_1}, \binom{z_1}{t_1}\right) \cdot \left(\binom{x_2}{y_2}, \binom{z_2}{t_2}\right) = \left(\binom{x_1+x_2}{y_1+y_2}, \binom{z_1+z_2}{t_1+t_2}\right).$$
(5.28)

If B_2 is nontrivial, we have Aut $B_2 = \{\begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : d \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p)\}$, as in Section 5.2.1. Now every morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 with an order p kernel is equal to $\tau_0 g$, for $g \in GL(2, p)$ and τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = M$, $\tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \text{Id}$, for M one of the matrices in (4.1). Similarly as in Section 5.2.1, we obtain that the set of nontrivial morphisms τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is precisely $\{\tau_0 \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p)\} \cup \{\tau_0 \begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix} : b \in (\mathbf{Z}/(p))^*\}$. Moreover, again as in Section 5.2.1, under the relation

$$\tau \sim \tau' \Leftrightarrow \exists h_2 \in \operatorname{Aut} B_2 : \tau' h_2 = \tau,$$

we are left with τ_0 , $\tau_0 \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, for $a \in (\mathbf{Z}/(p))^*$ a non-square element, and $\tau_0 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Now, if $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, the matrices M and M^{-1} are conjugate by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in \operatorname{GL}(2, q) =$ Aut B_1 . Hence, for $h_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have ${}^{h_1}\tau_0 = \tau_0 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ which implies that, if -1 is not a square in $\mathbf{Z}/(p)$, then the orbits corresponding to τ_0 and $\tau_0 \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ coincide. We obtain then two braces corresponding to $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and three corresponding to the other matrices. Summing up, there are (3/2)(p+3) braces if $p \equiv 1 \pmod{4}$ and (3/2)(p+3) - 1 braces if $p \equiv 3 \pmod{4}$. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section 3.2, the corresponding multiplicative laws are given by

$$\left(\binom{x_1}{y_1}, \binom{z_1}{t_1}\right) \cdot \left(\binom{x_2}{y_2}, \binom{z_2}{t_2}\right) = \left(\binom{x_1}{y_1} + M^{z_1 - t_1(t_1 - 1)/2} \binom{x_2}{y_2}, \binom{z_1 + z_2 + t_1 t_2}{t_1 + t_2}\right), (5.29)$$

$$\left(\binom{x_1}{y_1}, \binom{z_1}{t_1}\right) \cdot \left(\binom{x_2}{y_2}, \binom{z_2}{t_2}\right) = \left(\binom{x_1}{y_1} + M^{a(z_1 - t_1(t_1 - 1)/2)} \binom{x_2}{y_2}, \binom{z_1 + z_2 + t_1 t_2}{t_1 + t_2}\right),$$
(5.30)

and

$$\left(\binom{x_1}{y_1},\binom{z_1}{t_1}\right)\cdot\left(\binom{x_2}{y_2},\binom{z_2}{t_2}\right) = \left(\binom{x_1}{y_1}+M^{t_1}\binom{x_2}{y_2},\binom{z_1+z_2+t_1t_2}{t_1+t_2}\right),$$
(5.31)

respectively, where *M* is one of the matrices in (4.1) and *a* is a fixed quadratic nonresidue modulo *p* with the exception that, for $p \equiv 3 \pmod{4}$ and $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, the braces with multiplicative laws (5.29) and (5.30) are isomorphic.

As established above, an injective morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is equal to ${}^{h_1}\tau$ for some $h_1 \in \operatorname{GL}(2,q)$ and τ defined by $\tau(u) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \tau(v) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, for an element λ of order p in $(\mathbf{Z}/(q))^*$ and some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$. A transversal of Aut B_2 in $\operatorname{GL}(2, p)$ is

$$\{ \begin{pmatrix} a & 0 \\ c & 1 \end{pmatrix} : a \in (\mathbf{Z}/(p))^*, c \in \mathbf{Z}/(p) \} \cup \{ \begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix} : c \in (\mathbf{Z}/(p))^* \},\$$

hence any injective morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is equivalent under the relation in Proposition 2.2 either to $\tau_{a,c} = \tau_0 h_2$ for $h_2 = \begin{pmatrix} a & 0 \\ c & 1 \end{pmatrix}$ for some $a \in (\mathbf{Z}/(p))^*$, $c \in \mathbf{Z}/(p)$ or to $\tau_c = \tau_0 h_2$ for $h_2 = \begin{pmatrix} 0 & c \\ 1 & 0 \\ 0 & \lambda \end{pmatrix}$ for some $c \in (\mathbf{Z}/(p))^*$, where τ_0 is defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$. Now the normalizer of $\langle \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$, $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \rangle$ in GL(2, q) consists of diagonal and anti-diagonal matrices. Conjugation by a diagonal matrix leaves diagonal matrices fixed and for an anti-diagonal h_1 we have ${}^{h_1} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$. We obtain then ${}^{h_1}\tau_{a,c} = \tau_{-a,a+c}$, for $h_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and no further equivalences. This gives $(p(p-1)/2) + p - 1 = (p^2 + p - 2)/2$ braces. With λ an element of order p in $(\mathbf{Z}(q))^*$, and taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section 3.2, their multiplicative laws are given by

$$\left(\binom{x_1}{y_1},\binom{z_1}{t_1}\right) \cdot \left(\binom{x_2}{y_2},\binom{z_2}{t_2}\right) = \left(\binom{x_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)(a+c) + t_1} x_2}{y_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)c + t_1} y_2},\binom{z_1 + z_2 + t_1 t_2}{t_1 + t_2}\right), \quad (5.32)$$

for some $(a, c) \in (\mathbb{Z}/(p))^* \times \mathbb{Z}/(p)$ where the braces corresponding to (a, c) and (-a, a + c) are isomorphic, and

$$\left(\binom{x_1}{y_1}, \binom{z_1}{t_1}\right) \cdot \left(\binom{x_2}{y_2}, \binom{z_2}{t_2}\right) = \left(\binom{x_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} x_2}{y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2 + ct_1} y_2}, \binom{z_1 + z_2 + t_1 t_2}{t_1 + t_2}\right), \quad (5.33)$$

for some $c \in (\mathbf{Z}/(p))^*$. Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$\left(\binom{x_1}{y_1},\binom{z_1}{t_1}\right)\cdot\left(\binom{x_2}{y_2},\binom{z_2}{t_2}\right) = \left(\binom{x_1+x_2}{y_1+y_2},\binom{z_1+z_2+t_1t_2}{t_1+t_2}\right),$$
(5.34)

5.4.2. B_1 nontrivial brace. In this case, Aut $B_1 = \{\begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : d \in (\mathbb{Z}/(q))^*, b \in \mathbb{Z}/(q)\} \subset GL(2, q)$. Since the only subgroup of order p of Aut B_1 is $\langle \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix} \rangle$, for $\lambda \in (\mathbb{Z}/(q))^*$ of order p, a nontrivial morphism τ from $\mathbb{Z}/(p) \times \mathbb{Z}/(p)$ to Aut B_1 has an order p kernel and is defined by $\tau(u) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}, \tau(v) = Id$, for some $\mathbb{Z}/(p)$ -basis (u, v) of $\mathbb{Z}/(p) \times \mathbb{Z}/(p)$.

If B_2 is trivial, Aut $B_2 = GL(2, p)$. For τ defined by $\tau(u) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau(v) = Id$, for some basis (u, v) of $(B_2, \cdot) = \mathbf{Z}/(p) \times \mathbf{Z}/(p)$, we have $\tau = \tau_0 h_2$, for h_2 defined by $h_2(u) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $h_2(v) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and τ_0 defined by $\tau_0 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau_0 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = Id$. We obtain then one brace, whose multiplicative law is given by

$$\left(\begin{pmatrix}x_1\\y_1\end{pmatrix},\begin{pmatrix}z_1\\t_1\end{pmatrix}\right)\cdot\left(\begin{pmatrix}x_2\\y_2\end{pmatrix},\begin{pmatrix}z_2\\t_2\end{pmatrix}\right) = \left(\begin{pmatrix}x_1+\lambda^{2z_1}x_2+\lambda^{z_1}y_1y_2\\y_1+\lambda^{z_1}y_2\end{pmatrix},\begin{pmatrix}z_1+z_2\\t_1+t_2\end{pmatrix}\right),$$
(5.35)

for λ a fixed element of order p in $(\mathbf{Z}/(q))^*$. Besides, we have the direct product whose multiplicative law is given by

$$\left(\binom{x_1}{y_1},\binom{z_1}{t_1}\right)\cdot\left(\binom{x_2}{y_2},\binom{z_2}{t_2}\right) = \left(\binom{x_1+x_2+y_1y_2}{y_1+y_2},\binom{z_1+z_2}{t_1+t_2}\right).$$
(5.36)

If B_2 is nontrivial, Aut $B_2 = \{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : d \in (\mathbb{Z}/(p))^*, b \in \mathbb{Z}/(p) \} \subset GL(2, p)$. As in Section 5.2.1, we obtain that the set of nontrivial morphisms τ from $\mathbb{Z}/(p) \times \mathbb{Z}/(p)$ to Aut B_1 is precisely

$$\{\tau_0\left(\begin{smallmatrix}a&b\\0&1\end{smallmatrix}\right) : a \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p)\} \cup \{\tau_0\left(\begin{smallmatrix}0&b\\1&0\end{smallmatrix}\right) : b \in (\mathbf{Z}/(p))^*\},\$$

for τ_0 defined by $\tau_0\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \lambda^2 & 0\\ 0 & \lambda \end{pmatrix}, \tau_0\begin{pmatrix} 0\\ 1 \end{pmatrix} = \text{Id.}$ Again, under the relation in Proposition 2.2, we have three orbits corresponding to the matrices Id, $\begin{pmatrix} a & 0\\ 0 & 1 \end{pmatrix}$, for *a* non-square, and $\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$. We obtain then three braces. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section 3.2, their multiplicative laws are given by

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \end{pmatrix}$$

$$= \left(\begin{pmatrix} x_1 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_1 y_2 \\ y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix} \right),$$
(5.37)

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} x_1 + (a\lambda^2)^{(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_1 y_2 \\ y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix} \end{pmatrix},$$
(5.38)

for a fixed quadratic nonresidue *a* modulo *p*, and

$$\begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \end{pmatrix}$$

$$= \left(\begin{pmatrix} x_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} y_1 y_2 \\ y_1 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix} \right).$$

$$(5.39)$$

Besides, we have the direct product with multiplicative law defined by

$$\left(\begin{pmatrix}x_1\\y_1\end{pmatrix},\begin{pmatrix}z_1\\t_1\end{pmatrix}\right)\cdot\left(\begin{pmatrix}x_2\\y_2\end{pmatrix},\begin{pmatrix}z_2\\t_2\end{pmatrix}\right) = \left(\begin{pmatrix}x_1+x_2+y_1y_2\\y_1+y_2\end{pmatrix},\begin{pmatrix}z_1+z_2+t_1t_2\\t_1+t_2\end{pmatrix}\right).$$
(5.40)

Summing up, we have obtained the following result.

Theorem 5.4. Let p and q be primes satisfying $q > p, q \ge 5, p \mid q-1, p \nmid q+1$ and $p^2 \nmid q-1$. There are $\frac{p^2 + 5p}{2} + 14$ (resp. $\frac{p^2 + 5p}{2} + 13$) braces with additive group $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq)$ if $p \equiv 1 \pmod{4}$ (resp. if $p \equiv 3 \pmod{4}$).

- a) There are four of them with multiplicative group $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq)$;
- b) for each of the matrices M in (4.1) different from $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{(p+1)/2} \end{pmatrix}$, there are four of them with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$;

- c) for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, there are four (resp. three) such braces with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$, if $p \equiv 1 \pmod{4}$ (resp. if $p \equiv 3 \pmod{4}$);
- d) for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{(p+1)/2} \end{pmatrix}$, there are eight of them with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p));$
- e) there are $(p^2 + p)/2$ of them with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_{\lambda} (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$.

Acknowledgments

I am very grateful to the referee for indications and corrections which helped to improve substantially this manuscript.

References

- ACRI, E.; BONATTO, M. Skew braces of size *pq. Comm. Algebra* 48 (2020), no. 5, 1872–1881.
 MR4085764, Zbl 1437.16027, doi: 10.1080/00927872.2019.1709480. 224
- [2] ACRI, E.; BONATTO, M. Skew braces of size p²q I: Abelian type. Algebra Colloq. 29 (2022), no.2, 297–320. MR4414157, Zbl 1495.16030, doi: 10.1142/S1005386722000244. 224
- [3] BACHILLER, D. Classification of braces of order p³. J. Pure Appl. Algebra 219 (2015), 3568–3603. MR3320237, Zbl 1312.81099, doi: 10.1016/j.jpaa.2014.12.013. 224, 226
- [4] CAMPEDEL, E.; CARANTI, A.; DEL CORSO, I. Hopf-Galois structures on extensions of degree p²q and skew braces of order p²q: the cyclic Sylow p-subgroup case. J. Algebra 556 (2020), 1165–1210. MR4089566, Zbl 1465.12006, doi: 10.1016/j.jalgebra.2020.04.009. 224
- [5] CEDÓ, F. Left Braces: solutions of the Yang-Baxter equation. Adv. Group Theory Appl. 5 (2018), 33–90. MR3824447, Zbl 1403.16033, doi: 10.4399/97888255161422. 224, 225
- [6] CRESPO, T. Hopf Galois structures on field extensions of degree twice an odd prime square and their associated skew left braces. J. Algebra 565 (2021), 282–308. MR4150347, Zbl 1464.16025, doi: 10.1016/j.jalgebra.2020.09.005. 224
- [7] CRESPO, T.; GIL-MUÑOZ, D.; RIO, A.; VELA, M. Left braces of size 8p. J. Algebra 617 (2023), 317–339. MR4513787, Zbl 1511.16028, doi: 10.1016/j.jalgebra.2022.11.011. 224
- [8] CRESPO, T.; GIL-MUÑOZ, D.; RIO, A.; VELA, M. Inducing braces and Hopf Galois structures. *J. Pure Appl. Algebra* **227** (2023), no. 9, Paper No. 107371, 16 pp. MR4559373, Zbl 1526.16027, doi: 10.1016/j.jpaa.2023.107371. 224
- [9] DIETZEL, C. Braces of order p²q. J. Algebra Appl. 20 (2021), no. 8, Paper No. 2150140, 24 pp. MR4297324, Zbl 1486.16040, doi: 10.1142/S0219498821501401. 224, 229
- [10] RUMP, W. Braces, radical rings, and the quantum Yang–Baxter equation. J. Algebra 307 (2007), 153–170. MR2278047, Zbl 1115.16022, doi: 10.1016/j.jalgebra.2006.03.040. 223
- [11] SMOKTUNOWICZ, A.; VENDRAMIN, L. J. Comb. Algebra 2 (2018), no. 1, 47–86. MR3763907, Zbl 1416.16037, doi: 10.4171/jca/2-1-3. 224

(Teresa Crespo) DEPARTAMENT DE MATEMÀTIQUES I INFORMÀTICA, UNIVERSITAT DE BARCELONA, GRAN VIA DE LES CORTS CATALANES 585, 08007 BARCELONA, SPAIN teresa.crespo@ub.edu

This paper is available via http://nyjm.albany.edu/j/2025/31-10.html.