[New York J. Math.](http://nyjm.albany.edu/nyjm.html) **[31](http://nyjm.albany.edu/j/2025/Vol31.htm)** (2025) 223–237.

Left braces of size

[Teresa Crespo](#page-14-0)

ABSTRACT. We consider relatively prime integer numbers m and n such that each solvable group of order mn has a normal subgroup of order m . We prove that each brace of size mn is a semidirect product of a brace of size m and a brace of size n . We further give a method to classify braces of size mn from the classification of braces of sizes m and n . We apply this result to determine all braces of size p^2q^2 , for p and q odd primes satisfying some conditions which hold in particular for p a Germain prime and $q = 2p + 1$.

CONTENTS

1. Introduction

In [\[10\]](#page-14-0) Rump introduced braces to study set-theoretic solutions of the Yang-Baxter equation. A (left) brace is a triple $(B, +, \cdot)$ where B is a set and + and \cdot are binary operations such that $(B, +)$ is an abelian group, (B, \cdot) is a group and

$$
a \cdot (b+c) + a = a \cdot b + a \cdot c,
$$

for all $a, b, c \in B$. We call $(B, +)$ the additive group and (B, \cdot) the multiplicative group of the left brace. The cardinal of B is called the size of the brace. If $(B, +)$ is an abelian group, then $(B, +, +)$ is a brace, called trivial brace.

Let B_1 and B_2 be left braces. A map $f : B_1 \to B_2$ is said to be a brace morphism if $f(b + b') = f(b) + f(b')$ and $f(b \cdot b') = f(b) \cdot f(b')$ for all $b, b' \in B_1$. If f is bijective, we say that f is an isomorphism. In that case we say that the braces B_1 and B_2 are isomorphic.

Received January 30, 2024.

²⁰¹⁰ *Mathematics Subject Classification.* 16T25, 20D20, 20D45.

Key words and phrases. Left braces, Sylow subgroups, semidirect product, Germain primes.

This work was supported by grant PID2019-107297GB-I00, Ministerio de Ciencia, Innovación y Universidades.

224 TERESA CRESPO

We recall the definition of direct and semidirect product of braces as de-fined in [\[5\]](#page-14-0) and [\[11\]](#page-14-0). Let $(B_1, +, \cdot)$ and $(B_2, +, \cdot)$ be braces and $\tau : (B_2, \cdot) \to$ Aut($B_1, +, \cdot$) be a group morphism. Define in $B_1 \times B_2$ operations + and \cdot by

 $(a, b) + (a', b') = (a + a', b + b'), (a, b) \cdot (a', b') = (a \cdot \tau(b)(a'), b \cdot b').$

Then $(B_1 \times B_2, +, \cdot)$ is a brace which is called the semidirect product of the braces B_1 and B_2 via τ and will be denoted $B_1 \rtimes_{\tau} B_2$. If τ is the trivial morphism, then $(B_1 \times B_2, +, \cdot)$ is called the direct product of B_1 and B_2 .

We recall that, for a left brace $(B, +, \cdot)$ and each $a \in B$, we have a bijective map $\lambda_a : B \to B$ defined by $\lambda_a(b) = -a + a \cdot b$ which satisfies $\lambda_a(b + c) =$ $\lambda_a(b) + \lambda_a(c), a \cdot b = a + \lambda_a(b), \lambda_{a \cdot b} = \lambda_a \circ \lambda_b$, for any a, b, c in B .

Left braces have been classified for sizes p^2 , p^3 , for p a prime number ([\[3\]](#page-14-0)); pq and p^2q , for p and q odd prime numbers ([\[1,](#page-14-0) [2,](#page-14-0) [4,](#page-14-0) [9\]](#page-14-0)); 2p², for p an odd prime number ([\[6\]](#page-14-0)); 8p, for p an odd prime number \neq 3, 7 ([\[7\]](#page-14-0)) and for 12p, for p an odd prime number ≥ 7 ([\[8\]](#page-14-0)). In this paper we consider relatively prime integer numbers m and n such that each solvable group of order mn has a normal subgroup of order m . We prove that each brace of size mn is a semidirect product of a brace of size m and a brace of size n . We further give a method to classify braces of size mn from the classification of braces of sizes m and n . This is a generalization of the result obtained in $[8]$ in the case in which m is prime. We apply our result to describe all braces of size p^2q^2 , for p and q odd primes satisfying $q > p, q \geq 5, p | q - 1, p | q + 1, p^2 | q - 1$. We note that these conditions hold in particular when p is an odd Germain prime and $q = 2p + 1$.

2. Left braces of size mn , for $gcd(m, n) = 1$

In this section we consider relatively prime integer numbers m and n and assume that each solvable group of order *mn* has a normal subgroup of order m. We prove that each brace of order mn is a semidirect product $B_1 \rtimes_{\tau} B_2$, where B₁ is a brace of size m, B₂ is a brace of size n and $\tau : (B_2, \cdot) \to \text{Aut}(B_1, +, \cdot)$ is a group morphism. Moreover, given such B_1 and B_2 , we determine when two group morphisms $\sigma, \tau : (B_2, \cdot) \to \text{Aut}(B_1, +, \cdot)$ provide isomorphic braces.

Theorem 2.1. *Let and be relatively prime integer numbers such that each solvable group of order has a normal subgroup of order . Then each brace of size is a semidirect product of a brace of size and a brace of size .*

Proof. Let $(B, +, \cdot)$ be a brace of size mn. Let B_1 and B_2 be its unique additive subgroups of size *m* and *n*, respectively. In particular B_1 and B_2 are characteristic subgroups in $(B, +)$. Since, for each $a \in B$, λ_a is an automorphism of $(B, +)$, it leaves B_1 and B_2 setwise invariant. This implies that, for $a, b \in B_1$, we have $ab = a + \lambda_a(b) \in B_1$, as $\lambda_a(b) \in B_1$. Similarly, this can be applied to B_2 . So, B_1 and B_2 are subbraces of B and B_1 and B_2 are complements of one another. Let $a \in B_1$ and $b \in B_2$, then

$$
ba = {}^bab \Rightarrow b + \lambda_b(a) = {}^b a + \lambda_b_a(b).
$$

Since the multiplicative group of a brace is always solvable (see [\[5\]](#page-14-0) Theorem 5.2), our hypothesis implies that (B_1, \cdot) is a normal subgroup of (B, \cdot) , hence $^b a \in B_1$. Using again that the λ -action leaves B_2 setwise invariant, we obtain λ_{b} _a(b) $\in B_2$. A comparison of the components shows $^b a = \lambda_b(a)$, i.e. under the λ -action, (B_2, \cdot) acts by automorphisms of $(B_1, +)$ and (B_1, \cdot) , that is, by brace automorphisms. Analogously

$$
ab = ba^b \Rightarrow a + \lambda_a(b) = b + \lambda_b(a^b),
$$

where $\lambda_a(b) \in B_2$, $\lambda_b(a^b) \in B_1$. Comparing components, we obtain $\lambda_a(b) = b$. Therefore $ab = a + \lambda_a(b) = a + b$ for $a \in B_1, b \in B_2$. Also, $ba = {}^b a + \lambda_b{}_a(b) =$ $b^b a + b = \tau_b(a) + b$ for an action $\tau : B_2 \to \text{Aut}(B_1)$.

Finally, for $a, a' \in B_1$; $b, b' \in B_2$, we have

$$
(a+b)(a'+b') = ab(a'+b') = a(ba'-b+b'b') = a(\tau_b(a')+bb')
$$

= $a\tau_b(a') - a + a(bb') = a\tau_b(a') + bb',$

where we have use the brace condition in the second and fourth equalities. Hence

$$
B \to B_1 \rtimes_{\tau} B_2 \, ; \, a + b \mapsto (a, b)
$$

is indeed a brace morphism.

We want to see now when two semidirect products of braces B_1 and B_2 of coprime orders are isomorphic.

Proposition 2.2. Let B_1 , B_2 be braces with $gcd(|B_1|, |B_2|) = 1$. Consider semidi*rect products* $B_{\sigma} := B_1 \rtimes_{\sigma} B_2$, $B_{\tau} := B_1 \rtimes_{\tau} B_2$, for morphisms σ , $\tau : (B_2, \cdot) \to$ $Aut(B_1, +, \cdot)$. An isomorphism $h : B_{\sigma} \to B_{\tau}$ is of the form (h_1, h_2) , where $h_i \in$ $Aut(B_i), i = 1, 2, and h_1 and h_2 satisfy$

$$
\tau h_2={}^{h_1}\sigma.
$$

Proof. The coprimality of $|B_1|$ and $|B_2|$ implies that the B_i are subbraces of B_{σ} and B_{τ} and furthermore, $(B_1, +)$ (respectively $(B_2, +)$) is the only subgroup of order *m* (respectively *n*) in $(B_{\sigma}, +)$ and $(B_{\tau}, +)$. Hence an isomorphism *h* : $B_{\sigma} \rightarrow B_{\tau}$ is of the form (h_1, h_2) , where $h_i \in \text{Aut}(B_i)$, $i = 1, 2$. For $a, a' \in$ $B_1, b, b' \in B_2$, we have

$$
h((a, b) \cdot (a', b')) = h(a\sigma(b)(a'), bb') = (h_1(a\sigma(b)(a')), h_2(bb'))
$$

and

$$
h(a,b) \cdot h(a',b') = (h_1(a), h_2(b)) \cdot (h_1(a'), h_2(b'))
$$

=
$$
(h_1(a)\tau(h_2(b))(h_1(a')), h_2(b)h_2(b')).
$$

We obtain

□

$$
h_1(\sigma(b)(a') = \tau(h_2(b))(h_1(a')).
$$

Replacing a' by h_1^{-1} $_1^{-1}(a')$ results in the equation

$$
h_1(\sigma(b)(h_1^{-1}(a')) = \tau(h_2(b))(a').
$$

As a' and b are arbitrary, this implies

$$
\tau h_2={}^{h_1}\sigma.
$$

□

3. Braces of size p^2 **, for** p **an odd prime number**

In [\[3\]](#page-14-0) Bachiller obtained the classification of braces of sizes p^2 and p^3 , up to isomorphism, for p a prime number. We recall it for braces $(B, +, \cdot)$ of size p^2 , for p odd. We note that in this case (B, \cdot) is isomorphic to $(B, +)$. For each brace, we give the group of brace automorphisms and an explicit isomorphism from (B, \cdot) to $(B, +)$.

3.1. $(B, +) \simeq Z/(p^2)$. There are two braces, up to isomorphism, with additive group isomorphic to $\mathbf{Z}/(p^2)$, the trivial one and a brace with \cdot defined by

 $x_1 \cdot x_2 = x_1 + x_2 + px_1x_2.$ In both cases, $(B, \cdot) \simeq \mathbb{Z}/(p^2)$. In the trivial case, we have

$$
Aut B = Aut(\mathbf{Z}/(p^2)) \simeq (\mathbf{Z}/(p^2))^*.
$$

In the nontrivial case, we have

$$
Aut B = \{ k \in (\mathbf{Z}/(p^2))^* : k \equiv 1 \pmod{p} \}
$$

and an isomorphism from (B, \cdot) into $\mathbb{Z}/(p^2)$ is given by $n \mapsto n - pn(n-1)/2$.

3.2. $(B, +) \simeq \mathbb{Z}/(p) \times \mathbb{Z}/(p)$. We write the elements in $\mathbb{Z}/(p) \times \mathbb{Z}/(p)$ in vector form. There are two braces, up to isomorphism, with additive group isomorphic to $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, the trivial one and a brace with \cdot defined by

$$
\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + y_1 y_2 \\ y_1 + y_2 \end{pmatrix}.
$$

In both cases, $(B, \cdot) \simeq \mathbf{Z}/(p) \times \mathbf{Z}/(p)$. In the trivial case, we have

$$
Aut B = Aut(\mathbf{Z}/(p) \times \mathbf{Z}/(p)) \simeq GL(2, p).
$$

In the nontrivial case, we have

$$
\operatorname{Aut} B = \left\{ \left(\begin{array}{cc} d^2 & b \\ 0 & d \end{array} \right) \, : \, b \in \mathbf{Z}/(p), d \in (\mathbf{Z}/(p))^* \right\}
$$

and an isomorphism from (B, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ is given by

$$
\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x - y(y-1)/2 \\ y \end{pmatrix}.
$$

4. Groups of order

We assume now that p and q are primes satisfying $p > 2$, $q > p$ and $q \ge 5$. These hypotheses imply that a group G of order p^2q^2 has a unique normal q-Sylow subgroup S_q of order q^2 . Indeed, the number n_q of q -Sylow subgroups of *G* satisfies $n_q \in \{1, p, p^2\}$ and $n_q \equiv 1 \pmod{q}$. Clearly $q \nmid p - 1$ and $q \mid p^2 - 1$ implies $q \mid p-1$ or $q \mid p+1$ but, if $q > p$, the second condition holds only for $p = 2$ and $q = 3$. We obtain that a group of order p^2q^2 is the semidirect product of a normal subgroup S_q of order q^2 and a subgroup S_p of order p^2 . It is then determined by a group G_1 of order q^2 , a group G_2 of order p^2 and a morphism $\tau : G_2 \to \text{Aut}(G_1)$. We note that triples (G_1, G_2, τ) and (G_1) $'_{1}, G'_{2}, \tau'$ provide isomorphic groups of order p^2q^2 if and only if there exist isomorphisms $f: G_1 \rightarrow G'_1$ $'_{1}$, $g : G_{2} \rightarrow G'_{2}$'s such that $f \tau = \tau' g$. The groups of order $p^2 q^2$ may then be described by determining the equivalence classes of morphisms $\tau: G_2 \to \text{Aut}(G_1)$ under the relation

$$
\tau \sim \tau' \Leftrightarrow \exists (f, g) \in \text{Aut } G_1 \times \text{Aut } G_2 : f \tau = \tau' g.
$$

Let us further assume that p and q satisfy $p \mid q-1, p \nmid q+1$ and $p^2 \nmid q-1$. If $G_1 \simeq \mathbb{Z}/(q^2)$ then Aut $G_1 \simeq (\mathbb{Z}/(q^2))^* \simeq \mathbb{Z}/q(q-1)$. The assumptions $p \mid q-1$ and p^2 + q – 1 imply that Aut G_1 contains a unique subgroup of order p but no subgroup of order p^2 . If $G_1 \simeq \mathbf{Z}/(q) \times \mathbf{Z}/(q)$, then Aut $G_1 \simeq GL(2,q)$ and $|GL(2,q)| = (q+1)q(q-1)^2$. The assumptions $p | q-1, p \nmid q+1$ and $p^2 \nmid q-1$ imply that Aut G_1 contains elements of order p but no element of order p^2 .

Since τ and $f\tau$, for $f \in GL(2, q)$, give isomorphic groups of order p^2q^2 , we need to determine the subgroups of order p of $GL(2, q)$, up to conjugation. This is done in the following lemma which is easy to prove.

Lemma 4.1. *For* λ *a fixed generator of the unique subgroup of order p of* $\mathbf{Z}/(q)^*$, *a system of representatives of the conjugation classes of subgroups of order of* $GL(2, q)$ *is*

$$
\left\langle \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{k} \end{pmatrix} \right\rangle, \tag{4.1}
$$

for k running over a system of representatives of elements of (**Z**/(p))*, different *from* 1 *and* -1 *, under the relation* $k \sim \ell$ *if and only if* $k\ell \equiv 1 \pmod{p}$ *.*

The number of subgroups of order p of $GL(2, q)$ *up to conjugation is then* ($p +$ 3)∕2*.*

We may now describe the groups of order p^2q^2 for primes p and q satisfying the following conditions.

$$
q > p, p > 2, q \ge 5, p | q - 1, p + q + 1, p2 + q - 1.
$$
 (4.2)

Lemma 4.2. Let p and q satisfying [\(4.2\)](#page-4-0). Let G be a group of order p^2q^2 and let *us denote by the unique -Sylow subgroup of .*

1) Assume $S_q \simeq {\bf Z}/(q^2)$ and let α denote a fixed generator of the unique subgroup *of order of* (∕(2))∗ *. In this case, is isomorphic to one of the following groups.*

1.1) **Z**/ (p^2q^2) ;

1.2) $\mathbf{Z}/(q^2) \rtimes \mathbf{Z}/(p^2)$ with product given by

$$
(x_1, y_1) \cdot (x_2, y_2) = (x_1 + \alpha^{y_1} x_2, y_1 + y_2);
$$

$$
1.3) \mathbf{Z}/(pq^2) \times \mathbf{Z}/(p);
$$

1.4) $\mathbf{Z}/(q^2) \rtimes (\mathbf{Z}/(p) \times \mathbf{Z}(p))$ with product given by

$$
(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{y_1} x_2, \begin{pmatrix} y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}).
$$

- *2) Assume* $S_q \simeq \mathbf{Z}/(q) \times \mathbf{Z}/(q)$ and let λ denote a fixed generator of the unique $\tilde{\sigma}$ *subgroup of order <code>p</code> of (Z/(q))* * *. In this case, G is isomorphic to one of the following groups.*
	- *2.1*) $\mathbf{Z}/(p^2q) \times \mathbf{Z}/(q);$
	- 2.2) $\,$ *one of the* ($p+3$)/2 groups ($\mathbf{Z}/(q) \times \mathbf{Z}/(q)$) $\rtimes_M \mathbf{Z}/(p^2)$ with product given *by*

$$
\left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), z_1\right) \cdot \left(\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right), z_2\right) = \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right) + M^{z_1} \left(\begin{array}{c} x_2 \\ y_2 \end{array}\right), z_1 + z_2\right),
$$

where M denotes one of the matrices in [\(4.1\)](#page-4-0).

- *2.3*) $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq)$;
- *2.4) one of the* $(p + 3)/2$ *groups* $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$ *, with product given by*

$$
\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\left(\begin{array}{c}z_1\\t_1\end{array}\right)\right)\cdot\left(\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_2\\t_2\end{array}\right)\right)=\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right)+M^{z_1}\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_1+z_2\\t_1+t_2\end{array}\right)\right),
$$

where M denotes one of the matrices in [\(4.1\)](#page-4-0);

2.5) $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_{\lambda} (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$ with product given by

$$
\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\left(\begin{array}{c}z_1\\t_1\end{array}\right)\right)\cdot\left(\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_2\\t_2\end{array}\right)\right)=\left(\left(\begin{array}{c}x_1+\lambda^{t_1}x_2\\y_1+\lambda^{z_1+t_1}y_2\end{array}\right),\left(\begin{array}{c}z_1+z_2\\t_1+t_2\end{array}\right)\right).
$$

5. Left braces of size

In this section we consider primes p and q satisfying the conditions in [\(4.2\)](#page-4-0). At the beginning of Section [4,](#page-4-0) we have seen that, under these assumptions, $m = q^2$ and $n = p^2$ satisfy the conditions in Theorem [2.1.](#page-1-0) Hence, every brace of size p^2q^2 is the semidirect product of a brace B_1 of size q^2 and a brace B_2 of size p^2 . We use the description of braces of order p^2 recalled in Section [3](#page-3-0) and Proposition [2.2](#page-2-0) to determine all braces of size p^2q^2 , for p and q satisfying the conditions [\(4.2\)](#page-4-0). We note that, in particular, these conditions are satisfied when p is an odd Germain prime and $q = 2p + 1$.

For the description of the multiplicative groups of the braces of size p^2q^2 given below we shall use the explicit isomorphism from (B_2, \cdot) to $(B_2, +)$ given in Sections [3.1](#page-3-0) and [3.2,](#page-3-0) respectively. Using these isomorphisms, one may prove that the description of the action of Aut B_2 on (B_2, \cdot) looks the same as its action on $(B_2, +)$ (see [\[9\]](#page-14-0) Lemma 7).

5.1. $(B_1, +) = \mathbb{Z}/(q^2)$ and $(B_2, +) = \mathbb{Z}/(p^2)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$
(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2),
$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2$. (5.1)

5.1.1. *B***₁ trivial brace.** In this case, Aut $B_1 = (\mathbf{Z}/(q^2))^*$. Since Aut B_1 is abelian, $h_1 \tau = \tau$, for every morphism τ from (B_2, \cdot) to Aut B_1 .

The morphisms from $\mathbf{Z}/(p^2)$ to Aut B_1 are τ_i defined by $1 \mapsto \alpha^i$, for α a fixed generator of the unique subgroup of order p of Aut B_1 , $0 \le i \le p - 1$, where $i = 0$ corresponds to the trivial morphism.

If B_2 **is trivial,** for $h_2 \in \text{Aut } B_2$ defined by $h_2(1) = i$, with $p \nmid i$, we have $\tau_i = \tau_1 h_2$. We obtain then two braces, the first one is the direct product of B_1 and B_2 , with multiplicative law given by

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \tag{5.2}
$$

and the second one has multiplicative law given by

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1 + \alpha^{x_2} y_1, x_2 + y_2), \tag{5.3}
$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2; \alpha$ a fixed element of order p of $(\mathbf{Z}/(q^2))^*$. **If** B_2 **is nontrivial,** Aut $B_2 = \{k \in (\mathbb{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}\$ and, for the morphisms τ_i defined above we have $\tau_i h_2 = \tau_i$, for each $h_2 \in \text{Aut } B_2$. We obtain p braces, including the direct product one. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p^2)$ given in Section [3.1](#page-3-0) and that α has order p, their multiplicative laws are given by

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1 + \alpha^{ix_2} y_1, x_2 + y_2 + px_2y_2), \tag{5.4}
$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2; i = 0, ..., p - 1; \alpha$ a fixed element of order p of $({\bf Z}/({\bf q}^2))^*$.

5.1.2. *B***₁ nontrivial brace.** In this case, Aut $B_1 = \{k \in (\mathbb{Z}/(q^2))^* : k \equiv 1\}$ (mod q) $\overline{\ }$ \approx **Z**/(q). Then the unique morphism τ from (B_2, \cdot) \approx **Z**/(p^2) to Aut B_1 is the trivial one. We obtain two braces which are direct products of B_1 and B_2 , where B_2 is either trivial or nontrivial. Their multiplicative laws are given by

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1 + q x_1 y_1, x_2 + y_2), \tag{5.5}
$$

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1 + y_1 + qx_1y_1, x_2 + y_2 + px_2y_2), \tag{5.6}
$$

for $x_1, y_1 \in B_1; x_2, y_2 \in B_2$.

Summing up, we have obtained the following result.

Theorem 5.1. *Let* p and q be primes satisfying $q > p, q \ge 5, p | q - 1, p \nmid q + 1$ and $p^2 \, \nmid \, q-1$. There are $p+4$ braces with additive group $\mathbf{Z}/(p^2q^2)$. Four of *them have multiplicative group* ∕(2 2) *and the remaining have multiplicative* group $\mathbf{Z}/(q^2) \rtimes \mathbf{Z}/(p^2)$.

5.2. $(B_1, +) = \mathbb{Z}/(q^2)$ and $(B_2, +) = \mathbb{Z}/(p) \times \mathbb{Z}/(p)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$
\left(x_1, \left(\begin{array}{c} y_1\\ z_1 \end{array}\right)\right) + \left(x_2, \left(\begin{array}{c} y_2\\ z_2 \end{array}\right)\right) = \left(x_1 + x_2, \left(\begin{array}{c} y_1 + y_2\\ z_1 + z_2 \end{array}\right)\right),
$$
\nfor $x_1, x_2 \in B_1$; $\left(\begin{array}{c} y_1\\ z_1 \end{array}\right), \left(\begin{array}{c} y_2\\ z_2 \end{array}\right) \in B_2.$

\n(5.7)

5.2.1. *B***₁ trivial brace.** In this case, Aut $B_1 \simeq (\mathbf{Z}/(q^2))^*$. Since Aut B_1 is abelian, we have $h_1 \tau = \tau$, for every morphism τ from G_2 to Aut B_1 and $h_1 \in \text{Aut } B_1$. **If** B_2 **is trivial**, every nontrivial morphism $\tau : \mathbf{Z}/(p) \times \mathbf{Z}/(p) \to (\mathbf{Z}/(q^2))^*$ is equal to $\tau_0 h_2$, for $h_2 \in \text{Aut } B_2 \simeq \text{GL}(2, p)$ and τ_0 defined by $\tau_0 \left(\begin{smallmatrix} 1 \\ 0 \end{smallmatrix} \right) = \alpha, \tau_0 \left(\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right) =$ 1, for α a fixed element of order p in $(\mathbf{Z}/(q^2))^*$. We obtain one brace whose multiplicative law is given by

$$
(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{y_1} x_2, \begin{pmatrix} y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}), \tag{5.8}
$$

where α is an element of order p in Aut B_1 . Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$
(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2, \binom{y_1 + y_2}{z_1 + z_2}), \tag{5.9}
$$

If B_2 **is nontrivial,** Aut $B_2 = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \right\}$ $\big)$: $d \in (\mathbf{Z}/(p))^*$, $b \in \mathbf{Z}/(p)$ } . Every nontrivial morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is equal to $\tau_0 g$, for $g \in GL(2, p)$ and τ_0 defined by $\tau_0\begin{pmatrix}1\\0\end{pmatrix} = \alpha$, $\tau_0\begin{pmatrix}0\\1\end{pmatrix} = 1$, for α a fixed element of order p in Aut B_1 . By computation, we obtain that, for $g_1, g_2 \in GL(2, p)$, we have $\tau_0 g_1 = \tau_0 g_2$ if and only if the first rows of g_1 and g_2 are equal. We obtain then that the set of nontrivial morphisms τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is precisely $\{\tau_{0}% (\tau)\}_{\sigma \in\mathbb{R}_{+}^{2}$ $\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}$ set of nontriviar morphisms then \mathbf{z}
 $\big)$: $a \in (\mathbf{Z}/(p))^*$, $b \in \mathbf{Z}/(p)\} \cup \{\tau_0\}$ $\begin{smallmatrix} 0 & b \ 0 & 0 \\ 1 & 0 \end{smallmatrix}$ $\lambda \mathbf{Z}/(p)$ to Aut D_1 is precisely
 $\bigg) : b \in (\mathbf{Z}/(p))^*$. Now, for $\tau := \tau_0$ $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ $(2/\sqrt{p})$, σ' : = $\tau_0 \begin{pmatrix} a' & b' \\ 0 & 1 \end{pmatrix}$ 0 1 there exists $h_2 \in \text{Aut } B_2$ such that $\tau' h_2 = \tau$ if and only if a'/a is a square; for $\tau := \tau_0 \left(\begin{smallmatrix} 0 & b \\ 1 & 0 \end{smallmatrix} \right), \tau' := \tau_0 \left(\begin{smallmatrix} 0 & b' \\ 1 & 0 \end{smallmatrix} \right)$ $\frac{1}{1}$ $\frac{b'}{0}$, there always exists $h_2 \in \text{Aut } B_2$ such that $\tau' h_2 = \tau$; for $\tau := \tau_0 \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right), \tau' := \tau_0 \left(\begin{smallmatrix} 0 & b' \\ 1 & 0 \end{smallmatrix} \right)$ $\begin{pmatrix} 1 & 0 \end{pmatrix}$, there $\frac{0}{1}$ $\frac{b'}{0}$, there exists no $h_2 \in \text{Aut } B_2$ such that $\tau' h_2 = \tau$. We obtain then three braces. By considering the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section [3.2,](#page-3-0) their multiplicative laws are given by

$$
\left(x_1, \left(\begin{matrix}y_1\\z_1\end{matrix}\right)\right) \cdot \left(x_2, \left(\begin{matrix}y_2\\z_2\end{matrix}\right)\right) = \left(x_1 + \alpha^{y_1 - z_1(z_1 - 1)/2} x_2, \left(\begin{matrix}y_1 + y_2 + z_1 z_2\\z_1 + z_2\end{matrix}\right)\right),\tag{5.10}
$$

$$
\left(x_1, \left(\begin{matrix}y_1\\z_1\end{matrix}\right)\right) \cdot \left(x_2, \left(\begin{matrix}y_2\\z_2\end{matrix}\right)\right) = \left(x_1 + \alpha^{a(y_1 - z_1(z_1 - 1)/2)} x_2, \left(\begin{matrix}y_1 + y_2 + z_1 z_2\\z_1 + z_2\end{matrix}\right)\right),\tag{5.11}
$$

LEFT BRACES OF SIZE
$$
p^2q^2
$$
 231

and

$$
(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{z_1} x_2, \begin{pmatrix} y_1 + y_2 + z_1 z_2 \\ z_1 + z_2 \end{pmatrix}), \tag{5.12}
$$

respectively, where α is a fixed element of order p in Aut B_1 and α is a fixed quadratic nonresidue modulo p. Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$
(x_1, \binom{y_1}{z_1}) \cdot (x_2, \binom{y_2}{z_2}) = (x_1 + x_2, \binom{y_1 + y_2 + z_1 z_2}{z_1 + z_2}), \tag{5.13}
$$

5.2.2. *B***₁ nontrivial brace.** In this case, Aut $B_1 = \{k \in (\mathbf{Z}/(q^2))^* : k \equiv 1\}$ (mod q)} \simeq **Z**/(q). Then the unique morphism τ from $G_2 \simeq$ **Z**/(p) \times **Z**/(p) to $Aut B₁$ is the trivial one. We obtain then just two braces which are the direct product of B_1 and B_2 , corresponding to B_2 trivial and B_2 nontrivial. Their multiplicative laws are given by

$$
(x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + x_2 + qx_1 x_2, \begin{pmatrix} y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}), \tag{5.14}
$$

$$
\left(x_1, \left(\begin{matrix}y_1\\z_1\end{matrix}\right)\right) \cdot \left(x_2, \left(\begin{matrix}y_2\\z_2\end{matrix}\right)\right) = \left(x_1 + x_2 + qx_1x_2, \left(\begin{matrix}y_1 + y_2 + z_1z_2\\z_1 + z_2\end{matrix}\right)\right),\tag{5.15}
$$

Summing up, we have obtained the following result.

Theorem 5.2. *Let* p and q be primes satisfying $q > p$, $q \geq 5$, $p | q - 1$, $p \nmid q + 1$ and $p^2 \nmid q - 1$. *There are eight braces with additive group* $\mathbf{Z}/(pq^2) \!\times\! \mathbf{Z}/(p)$ *. Four* of them have multiplicative group $\mathbf{Z}/(pq^2)$ \times $\mathbf{Z}/(p)$ and the remaining four have *multiplicative group* $\mathbf{Z}/(q^2) \rtimes (\mathbf{Z}/(p) \times \mathbf{Z}/(p)).$

5.3. $(B_1, +) = \mathbb{Z}/(q) \times \mathbb{Z}/(q)$ and $(B_2, +) = \mathbb{Z}/(p^2)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$
\left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), z_1\right) + \left(\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right), z_2\right) = \left(\left(\begin{array}{c} x_1 + x_2 \\ y_1 + y_2 \end{array}\right), z_1 + z_2\right),\tag{5.16}
$$

for $\binom{x_1}{y_1}$ $\overline{ }$ $, (\frac{x_2}{y_2})$ $\overline{ }$ $\in B_1, z_1, z_2 \in B_2.$

5.3.1. B_1 trivial brace. In this case, Aut $B_1 = GL(2, q)$. Every morphism from $\mathbf{Z}/(p^2)$ to Aut $B_1 = GL(2, q)$ is equal to $h_1 \tau$ for some $h_1 \in Aut B_1$ and τ defined by $\tau(1) = M^{\ell}$ for *M* one of the matrices in [\(4.1\)](#page-4-0) and $1 \leq \ell \leq p - 1$.

If B_2 **is trivial,** Aut $B_2 = \text{Aut } \mathbf{Z}/(p^2)$. For $\tau : \mathbf{Z}/(p^2) \to \text{Aut } B_1$ defined by $\tau(1) = M$ and $h_2 \in$ Aut $\mathbf{Z}/(p^2)$, we have $\tau h_2(1) = M^{h_2(1)}$. Hence for morphisms τ , τ' with $\tau(1) = M$ and $\tau'(1) = M^{\ell}$, one has $\tau \sim \tau'$. We have then one brace for each conjugation class of subgroups of order p in GL(2, q). We obtain $(p+3)/2$ braces, whose multiplicative laws are given by

$$
((\begin{smallmatrix} x_1 \\ y_1 \end{smallmatrix}), z_1) \cdot ((\begin{smallmatrix} x_2 \\ y_2 \end{smallmatrix}), z_2) = ((\begin{smallmatrix} x_1 \\ y_1 \end{smallmatrix}) + M^{z_1} (\begin{smallmatrix} x_2 \\ y_2 \end{smallmatrix}), z_1 + z_2), \quad (5.17)
$$

for *M* one of the matrices in [\(4.1\)](#page-4-0). Besides, we obtain the direct product of B_1 and B_2 whose multiplicative law is given by

$$
((\begin{array}{c} x_1 \\ y_1 \end{array}), z_1) \cdot ((\begin{array}{c} x_2 \\ y_2 \end{array}), z_2) = ((\begin{array}{c} x_1 + x_2 \\ y_1 + y_2 \end{array}), z_1 + z_2), \tag{5.18}
$$

If B_2 **is nontrivial**, we have Aut $B_2 = \{k \in (\mathbf{Z}/(p^2))^* : k \equiv 1 \pmod{p}\}$. Since a nontrivial morphism τ from (B_2, \cdot) to Aut B_1 sends 1 to an element of order p, we have $\tau h_2 = \tau$ for $h_2 \in \text{Aut } B_2$. As noted above, a nontrivial morphism τ from $\mathbf{Z}/(p^2)$ to Aut B_1 is equal to $\bar{h}_1 \tau$ for some $h_1 \in \text{Aut } B_1$ and τ defined by $\tau(1) = M^{\ell}$ for M one of the matrices in [\(4.1\)](#page-4-0) and $1 \leq \ell \leq p-1$. Let us see if for some $\ell \in \{2, ..., p-1\}$ and some matrix M in [\(4.1\)](#page-4-0), the matrices M and M^{ℓ} are conjugate by some element in GL(2, q). This is so only for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $\ell = p - 1$. In this case, there are $p - 1$ braces for each matrix M different from λ 0 $(-p-1)$. In this case, there are $p-1$ braces for each matrix *M* different from $\frac{\lambda}{\lambda}$ $\frac{0}{\lambda}$ and $(p-1)/2$ for this last one. By considering the isomorphism from (B_2, \cdot) into $\mathbb{Z}/(p^2)$ given in Section [3.1](#page-3-0) and taking into account that M denotes a matrix of order p, we obtain $\frac{p+1}{2}$ $\frac{p+1}{2}(p-1) + \frac{p-1}{2} = \frac{(p-1)(p+2)}{2}$ 2 braces whose multiplicative laws are given by

$$
((\begin{smallmatrix} x_1 \\ y_1 \end{smallmatrix}), z_1) \cdot ((\begin{smallmatrix} x_2 \\ y_2 \end{smallmatrix}), z_2) = ((\begin{smallmatrix} x_1 \\ y_1 \end{smallmatrix}) + M^{\ell z_1} (\begin{smallmatrix} x_2 \\ y_2 \end{smallmatrix}), z_1 + z_2 + pz_1 z_2), \quad (5.19)
$$

for *M* one of the matrices in [\(4.1\)](#page-4-0) and with $1 \le \ell \le p - 1$, for $M \ne \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ $\begin{matrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{matrix}$); $1 \leq \ell \leq (p-1)/2$, for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\begin{pmatrix} 0 & \lambda & \lambda \\ \lambda & 0 & \lambda \\ 0 & \lambda & \lambda \end{pmatrix}$

Besides, we obtain the direct product of B_1 and B_2 whose multiplicative law is given by

$$
((\begin{array}{c} x_1 \\ y_1 \end{array}), z_1) \cdot ((\begin{array}{c} x_2 \\ y_2 \end{array}), z_2) = ((\begin{array}{c} x_1 + x_2 \\ y_1 + y_2 \end{array}), z_1 + z_2 + pz_1 z_2), \quad (5.20)
$$

5.3.2. B_1 nontrivial brace. If B_1 is nontrivial,

$$
\operatorname{Aut} B_1 = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \right) : b \in \mathbf{Z}/(q), d \in (\mathbf{Z}/(q^2))^* \right\}.
$$

The matrices of order p in Aut B_1 are conjugate to some diagonal matrix of the form $\begin{pmatrix} d^2 & 0 \\ 0 & d \end{pmatrix}$ Solution of the Matistan element of order p in $(Z/(q))^*$. For λ a chosen element of λ order *p* in $(\mathbf{Z}/(q))^*$, the morphisms τ from $\mathbf{Z}/(p^2)$ to Aut B_1 are given by $\tau(1) =$
 $\left(\begin{array}{cc} \lambda^2 & 0 \\ 0 & \lambda \end{array}\right)^{\ell}$, for $1 \leq \ell \leq p-1$. We note that $\left(\begin{array}{cc} \lambda^2 & 0 \\ 0 & \lambda \end{array}\right) = \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \$ \int_{c}^{ℓ} , for $1 \leq \ell \leq p-1$. We note that $\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$ $\tilde{\zeta}$ = $(\lambda 0)$ 0 λ^k \int_{0}^{2} , with $k = (p + 1)/2$. **If** B_2 **is trivial,** for τ : $\mathbf{Z}/(p^2) \to$ Aut B_1 defined by $\tau(1) = M$, we have $\tau h_2(1) =$ $M^{h_2(1)}$. Hence for morphisms τ, τ' with $\tau(1) = M$ and $\tau'(1) = M^{\ell}$, one has $\tau \sim \tau'$. We may then reduce to the case where $\tau(1) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$ $(1) - M$, one has brace whose multiplicative law is given by

$$
\left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), z_1\right) \cdot \left(\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right), z_2\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{2z_1} x_2 + \lambda^{2z_1} x_1 x_2 \\ y_1 + \lambda^{z_1} y_2 \end{array}\right), z_1 + z_2\right). \tag{5.21}
$$

Besides, we have the direct product whose multiplicative law is given by

$$
\left(\left(\begin{array}{c} x_1 \\ y_1 \end{array}\right), z_1\right) \cdot \left(\left(\begin{array}{c} x_2 \\ y_2 \end{array}\right), z_2\right) = \left(\left(\begin{array}{c} x_1 + x_2 + x_1 x_2 \\ y_1 + y_2 \end{array}\right), z_1 + z_2\right). \tag{5.22}
$$

If B_2 **is nontrivial,** we have $\text{Aut } B_2 = \{ k \in (\mathbf{Z}/(p^2))^* : k \equiv 1 \pmod{p} \}$, as above. For $h_2 \in \text{Aut } B_2$ and $\tau : (B_2, \cdot) \to \text{Aut } B_1$, we have $\tau h_2 = \tau$. We

obtain then $p-1$ braces. By considering again the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p^2)$ given in Section [3.1](#page-3-0) and taking into account that $\tau(1)$ is a matrix of order p , their multiplicative laws are given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), z_1\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), z_2\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{2\ell z_1} x_2 + \lambda^{2\ell z_1} x_1 x_2\\ y_1 + \lambda^{\ell z_1} y_2 \end{array}\right), z_1 + z_2 + pz_1 z_2\right), \quad (5.23)
$$

where λ is a fixed element of order p in $(\mathbf{Z}/(q))^*$ and $1 \leq \ell \leq p-1$. Besides, we have the direct product whose multiplicative law is given by

$$
((\begin{array}{c} x_1 \\ y_1 \end{array}), z_1) \cdot ((\begin{array}{c} x_2 \\ y_2 \end{array}), z_2) = ((\begin{array}{c} x_1 + x_2 + x_1 x_2 \\ y_1 + y_2 \end{array}), z_1 + z_2 + pz_1 z_2).
$$
 (5.24)

Summing up, we have obtained the following result.

Theorem 5.3. Let p and q be primes satisfying $q > p, q \geq 5, p | q - 1, p \nmid$ $q + 1$ and $p^2 + q - 1$. There are $(p^2 + 4p + 9)/2$ braces with additive group $\mathbf{Z}/(p^2q)\times \mathbf{Z}/(q).$

- a) There are four such braces with multiplicative group $\mathbf{Z}/(p^2q)\!\times\!\mathbf{Z}/(q);$
- b) for each of the matrices M in [\(4.1\)](#page-4-0) different from $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{(p)} \end{pmatrix}$ **∧ 2**/(**q**),
[∂] ⁰_∂^{(p+1)/2}), there are p such braces with multiplicative group $(\mathbf{Z}/(q)\!\times\!\mathbf{Z}/(q))\!\rtimes_{M}\!\mathbf{Z}/(p^{2});$
- *c)* for $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ *naces with matriplicative group* $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p)$,
 $\lambda = 0$, $\lambda = 1$, there are $(p + 1)/2$ such braces with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M \mathbf{Z}/(p^2);$
- *d)* $for M =$ 、Ζ/(Υ)
(λ 0 0 (+1)∕2) *, there are* 2 *such braces with multiplicative group* (∕()× $\mathbf{Z}/(q)$) $\rtimes_M \mathbf{Z}/(p^2)$.

5.4. $(B_1, +) = \mathbb{Z}/(q) \times \mathbb{Z}/(q)$ and $(B_2, +) = \mathbb{Z}/(p) \times \mathbb{Z}/(p)$. In this section we describe braces of size p^2q^2 whose additive law is given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) + \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + x_2\\ y_1 + y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2\\ t_1 + t_2 \end{array}\right)\right),
$$
\nfor

\n
$$
\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} x_2\\ y_2 \end{array}\right) \in B_1; \left(\begin{array}{c} z_1\\ t_1 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right) \in B_2.
$$
\n(5.25)

5.4.1. B_1 **trivial brace.** In this case, Aut $B_1 = GL(2, q)$. A nontrivial morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 either has an order p kernel or is injective. In the first case, it is equal to $h_1 \tau$ for some $h_1 \in Aut B_1$ and τ defined by $\tau(u) = M$, $\tau(v) = \text{Id}$, for some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, where M is one of the matrices in [\(4.1\)](#page-4-0). In the second case, it is equal to $\bar{h}_1 \tau$ for some h₁ ∈ Aut B₁ and τ defined by $\tau(u) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau(v) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$, for an element λ of order p in $(\mathbf{Z}/(q))^*$ and some basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$. Indeed, all subgroups of order p^2 of GL(2, q) are conjugate, as they are the p-Sylow subgroups groups of order p of $GL(2, q)$ are conjugate, as they are the p-sylow subgroups
of $GL(2, q)$, and $\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ and $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ are a basis of the subgroup of order p^2 whose elements are diagonal matrices.

If B_2 **is trivial,** we have Aut $B_2 = GL(2, p)$. For τ defined by $\tau(u) = M$, $\tau(v) =$ Id, for some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$, we have $\tau = \tau_0 h_2$, for h_2 defined by $h_2(u) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\frac{1}{\sqrt{2}}$ $h_2(v) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ \int or $\mathbf{z}/(p) \times \mathbf{z}/(p)$, we have ۲
د $= M, \tau_0$, it
($\begin{smallmatrix} 0 \ 0 \ 1 \end{smallmatrix}$ μ_2 defined
 μ_2 = Id. We obtain then $(p + 3)/2$ braces whose multiplicative laws are given by

234 TERESA CRESPO

$$
\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\left(\begin{array}{c}z_1\\t_1\end{array}\right)\right)\cdot\left(\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_2\\t_2\end{array}\right)\right)=\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right)+M^{z_1}\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_1+z_2\\t_1+t_2\end{array}\right)\right),\tag{5.26}
$$

for *M* one of the matrices in [\(4.1\)](#page-4-0). In the case when τ is injective, for an adequate h_2 , we have $\tau = \tau_0 h_2$, for τ_0 defined by τ_0 ($\frac{1}{0}$) v.
\ = $\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ וז
\ , τ_0 (0 1) = $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$) , where λ is a fixed element of order p in $(\mathbf{Z}/(q))^*$. We obtain then one brace whose multiplicative law is given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{t_1} x_2\\ y_1 + \lambda^{t_1 + t_1} y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2\\ t_1 + t_2 \end{array}\right)\right),\tag{5.27}
$$

for λ a fixed element of order p in $(\mathbf{Z}/(q))^*$. Besides, we have the direct product, whose multiplicative law is given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + x_2\\ y_1 + y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2\\ t_1 + t_2 \end{array}\right)\right). \tag{5.28}
$$

If B_2 **is nontrivial**, we have Aut $B_2 = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \right\}$ $\big)$: $d \in (\mathbf{Z}/(p))^*$, $b \in \mathbf{Z}/(p)$).

3 as in Section [5.2.1.](#page-7-0) Now every morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 with an order *p* kernel is equal to $\tau_0 g$, for $g \in GL(2, p)$ and τ_0 defined by $\tau_0(\frac{1}{\theta}) =$ M, τ_0 ($_1^0$) = Id, for M one of the matrices in [\(4.1\)](#page-4-0). Similarly as in Section [5.2.1,](#page-7-0) we obtain that the set of nontrivial morphisms τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 we obtain that the ϕ is the condition of the principal state ι from ι
 ϕ : $a \in (\mathbf{Z}/(p))^*$, $b \in \mathbf{Z}/(p)$ \cup $\{\tau_0$ $\begin{pmatrix} 0 & b \\ 1 & 0 \end{pmatrix}$ $\lambda \mathbf{Z}/(p)$ to Aut D_1
 $\bigg)$: $b \in (\mathbf{Z}/(p))^*$. Moreover, again as in Section [5.2.1,](#page-7-0) under the relation

$$
\tau \sim \tau' \Leftrightarrow \exists h_2 \in \text{Aut}\,B_2 \;:\; \tau'h_2 = \tau,
$$

we are left with τ_0 , τ_0 $\left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right)$, for $a \in (\mathbf{Z}/(p))^*$ a non-square element, and τ_0 $\left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)$. Now, if $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\frac{\lambda}{0}$ $\frac{0}{\lambda^{-1}}$), the matrices M and M⁻¹ are conjugate by $\left(\frac{0}{1} \right) \in GL(2, q) =$ Aut B_1 . Hence, for $h_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, we have $h_1 \tau_0 = \tau_0 \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ which implies that, if τ_0 is not a square in $\mathbf{Z}/(p)$, then the orbits corresponding to τ_0 and τ_0 ($\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$) $\frac{1}{\ell}$ coincide. We obtain then two braces corresponding to $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ and three corresponding to the other matrices. Summing up, there are $(3/2)(p+3)$ braces if $p \equiv 1 \pmod{4}$ and $\left(\frac{3}{2}\right)(p + 3) - 1$ braces if $p \equiv 3 \pmod{4}$. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section [3.2,](#page-3-0) the corresponding multiplicative laws are given by

$$
\begin{aligned}\n\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix}\right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix}\right) &= \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + M^{z_1 - t_1(t_1 - 1)/2} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix}\right), (5.29) \\
\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix}\right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix}\right) &= \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + M^{a(z_1 - t_1(t_1 - 1)/2)} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix}\right),\n\end{aligned}
$$

and

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right) + M^{t_1} \left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2 + t_1 t_2\\ t_1 + t_2 \end{array}\right)\right),\tag{5.31}
$$

(5.30)

respectively, where M is one of the matrices in [\(4.1\)](#page-4-0) and α is a fixed quadratic nonresidue modulo p with the exception that, for $p \equiv 3 \pmod{4}$ and $M =$ λ 0 bineside modulo p with the exception that, for $p \equiv 3 \pmod{4}$ and M
 $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, the braces with multiplicative laws (5.29) and (5.30) are isomorphic.

As established above, an injective morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 As established above, an injective morphism t non $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$
is equal to $h_1 \tau$ for some $h_1 \in GL(2,q)$ and τ defined by $\tau(u) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ ζ is equal to ${}^{n_1}\tau$ for some $h_1 \in GL(2,q)$ and τ defined by $\tau(u) = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau(v) =$ $\lambda_{0,\lambda}^{0,0}$, for an element λ of order p in $(\mathbf{Z}/(q))^*$ and some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}(\hat{p}) \times \mathbf{Z}/(p)$. A transversal of Aut B_2 in GL(2, p) is

$$
\{ \left(\begin{smallmatrix} a & 0 \\ c & 1 \end{smallmatrix} \right) : a \in (\mathbf{Z}/(p))^*, c \in \mathbf{Z}/(p) \} \cup \{ \left(\begin{smallmatrix} 0 & c \\ 1 & 0 \end{smallmatrix} \right) : c \in (\mathbf{Z}/(p))^* \},
$$

hence any injective morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is equivalent under the relation in Proposition [2.2](#page-2-0) either to $\tau_{a,c} = \tau_0 h_2$ for $h_2 = \begin{pmatrix} a & 0 \\ c & 1 \end{pmatrix}$ for some $a \in (\mathbf{Z}/(p))^*$, $c \in \mathbf{Z}/(p)$ or to $\tau_c = \tau_0 h_2$ for $h_2 = \begin{pmatrix} 0 & c \\ 1 & 0 \end{pmatrix}$ for some $c \in (\mathbf{Z}/(p))^*$, where τ_0 is defined by $\tau_0\left(\frac{1}{0}\right)$ ،
۱ = $\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}$ $\tilde{\zeta}$, τ_0 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\frac{2}{\lambda}$ = $\begin{pmatrix} 1 & 0 \\ \lambda & 0 \\ 0 & \lambda \end{pmatrix}$) . Now the normalizer of $\langle \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \rangle$ in GL(2, q) consists of diagonal and anti-diagonal and anti-diagonal \sim $\frac{10}{10}$ matrices. Conjugation by a diagonal matrix leaves diagonal matrices fixed and for an anti-diagonal h_1 we have h_1 ($\begin{smallmatrix} 1 & 0 \\ 0 & \lambda \end{smallmatrix}$ $\overline{ }$ = $\left(\begin{smallmatrix} \lambda & 0 \\ 0 & 1 \end{smallmatrix}\right)$ $\overline{ }$ $\int_0^h \left(\begin{array}{cc} \lambda & 0 \\ 0 & \lambda \end{array}\right)$ $\overline{ }$ = $\left(\begin{smallmatrix} \lambda & 0 \\ 0 & \lambda \end{smallmatrix}\right)$) . We obtain then $h_1 \tau_{a,c} = \tau_{-a,a+c}$, for $h_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and no further equivalences. This gives $(p(p-1)/2) + p - 1 = (p^2 + p - 2)/2$ braces. With λ an element of order p in $({\bf Z}(q))^*$, and taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section [3.2,](#page-3-0) their multiplicative laws are given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)(a+c) + t_1} x_2\\ y_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)c + t_1} y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2 + t_1 t_2\\ t_1 + t_2 \end{array}\right)\right), (5.32)
$$

for some $(a, c) \in (\mathbf{Z}/(p))^* \times \mathbf{Z}/(p)$ where the braces corresponding to (a, c) and $(-a, a + c)$ are isomorphic, and

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} x_2\\ y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2 + ct_1} y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2 + t_1 t_2\\ t_1 + t_2 \end{array}\right)\right), \quad (5.33)
$$

for some $c \in (\mathbf{Z}/(p))^*$. Besides, we have the direct product of B_1 and B_2 with multiplicative law given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right),\left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right)\cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right),\left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right)=\left(\left(\begin{array}{c} x_1+x_2\\ y_1+y_2 \end{array}\right),\left(\begin{array}{c} z_1+z_2+t_1t_2\\ t_1+t_2 \end{array}\right)\right),\tag{5.34}
$$

5.4.2. *B***₁ nontrivial brace.** In this case, Aut $B_1 = \{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \}$) : *d* ∈ (**Z**/(*q*))^{*}, $b \in \mathbb{Z}/(q) \subset GL(2,q)$. Since the only subgroup of order p of Aut B_1 is $\left(\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}\right)$, for $\lambda \in (\mathbf{Z}/(q))^*$ of order p, a nontrivial morphism τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 has an order p kernel and is defined by $\tau(u) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$, $\tau(v) =$ Id, for some $\mathbf{Z}/(p)$ -basis (u, v) of $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$.

If B_2 **is trivial**, Aut $B_2 = GL(2, p)$. For τ defined by $\tau(u) = \begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$ \int , $\tau(v) =$ Id, for some basis (u, v) of $(B_2, \cdot) = \mathbf{Z}/(p) \times \mathbf{Z}/(p)$, we have $\tau = \tau_0 h_2$, for h_2 defined by $h_2(u) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\frac{1}{2}$ $h_1, v)$ or (b_2, \cdot)
 $h_2(v) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\left(\frac{L}{0} \right)$ and τ_0 defined by τ_0 ($\frac{1}{0}$) ب
ا = $\begin{pmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{pmatrix}$ $\frac{1}{1}$, τ_0 $\begin{pmatrix} 2 \ 0 \ 1 \end{pmatrix}$ $=$ Id. We obtain then one brace, whose multiplicative law is given by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right), \left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right) \cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right), \left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right) = \left(\left(\begin{array}{c} x_1 + \lambda^{2z_1} x_2 + \lambda^{z_1} y_1 y_2\\ y_1 + \lambda^{z_1} y_2 \end{array}\right), \left(\begin{array}{c} z_1 + z_2\\ t_1 + t_2 \end{array}\right)\right),\tag{5.35}
$$

236 TERESA CRESPO

for λ a fixed element of order p in $(\mathbf{Z}/(q))^*$. Besides, we have the direct product whose multiplicative law is given by

$$
\left(\left(\begin{array}{c}x_1\\y_1\end{array}\right),\left(\begin{array}{c}z_1\\t_1\end{array}\right)\right)\cdot\left(\left(\begin{array}{c}x_2\\y_2\end{array}\right),\left(\begin{array}{c}z_2\\t_2\end{array}\right)\right)=\left(\left(\begin{array}{c}x_1+x_2+y_1y_2\\y_1+y_2\end{array}\right),\left(\begin{array}{c}z_1+z_2\\t_1+t_2\end{array}\right)\right).
$$
(5.36)

If B_2 **is nontrivial,** Aut $B_2 = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} \right\}$) : $d \in (\mathbf{Z}/(p))^*$, $b \in \mathbf{Z}/(p)$ $\} \subset GL(2, p).$ As in Section [5.2.1,](#page-7-0) we obtain that the set of nontrivial morphisms τ from $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ to Aut B_1 is precisely

$$
\{\tau_0\left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix}\right) : a \in (\mathbf{Z}/(p))^*, b \in \mathbf{Z}/(p)\} \cup \{\tau_0\left(\begin{smallmatrix} 0 & b \\ 1 & 0 \end{smallmatrix}\right) : b \in (\mathbf{Z}/(p))^*\},
$$

for τ_0 defined by τ_0 ($\frac{1}{0}$) $\overline{ }$ = $\left(\begin{smallmatrix} \lambda^2 & 0 \\ 0 & \lambda \end{smallmatrix}\right)$ $\overline{ }$, τ_0 $\binom{0}{1}$ $=$ Id. Again, under the relation in Proposition [2.2,](#page-2-0) we have three orbits corresponding to the matrices Id, $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, for a non-square, and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. We obtain then three braces. Taking into account the isomorphism from (B_2, \cdot) into $\mathbf{Z}/(p) \times \mathbf{Z}/(p)$ given in Section [3.2,](#page-3-0) their multiplicative laws are given by

$$
\begin{aligned}\n &\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \right) \\
 &= \left(\begin{pmatrix} x_1 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_1 y_2 \\ y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix} \right),\n \end{aligned} \tag{5.37}
$$

$$
\begin{aligned}\n &\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \right) \\
 &= \left(\begin{pmatrix} x_1 + (a\lambda^2)^{(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_1 y_2 \\ y_1 + \lambda^{z_1 - t_1(t_1 - 1)/2} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{pmatrix} \right),\n \end{aligned} \tag{5.38}
$$

for a fixed quadratic nonresidue a modulo p , and

$$
\begin{split} \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \left(\begin{array}{c} z_1 \\ t_1 \end{array} \right) \right) \cdot \left(\left(\begin{array}{c} x_2 \\ y_2 \end{array} \right), \left(\begin{array}{c} z_2 \\ t_2 \end{array} \right) \right) \\ = \left(\left(\begin{array}{c} x_1 + \lambda^{(z_1 - t_1(t_1 - 1)/2)} x_2 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} y_1 y_2 \\ y_1 + \lambda^{2(z_1 - t_1(t_1 - 1)/2)} y_2 \end{array} \right), \left(\begin{array}{c} z_1 + z_2 + t_1 t_2 \\ t_1 + t_2 \end{array} \right) \right). \end{split} \tag{5.39}
$$

Besides, we have the direct product with multiplicative law defined by

$$
\left(\left(\begin{array}{c} x_1\\ y_1 \end{array}\right),\left(\begin{array}{c} z_1\\ t_1 \end{array}\right)\right)\cdot \left(\left(\begin{array}{c} x_2\\ y_2 \end{array}\right),\left(\begin{array}{c} z_2\\ t_2 \end{array}\right)\right)=\left(\left(\begin{array}{c} x_1+x_2+y_1y_2\\ y_1+y_2 \end{array}\right),\left(\begin{array}{c} z_1+z_2+t_1t_2\\ t_1+t_2 \end{array}\right)\right).
$$
(5.40)

Summing up, we have obtained the following result.

Theorem 5.4. *Let* p and q be primes satisfying $q > p, q \geq 5, p | q - 1, p \nmid q + 1$ and $p^2 \nmid q-1$. There are $\frac{p^2+5p}{2}$ $\frac{+5p}{2}$ + 14 (resp. $\frac{p^2+5p}{2}$ $\frac{12}{2}$ + 13) braces with additive *group* $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq)$ *if* $p \equiv 1 \pmod{4}$ *(resp. if* $p \equiv 3 \pmod{4}$ *)*.

- *a) There are four of them with multiplicative group* $\mathbf{Z}/(pq) \times \mathbf{Z}/(pq)$;
- b) for each of the matrices M in [\(4.1\)](#page-4-0) different from $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{array}{c}\n\lambda \rightarrow 0 \\
\lambda \rightarrow 0 \\
\lambda^{-1}\n\end{array}$ and $\begin{pmatrix}\n\lambda & 0 \\
\lambda & 0 \\
0 & \lambda^{(p+1)}\n\end{pmatrix}$ *µ*4),
[∂] ⁰_{∂ ^{(p+1)/2}}), there *are four of them with multiplicative group* $(\mathbf{Z}/(q)\times\mathbf{Z}/(q))\rtimes_M(\mathbf{Z}/(p)\times\mathbf{Z}/(p));$

- *c*) *for* $M = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$ $\frac{\lambda}{\lambda}$ $\frac{0}{\lambda^{-1}}$), there are four (resp. three) such braces with multiplicative *group* $(\mathbf{Z}/(q) \times \mathbf{Z}/(q)) \rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$, *if* $p \equiv 1 \pmod{4}$ *(resp. if* $p \equiv 3$ (mod 4)*);*
- *d)* for $M =$);
(λ0 $\frac{\lambda}{\lambda} \frac{0}{\lambda^{(p+1)/2}}$), there are eight of them with multiplicative group $({\bf Z} / (q) \times$ $\mathbf{Z}/(q)$) $\rtimes_M (\mathbf{Z}/(p) \times \mathbf{Z}/(p))$;
- *e)* there are $(p^2 + p)/2$ of them with multiplicative group $(\mathbf{Z}/(q) \times \mathbf{Z}/(q))$ \rtimes_{λ} $(\mathbf{Z}/(p) \times \mathbf{Z}/(p)).$

Acknowledgments

I am very grateful to the referee for indications and corrections which helped to improve substantially this manuscript.

References

- [1] ACRI, E.; BONATTO, M. Skew braces of size pq. *Comm. Algebra* **48** (2020), no. 5, 1872–1881. [MR4085764,](http://www.ams.org/mathscinet-getitem?mr=4085764) [Zbl 1437.16027,](http://www.emis.de/cgi-bin/MATH-item?1437.16027) doi: [10.1080/00927872.2019.1709480.](http://dx.doi.org/10.1080/00927872.2019.1709480) [224](#page-1-0)
- [2] ACRI, E.; BONATTO, M. Skew braces of size p^2q I: Abelian type. Algebra Colloq. 29 (2022), no.2, 297–320. [MR4414157,](http://www.ams.org/mathscinet-getitem?mr=4414157) [Zbl 1495.16030,](http://www.emis.de/cgi-bin/MATH-item?1495.16030) doi: [10.1142/S1005386722000244.](http://dx.doi.org/10.1142/S1005386722000244) [224](#page-1-0)
- [3] BACHILLER, D. Classification of braces of order p^3 . J. Pure Appl. Algebra 219 (2015), 3568-3603. [MR3320237,](http://www.ams.org/mathscinet-getitem?mr=3320237) [Zbl 1312.81099,](http://www.emis.de/cgi-bin/MATH-item?1312.81099) doi: [10.1016/j.jpaa.2014.12.013.](http://dx.doi.org/10.1016/j.jpaa.2014.12.013) [224,](#page-1-0) [226](#page-3-0)
- [4] Campedel, E.; Caranti, A.; Del Corso, I. Hopf-Galois structures on extensions of degree p^2q and skew braces of order p^2q : the cyclic Sylow p-subgroup case. *J. Algebra* **556** (2020), 1165–1210. [MR4089566,](http://www.ams.org/mathscinet-getitem?mr=4089566) [Zbl 1465.12006,](http://www.emis.de/cgi-bin/MATH-item?1465.12006) doi: [10.1016/j.jalgebra.2020.04.009.](http://dx.doi.org/10.1016/j.jalgebra.2020.04.009) [224](#page-1-0)
- [5] Cedó, F. Left Braces: solutions of the Yang-Baxter equation. *Adv. Group Theory Appl.* **5** (2018), 33–90. [MR3824447,](http://www.ams.org/mathscinet-getitem?mr=3824447) [Zbl 1403.16033,](http://www.emis.de/cgi-bin/MATH-item?1403.16033) doi: [10.4399/97888255161422.](http://dx.doi.org/10.4399/97888255161422) [224,](#page-1-0) [225](#page-2-0)
- [6] Crespo, T. Hopf Galois structures on field extensions of degree twice an odd prime square and their associated skew left braces. *J. Algebra* **565** (2021), 282–308. [MR4150347,](http://www.ams.org/mathscinet-getitem?mr=4150347) [Zbl](http://www.emis.de/cgi-bin/MATH-item?1464.16025) [1464.16025,](http://www.emis.de/cgi-bin/MATH-item?1464.16025) doi: [10.1016/j.jalgebra.2020.09.005.](http://dx.doi.org/10.1016/j.jalgebra.2020.09.005) [224](#page-1-0)
- [7] Crespo, T.; Gil-Muñoz, D.; Rio, A.; Vela, M. Left braces of size 8. *J. Algebra* **617** (2023), 317–339. [MR4513787,](http://www.ams.org/mathscinet-getitem?mr=4513787) [Zbl 1511.16028,](http://www.emis.de/cgi-bin/MATH-item?1511.16028) doi: [10.1016/j.jalgebra.2022.11.011.](http://dx.doi.org/10.1016/j.jalgebra.2022.11.011) [224](#page-1-0)
- [8] Crespo, T.; Gil-Muñoz, D.; Rio, A.; Vela, M. Inducing braces and Hopf Galois structures. *J. Pure Appl. Algebra* **227** (2023), no. 9, Paper No. 107371, 16 pp. [MR4559373,](http://www.ams.org/mathscinet-getitem?mr=4559373) [Zbl 1526.16027,](http://www.emis.de/cgi-bin/MATH-item?1526.16027) doi: [10.1016/j.jpaa.2023.107371.](http://dx.doi.org/10.1016/j.jpaa.2023.107371) [224](#page-1-0)
- [9] DIETZEL, C. Braces of order p^2q . *J. Algebra Appl.* **20** (2021), no. 8, Paper No. 2150140, 24 pp. [MR4297324,](http://www.ams.org/mathscinet-getitem?mr=4297324) [Zbl 1486.16040,](http://www.emis.de/cgi-bin/MATH-item?1486.16040) doi: [10.1142/S0219498821501401.](http://dx.doi.org/10.1142/S0219498821501401) [224,](#page-1-0) [229](#page-6-0)
- [10] Rump, W. Braces, radical rings, and the quantum Yang–Baxter equation. *J. Algebra* **307** (2007), 153–170. [MR2278047,](http://www.ams.org/mathscinet-getitem?mr=2278047) [Zbl 1115.16022,](http://www.emis.de/cgi-bin/MATH-item?1115.16022) doi: [10.1016/j.jalgebra.2006.03.040.](http://dx.doi.org/10.1016/j.jalgebra.2006.03.040) [223](#page-0-0)
- [11] SMOKTUNOWICZ, A.; VENDRAMIN, L. *J. Comb. Algebra* 2 (2018), no. 1, 47-86. [MR3763907,](http://www.ams.org/mathscinet-getitem?mr=3763907) [Zbl 1416.16037,](http://www.emis.de/cgi-bin/MATH-item?1416.16037) doi: [10.4171/jca/2-1-3.](http://dx.doi.org/10.4171/jca/2-1-3) [224](#page-1-0)

(Teresa Crespo) Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain teresa.crespo@ub.edu

This paper is available via <http://nyjm.albany.edu/j/2025/31-10.html>.