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New branching formulae for classical groups
and relations among them

Dibyendu Biswas

Abstract. We find the branching laws for the classical pairs GL(𝑚,ℂ) ⊂
GL(𝑛,ℂ), Sp(2𝑚,ℂ) ⊂ Sp(2𝑛,ℂ), SO(𝑞,ℂ) ⊂ SO(𝑝,ℂ) for all𝑚 ≤ 𝑛, and all
𝑞 ≤ 𝑝, generalizing the well-known results of classical branching laws which
exist for𝑚 = 𝑛 − 1, and 𝑞 = 𝑝 − 1. Our approach provides a common proof
applicable to all these groups. We also compare the branching multiplicities
among these pairs.
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1. Introduction
Branching rules are descriptions of how irreducible representations of a group

𝐺 decompose under restriction to a subgroup𝐻. We are interested in the cases
when𝐺 and𝐻 are classical groups over complex numbers. We take𝐺 to be gen-
eral linear groupsGL(𝑛) = GL(𝑛,ℂ), symplectic groups Sp(2𝑛) = Sp(2𝑛,ℂ), or
orthogonal groups SO(𝑝) = SO(𝑝,ℂ). We consider the following pair of groups
𝐻 ⊂ 𝐺 in this paper,

GL(𝑚) ⊂ GL(𝑛), Sp(2𝑚) ⊂ Sp(2𝑛), SO(𝑞) ⊂ SO(𝑝).
We provide formulae (see Theorem 2.3 - 2.5) expressing branching multiplic-
ities as determinants of certain combinatorial matrices. They are usually not
multiplicity-free. We use the Weyl Character formula to prove all the formulae
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for branchingmultiplicities asmentioned here. The notation used in this paper
as well as the proofs follow [GW09, Chapter 8].
Our proof of the branching laws depends on a different version of the Weyl

dimension formula which is our Theorem 4.2, and is a determinantal formula,
to which our branching laws reduce to when branching from any group G to
the trivial subgroup.
The results for the pair of classical groups (𝐻 ⊂ 𝐺) listed above for the spe-

cial case 𝑚 = 𝑛 − 1 and 𝑞 = 𝑝 − 1 have been known for a long time. In
his book [Wey50, V.18], H. Weyl provided the classical branching description
for the pair GL(𝑛 − 1) ⊂ GL(𝑛). Concerning the pair Sp(2𝑛 − 2) ⊂ Sp(2𝑛),
Zelobenko [Ž73] and Hegerfeldt [Heg67] have established conditions under
which the multiplicity is non-zero. The multiplicity formula in this case is due
to Whippman [Whi65] (for 𝑛 = 2, 3) and Miller [Mil66] (for the general case of
𝑛). For the pair SO(𝑝−1) ⊂ SO(𝑝), the branching rules are in the book [Mur63,
IX.9] by F.D. Murnaghan.
After finishing the paper, when we sent it to Prof. Okada, he informed us

that Theorems 2.3-2.5 can be derived from an unpublished preprint [Oka89] of
his from 1989. He proved his result using Lindström–Gessel–Viennot lemma
which counts the number of tuples of non-intersecting lattice paths. He also
mentioned the paper [OS19] for similar results.

2. The main theorems
In this section, we provide the statements of our main theorems. The theo-

rems involve certain binomial coefficients, which we will define before going
into the details.

Definition 2.1. Let𝑘 ≥ 0 be a integer and𝑥 ∈ ℝ. We define binomial coefficients(𝑥
𝑘

)
as follows:

(𝑥
𝑘
)
= {

𝑥(𝑥−1)(𝑥−2)⋯(𝑥−𝑘+1)
𝑘!

, if 𝑘 ≥ 1
1, if 𝑘 = 0.

Definition 2.2. Let 𝑘 ≥ 0 be a integer and 𝑛 ∈ ℤ. We define
{𝑛
𝑘

}
as follows:

{𝑛
𝑘
}
= {

(𝑛
𝑘

)
, if 𝑛 ≥ 𝑘,

0, if 𝑛 < 𝑘.

The dominant weights of the groups GL(𝑛), Sp(2𝑛), SO(2𝑛 + 1), SO(2𝑛) are
parameterized by sequences of integers 𝜆 = (𝜆1,… , 𝜆𝑛) ∈ ℤ𝑛 satisfying the
following conditions.

𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛, for GL(𝑛),
𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛 ≥ 0, for Sp(2𝑛), SO(2𝑛 + 1),
𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛−1 ≥ |||𝜆𝑛||| , for SO(2𝑛).
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For our branching problem, it is sufficient to consider 𝜆𝑛 ≥ 0 for all groups
whichwe tacitly assume everywhere. All the groupsGL(𝑛), Sp(2𝑛), SO(2𝑛+1),
SO(2𝑛) have rank 𝑛.
Let𝐻 ⊂ 𝐺 be one of the pairs as in the Introduction. Let

𝜆 = (𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛 ≥ 0) and 𝜇 = (𝜇1 ≥ 𝜇2 ≥⋯ ≥ 𝜇𝑚 ≥ 0)

be two sequences of integers. In case (𝐻 ⊂ 𝐺) = (SO(𝑞) ⊂ SO(𝑝)), then𝑛 = ⌊𝑝
2
⌋

and𝑚 = ⌊𝑞
2
⌋. Let Π𝜆 and Ψ𝜇 denote the irreducible highest weight representa-

tions of 𝐺 and 𝐻 with the highest weights 𝜆 and 𝜇, respectively. Consider the
following restriction,

Π𝜆|𝐻 =
∑

𝜇
𝑚(𝜆, 𝜇)Ψ𝜇. (1)

Set 𝜆𝑛+𝑖 = 0, 𝜇𝑚+𝑖 = 0 for 𝑖 ≥ 1. Let

𝑢𝑖𝑗 = 𝜆𝑖 − 𝜇𝑗 + 𝑗 − 𝑖 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Theorem 2.3. Let GL(𝑚) ⊂ GL(𝑛), with 0 ≤ 𝑚 ≤ 𝑛 − 1. Then,
(i) The multiplicity𝑚(𝜆, 𝜇) is nonzero if and only if

𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+𝑛−𝑚 for 1 ≤ 𝑖 ≤ 𝑚.

(ii) The multiplicity
𝑚(𝜆, 𝜇) = det

[
𝑀𝑖𝑗

]
,

where

𝑀𝑖𝑗 =

⎧
⎪
⎨
⎪
⎩

{𝑢𝑖𝑗 + 𝑛 −𝑚 − 1
𝑛 −𝑚 − 1

}
, if 1 ≤ 𝑗 ≤ 𝑚,

(𝑢𝑖𝑗 + 𝑛 − 𝑗
𝑛 − 𝑗

)
, if 𝑚 + 1 ≤ 𝑗 ≤ 𝑛.

Theorem 2.4. Let Sp(2𝑚) ⊂ Sp(2𝑛), with 0 ≤ 𝑚 ≤ 𝑛 − 1. Then,
(i) The multiplicity𝑚(𝜆, 𝜇) is nonzero if and only if

𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+2𝑛−2𝑚 for 1 ≤ 𝑖 ≤ 𝑚.

(ii) The multiplicity
𝑚(𝜆, 𝜇) = det

[
𝑀𝑖𝑗

]
,

where

𝑀𝑖𝑗 =

⎧
⎪
⎨
⎪
⎩

{𝑢𝑖𝑗 + 2𝑛 − 2𝑚 − 1
2𝑛 − 2𝑚 − 1

}
, if 1 ≤ 𝑗 ≤ 𝑚,

(𝑢𝑖𝑗 + 2𝑛 − 2𝑗 + 1
2𝑛 − 2𝑗 + 1

)
, if 𝑚 + 1 ≤ 𝑗 ≤ 𝑛.
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Theorem 2.5. Let SO(𝑞) ⊂ SO(𝑝)with 0 ≤ 𝑞 ≤ 𝑝−1. Let 𝑛 = ⌊𝑝
2
⌋ and𝑚 = ⌊𝑞

2
⌋.

We define 𝑙 as follows:

𝑙 = {𝑛 −𝑚, if 𝑝 = 2𝑛 + 1,
𝑛 −𝑚 − 1, if 𝑝 = 2𝑛.

Then,
(i) The multiplicity𝑚(𝜆, 𝜇) is nonzero if and only if

𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+𝑝−𝑞 for 1 ≤ 𝑖 ≤ 𝑚,
(ii) The multiplicity

𝑚(𝜆, 𝜇) = 2𝑙 det
[
𝑀𝑖𝑗

]
,

where

𝑀𝑖𝑗 =

⎧
⎪
⎨
⎪
⎩

{𝑢𝑖𝑗 + 𝑝 − 𝑞 − 1
𝑝 − 𝑞 − 1

}
, if 1 ≤ 𝑗 ≤ 𝑚,

(𝑢𝑖𝑗 + 𝑝 − 2𝑗 − 1
2

𝑝 − 2𝑗

)
, if 𝑚 + 1 ≤ 𝑗 ≤ 𝑛.

Remark 2.6. Putting𝑚 = 0 in Theorems 2.3 - 2.5 gives the corresponding Weyl
dimension formula (Theorem 4.2) for general linear, symplectic and orthogonal
groups, respectively. (In Theorem 2.5, for odd orthogonal groups, we assume that
both𝑝 and 𝑞 are odd and for even orthogonal groups, we assume that both𝑝 and 𝑞
are even.) We provide details specifically for the case of general linear groups; sim-
ilar procedures can be followed for other groups. Putting𝑚 = 0 in Theorem 2.3,
we have for any 1 ≤ 𝑗 ≤ 𝑛,

𝑀𝑖𝑗 =
(𝑢𝑖𝑗 + 𝑛 − 𝑗

𝑛 − 𝑗
)
=
(𝜆𝑖 − 𝜇𝑗 + 𝑗 − 𝑖 + 𝑛 − 𝑗

𝑛 − 𝑗
)
=
(𝜆𝑖 + 𝑛 − 𝑖

𝑛 − 𝑗
)
.

Hence in this 𝑚 = 0 case, 𝑚(𝜆, 𝜇) = det
[
𝑀𝑖𝑗

]
= det [

(𝜆𝑖 + 𝑛 − 𝑖
𝑛 − 𝑗

)
] which

matcheswith the dimension formula given inTheorem 4.2 for general linear groups.
In fact, we first prove these dimension formulae (different looking than the

usual Weyl dimension formula) which goes into the proof of Theorems 2.3 - 2.5.

Remark 2.7. Put𝑚 = 𝑛−1 in Theorem 2.3. The inequality 𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+1 gives
rise to 𝜆1 ≥ 𝜇1 ≥⋯ ≥ 𝜆𝑛−1 ≥ 𝜇𝑛−1 ≥ 𝜆𝑛 and the formula becomes

𝑀𝑖𝑗 =
⎧

⎨
⎩

{𝑢𝑖𝑗
0
}
, if 1 ≤ 𝑗 ≤ 𝑛 − 1,

(𝑢𝑖𝑗
0
)
, if 𝑗 = 𝑛.

Since 𝑢𝑖𝑖 = 𝜆𝑖 − 𝜇𝑖 ≥ 0, we get𝑀𝑖𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛. Since 𝑢𝑖𝑗 = (𝜆𝑖 − 𝜇𝑗) +
(𝑗 − 𝑖) < 0 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛, we get𝑀𝑖𝑗 = 0 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑛. Therefore, the
correspondingmatrix becomes an upper triangular matrix where all the diagonal
entries are equal to 1. Hence, the multiplicity is 1 when we have the interlacing
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condition. So, we obtain the branching rule for GL(𝑛 − 1) ⊂ GL(𝑛). A similar
argument can be given for other pairs.

3. Preliminaries
Let 𝐻 ⊂ 𝐺 be classical groups with Lie algebras 𝔥 ⊂ 𝔤. Let 𝑇𝐺 and 𝑇𝐻 be

maximal algebraic tori in 𝐺 and 𝐻 respectively with 𝑇𝐻 ⊂ 𝑇𝐺 . Let 𝔱𝔤 and 𝔱𝔥
be the corresponding Lie algebras. Let Φ𝔤 and Φ𝔥 be the roots of 𝔤 and 𝔥 re-
spectively. Let Φ+

𝔤 and Φ+
𝔥 be a system of positive roots for 𝔤 and 𝔥 respectively

such that the restriction of a positive root of 𝔤 to 𝔱𝔥 is either zero or positive. Af-
ter fixing the simple roots [GW09, Subsection 2.4.3] we can describe associated
positive roots Φ+

𝔤 as follows:

Φ+
𝔤 =

⎧
⎪
⎨
⎪
⎩

{
𝜀𝑖 − 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
, for GL(𝑛),{

𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
, for SO(2𝑛),{

𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
∪ {2𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, for Sp(2𝑛),{

𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
∪ {𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛}, for SO(2𝑛 + 1).

(2)

We define 𝜌𝔤, 𝑅𝔤 for 𝐺 as follows:

𝜌𝔤 =
1
2
∑

𝛼∈Φ+𝔤

𝛼, 𝑅𝔤 =
∏

𝛼∈Φ+𝔤

(1 − e−𝛼) . (3)

We denote 𝜌𝔤 =
∑𝑛

𝑖=1 𝜌𝑖𝜀𝑖. The description of 𝜌𝑖 for each group 𝐺 is as follows:

𝜌𝑖 =
⎧

⎨
⎩

𝑛 − 𝑖, for GL(𝑛), SO(2𝑛),
𝑛 − 𝑖 + 1, for Sp(2𝑛),
𝑛 − 𝑖 + 1

2
, for SO(2𝑛 + 1).

(4)

This choice of 𝜌 for GL(𝑛) has the advantage of being a positive dominant
weight for GL(𝑛). The Weyl Character formula is also valid for GL(𝑛)with this
𝜌-shift taken as 𝜌 = ∑𝑛

𝑖=1(𝑛 − 𝑖)𝜀𝑖, see [GW09, Corollary 7.1.2]. Thus, we can
use 𝜌 =∑𝑛

𝑖=1(𝑛− 𝑖)𝜀𝑖 instead of the half-sum of the positive roots (which is not
an integral weight of GL(𝑛)).

Definition 3.1. (Weyl Denominator)

∆𝔤 = e𝜌𝔤
∏

𝛼∈Φ+𝔤

(1 − e−𝛼) = e𝜌𝔤 ⋅ 𝑅𝔤. (5)

We denote the Weyl group of 𝐺 as𝑊𝔤. The description of𝑊𝔤 is as follows:

𝑊𝔤 =
⎧

⎨
⎩

𝔖𝑛, for GL(𝑛),
(ℤ∕2ℤ)𝑛 ⋊𝔖𝑛, for Sp(2𝑛), SO(2𝑛 + 1),
(ℤ∕2ℤ)𝑛−1 ⋊𝔖𝑛, for SO(2𝑛),

where (ℤ∕2ℤ)𝑛 = ⟨𝜎1,… , 𝜎𝑛⟩ and 𝜎𝑖 acts as 𝜎𝑖𝜀𝑗 = (−1)𝛿𝑖𝑗𝜀𝑗.
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Theorem 3.2. (Weyl Character Formula). Let 𝜆 be a dominant integral weight
of 𝔱𝔤 andΠ𝜆 the corresponding finite-dimensional irreducible 𝐺-module. Then

∆𝔤 ⋅ ch
(
Π𝜆
)
=

∑

𝑠∈𝑊𝔤

sgn(𝑠)e𝑠⋅(𝜆+𝜌𝔤).

Now, we state the Weyl dimension formula for all groups. For proofs and
further details, see [GW09, Subsection 7.1.2] and [FH91, Chapter 24]. 𝜆 corre-
sponds to

∑
𝑖 𝜆𝑖𝜀𝑖.

Theorem 3.3. (Weyl Dimension Formula) For a sequence of integers 𝜆 = (𝜆1 ≥
𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ≥ 0) and an irreducible representation Π𝜆 with the highest weight
𝜆, the dimension ofΠ𝜆 is given by the following formula.

∏

1≤𝑖<𝑗≤𝑛

(𝜆𝑖 + 𝑗 − 𝜆𝑗 − 𝑖)
𝑗 − 𝑖 , for GL(𝑛),

∏

1≤𝑖<𝑗≤𝑛

(𝜆𝑖 + 𝑛 − 𝑖)2 − (𝜆𝑗 + 𝑛 − 𝑗)2

(𝑛 − 𝑖)2 − (𝑛 − 𝑗)2
, for SO(2𝑛),

∏

1≤𝑖<𝑗≤𝑛

(𝜆𝑖 + 𝑛 + 1 − 𝑖)2 − (𝜆𝑗 + 𝑛 + 1 − 𝑗)2

(𝑛 + 1 − 𝑖)2 − (𝑛 + 1 − 𝑗)2
∏

1≤𝑖≤𝑛

𝜆𝑖 + 𝑛 + 1 − 𝑖
𝑛 + 1 − 𝑖 , for Sp(2𝑛),

∏

1≤𝑖<𝑗≤𝑛

(𝜆𝑖 + 𝑛 + 1
2
− 𝑖)2 − (𝜆𝑗 + 𝑛 + 1

2
− 𝑗)2

(𝑛 + 1
2
− 𝑖)2 − (𝑛 + 1

2
− 𝑗)2

∏

1≤𝑖≤𝑛

𝜆𝑖 + 𝑛 + 1
2
− 𝑖

𝑛 + 1
2
− 𝑖

, for SO(2𝑛 + 1).

Proposition 3.4. For 𝜌𝔤 =
∑𝑛

𝑖=1 𝜌𝑖𝜀𝑖 , half the sum of positive roots, we have:

∏

1≤𝑖<𝑗≤𝑛
(𝜌𝑖 − 𝜌𝑗) =

𝑛−1∏

𝑗=1
(𝑛 − 𝑗)! when 𝐺 = GL(𝑛),

∏

1≤𝑖<𝑗≤𝑛
(𝜌2𝑖 − 𝜌2𝑗 ) =

1
2𝑛−1

𝑛−1∏

𝑗=1
(2𝑛 − 2𝑗)! when 𝐺 = SO(2𝑛),

∏

1≤𝑖<𝑗≤𝑛
(𝜌2𝑖 − 𝜌2𝑗 )

∏

1≤𝑖≤𝑛
𝜌𝑖 =

1
2𝑛

𝑛∏

𝑗=1
(2𝑛 − 2𝑗 + 1)! when 𝐺 = SO(2𝑛 + 1),

∏

1≤𝑖<𝑗≤𝑛
(𝜌2𝑖 − 𝜌2𝑗 )

∏

1≤𝑖≤𝑛
𝜌𝑖 =

𝑛∏

𝑗=1
(2𝑛 − 2𝑗 + 1)! when 𝐺 = Sp(2𝑛).

We omit the straightforward proof.

Definition 3.5. Recall that the determinant for an 𝑛 × 𝑛matrix 𝐴 = (𝑎𝑖𝑗) is:

det(𝐴) =
∑

𝜎∈𝔖𝑛

sgn(𝜎)
𝑛∏

𝑗=1
𝑎𝜎(𝑗),𝑗.
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Proposition 3.6.

det
[
𝑥𝑛−𝑗𝑖

]
=

∏

1≤𝑖<𝑗≤𝑛
(𝑥𝑖 − 𝑥𝑗),

det
[
𝑥2𝑛−2𝑗𝑖

]
=

∏

1≤𝑖<𝑗≤𝑛
(𝑥2𝑖 − 𝑥2𝑗 ),

det
[
𝑥2𝑛−2𝑗+1𝑖

]
=

∏

1≤𝑖<𝑗≤𝑛
(𝑥2𝑖 − 𝑥2𝑗 )

∏

1≤𝑖≤𝑛
𝑥𝑖.

Proof. The first identity arises from the determinant of the Vandermonde ma-
trix. The secondmatrix corresponds to aVandermonde-type determinantwhere
the values of 𝑥𝑖 are substituted with 𝑥2𝑖 . A factor 𝑥𝑖 can be pulled out of the 𝑖-th
column in the third case. □

4. Weyl dimension formula as determinant
The following lemmaestablishes a relationship betweendeterminants ofma-

trices with entries containing factorial terms andmatrices with entries as bino-
mial coefficients. This lemma plays a crucial role in formulating and proving
the main theorems presented in this paper.

Lemma 4.1. We have the following three equalities of determinants of 𝑛×𝑛ma-
trices:

det
⎡
⎢
⎣

𝑥𝑛−𝑗𝑖
(𝑛 − 𝑗)!

⎤
⎥
⎦
= det [

( 𝑥𝑖
𝑛 − 𝑗

)
] ,

det
⎡
⎢
⎣

𝑥2𝑛−2𝑗+1𝑖
(2𝑛 − 2𝑗 + 1)!

⎤
⎥
⎦
= det [

( 𝑥𝑖 + 𝑛 − 𝑗
2𝑛 − 2𝑗 + 1

)
] ,

det
⎡
⎢
⎣

𝑥2𝑛−2𝑗𝑖
(2𝑛 − 2𝑗)!

⎤
⎥
⎦
= det

⎡
⎢
⎣

(𝑥𝑖 + 𝑛 − 𝑗 − 1
2

2𝑛 − 2𝑗

)⎤
⎥
⎦
.

Proof. The first equality is established by applying column operations to the

matrix defined by the (𝑖, 𝑗)-th entry equal to 𝑥𝑛−𝑗𝑖
(𝑛−𝑗)!

. For 1 ≤ 𝑗 ≤ 𝑛 − 1, one can
write

( 𝑥
𝑛 − 𝑗

)
= 𝑥𝑛−𝑗
(𝑛 − 𝑗)!

+
∑

𝑗+1≤𝑘≤𝑛−1
𝑎𝑗,𝑘

𝑥𝑛−𝑘
(𝑛 − 𝑘)!

,

where 𝑎𝑗,𝑘 is a constant. We perform a column operation on the 𝑗-th column,
where 1 ≤ 𝑗 ≤ 𝑛 − 1, given by

𝐶′

𝑗 = 𝐶𝑗 +
∑

𝑗+1≤𝑘≤𝑛−1
𝑎𝑗,𝑘𝐶𝑘,
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where 𝐶𝑗 and 𝐶
′

𝑗 denote the old and new 𝑗-th column, respectively. Following
this operation, the (𝑖, 𝑗)-th entry transforms into

( 𝑥𝑖
𝑛−𝑗

)
. This establishes the first

equality in the lemma.
For the proof of the other two equalities, weneed the following two identities,

respectively, where 1 ≤ 𝑗 ≤ 𝑛:

( 𝑥 + 𝑛 − 𝑗
2𝑛 − 2𝑗 + 1

)
= 𝑥2𝑛−2𝑗+1
(2𝑛 − 2𝑗 + 1)!

+
∑

𝑗+1≤𝑘≤𝑛
𝑏𝑗,𝑘

𝑥2𝑛−2𝑘+1
(2𝑛 − 2𝑘 + 1)!

,

(𝑥 + 𝑛 − 𝑗 − 1
2

2𝑛 − 2𝑗

)
= 𝑥2𝑛−2𝑗
(2𝑛 − 2𝑗)!

+
∑

𝑗+1≤𝑘≤𝑛
𝑐𝑗,𝑘

𝑥2𝑛−2𝑘
(2𝑛 − 2𝑘)!

.

Here, again, 𝑏𝑗,𝑘 and 𝑐𝑗,𝑘 are constants. Note that
( 𝑥+𝑛−𝑗
2𝑛−2𝑗+1

)
is an odd function

of 𝑥 and
(𝑥+𝑛−𝑗− 1

2
2𝑛−2𝑗

)
is an even function of 𝑥. □

The above lemma is necessary for deriving the following theorem, which
expresses the dimension of an irreducible representation with highest weight
𝜆 = (𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛 ≥ 0) as a determinant of a certain combinatorial 𝑛 × 𝑛
matrix.

Theorem 4.2. (New formulation of Weyl Dimension)

dim(Π𝜆) = 𝑑 ⋅ det
[
ℎ𝑖𝑗
]

ℎ𝑖𝑗 =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

(𝜆𝑖 + 𝑛 − 𝑖
𝑛 − 𝑗

)
, for GL(𝑛),

(𝜆𝑖 − 𝑖 + 2𝑛 − 𝑗 + 1
2𝑛 − 2𝑗 + 1

)
, for Sp(2𝑛),

(𝜆𝑖 − 𝑖 + 2𝑛 − 𝑗 + 1
2

2𝑛 − 2𝑗 + 1

)
, for SO(2𝑛 + 1),

(𝜆𝑖 − 𝑖 + 2𝑛 − 𝑗 − 1
2

2𝑛 − 2𝑗

)
, for SO(2𝑛).

𝑑 =

⎧
⎪
⎨
⎪
⎩

1 for GL(𝑛)
1 for Sp(2𝑛)
2𝑛 for SO(2𝑛 + 1)
2𝑛−1 for SO(2𝑛).

Proof. We only prove this for the general linear group; the proofs for other
groups follow similarly. Using Proposition 3.6 and Proposition 3.4, Theorem3.3
gives the following expression for the Weyl dimension formula for GL(𝑛)

∏

1≤𝑖<𝑗≤𝑛

(𝜆𝑖 + 𝑗 − 𝜆𝑗 − 𝑖)
𝑗 − 𝑖 =

∏
1≤𝑖<𝑗≤𝑛

[
(𝜆𝑖 + 𝜌𝑖) − (𝜆𝑗 + 𝜌𝑗)

]

∏
1≤𝑖<𝑗≤𝑛

(
𝜌𝑖 − 𝜌𝑗

) =
det

[
(𝜆𝑖 + 𝜌𝑖)

𝑛−𝑗]

∏𝑛−1
𝑗=1 (𝑛 − 𝑗)!

.
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Now we insert (𝑛 − 𝑗)! inside the determinant in 𝑗-th column and then apply
Lemma 4.1.

det
[
(𝜆𝑖 + 𝜌𝑖)

𝑛−𝑗]

∏𝑛−1
𝑗=1 (𝑛 − 𝑗)!

= det [ (
𝜆𝑖 + 𝜌𝑖)

𝑛−𝑗

(𝑛 − 𝑗)! ] = det [
(𝜆𝑖 + 𝑛 − 𝑖

𝑛 − 𝑗
)
] .

This completes the proof of the Theorem for the general linear groups. Similar
arguments can be given for other classical groups. □

5. Partition function
Before going into the proof of Theorem 2.3-2.5, we derive the necessary parti-

tion function for each pair in this section. Note thatwe follow the samenotation
and definitions as in [GW09, Subsection 8.2.1]. We use the following notations
as defined earlier:

GL𝑛𝑚 ∶=
Sp2𝑛2𝑚 ∶=
SO𝑝

𝑞 ∶=

( GL(𝑚) ⊂ GL(𝑛) ) , 0 ≤ 𝑚 ≤ 𝑛 − 1;
( Sp(2𝑚) ⊂ Sp(2𝑛) ) , 0 ≤ 𝑚 ≤ 𝑛 − 1;
( SO(𝑞) ⊂ SO(𝑝) ) , 0 ≤ 𝑞 ≤ 𝑝 − 1.

Here 𝑝 = 2𝑛 or 2𝑛 + 1 and 𝑞 = 2𝑚 or 2𝑚 + 1. Let 𝛼 be the element of 𝔱∗𝔥
obtained by restricting 𝛼 from the Lie algebra 𝔱𝔤 to the Lie algebra 𝔱𝔥. Define
Φ+
𝔤 as

{
�̄� ∶ 𝛼 ∈ Φ+

𝔤
}
⧵ {0}. Since 𝜀𝑚+𝑖 = 0, for 𝑖 ≥ 1 we have Φ+

𝔤 as follows:

Φ+
𝔤 =

⎧
⎪
⎨
⎪
⎩

{
𝜀𝑖 − 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

}
∪ { 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} , for GL𝑛𝑚,{

𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑚
}
∪ {𝜀𝑖, 2𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} , for Sp2𝑛2𝑚,{

𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑚
}
∪ { 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} , for SO2𝑛+1

2𝑚+1, SO
2𝑛+1
2𝑚 ,

{
𝜀𝑖 ± 𝜀𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑚

}
∪ { 𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚} , for SO2𝑛

2𝑚+1, SO
2𝑛
2𝑚.

Note thatΦ+
𝔥 is a subset ofΦ

+
𝔤 . For each𝛽 ∈ Φ+

𝔤 , let𝑆𝛽 represent
{
𝛼 ∈ Φ+

𝔤 ∶ �̄� = 𝛽
}
.

Now, consider the following definitions:

Σ0 =
{
𝛽 ∶ 𝛽 ∈ Φ+

𝔥 and
||||𝑆𝛽

|||| > 1
}
, Σ1 = Φ+

𝔤 ∖Φ+
𝔥 .

Consider the set Σ = Σ0 ∪ Σ1. For each 𝛽 ∈ Σ, we define the multiplicity𝑚𝛽 as
follows:

𝑚𝛽 = {
||||𝑆𝛽

|||| , if 𝛽 ∈ Σ1,||||𝑆𝛽
|||| − 1, if 𝛽 ∈ Σ0.

Define the partition function ℘Σ on 𝔱∗𝔥 by the formal identity (which follows
from the geometric series 1

1−𝑥
= 1 + 𝑥 + 𝑥2 +⋯)

1
𝑅Σ

∶=
∏

𝛽∈Σ

(
1 − e−𝛽

)−𝑚𝛽 =
∑

𝜉
℘Σ(𝜉)e−𝜉 . (6)
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℘Σ(𝜉) is the number of ways of writing 𝜉 =
∑

𝛽∈Σ 𝑐𝛽𝛽
(
𝑐𝛽 ∈ ℕ

)
where each

𝛽 that occurs is counted with multiplicity𝑚𝛽 .
We describe the set Σ and the multiplicity 𝑚𝛽 of an element 𝛽 in Σ for all

pairs𝐻 ⊂ 𝐺.

Proposition 5.1. Consider all branching pairs𝐻 ⊂ 𝐺. Then

Σ = {𝜀𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑚}, (𝑟 ∶=)𝑚𝜀𝑖 =

⎧
⎪
⎨
⎪
⎩

𝑛 −𝑚, for GL𝑛𝑚,
2𝑛 − 2𝑚, for Sp2𝑛2𝑚,
2𝑛 + 1 − 𝑞, for SO2𝑛+1

𝑞 , 𝑞 = 2𝑚 or 2𝑚 + 1,
2𝑛 − 𝑞, for SO2𝑛

𝑞 , 𝑞 = 2𝑚 or 2𝑚 + 1.

Observe that 𝑚𝜀𝑖 remains constant for 1 ≤ 𝑖 ≤ 𝑚 for each group; therefore,
we denote this constant by 𝑟. We do not provide a detailed proof for each pair,
as it becomes evident through subsequent calculations.

Lemma 5.2. Consider the same Σ and 𝑟 as in the preceding proposition. Let
𝜉 ∈ 𝔱∗𝔥 be defined as 𝜉 =

∑𝑚
𝑗=1 𝜉𝑗𝜀𝑗 . Then,

℘Σ
(
𝜉
)
=

𝑚∏

𝑗=1

{𝜉𝑗 + 𝑟 − 1
𝑟 − 1

}
.

Proof. Using the definition of partition function from equation (6) to the pre-
viously mentioned Σ and 𝑟 in the preceding proposition, our partition function
becomes:

𝑚∏

𝑗=1
(1 − e−𝜀𝑗 )−𝑟 =

∑

𝜉∈t∗𝔥

℘Σ(𝜉)e
−𝜉 .

So,℘Σ(𝜉) represents the coefficients of e
−𝜉 =∏𝑚

𝑗=1(e
−𝜀𝑗 )𝜉𝑗 in∏𝑚

𝑗=1 (1 − e−𝜀𝑗 )−𝑟.
Since the 𝜀𝑗’s are linearly independent for 1 ≤ 𝑗 ≤ 𝑚, it suffices to determine
the coefficients of (e−𝜀𝑗 )𝜉𝑗 in the expression of (1 − e−𝜀𝑗 )−𝑟 and then take the
product over 𝑗. Specifically, we need to find the coefficients of 𝑧𝜉𝑗 in the ex-
pression of (1 − 𝑧)−𝑟. Consider the following power series identity,

1
(1 − 𝑧)𝑟

=
∑

𝑙≥0

(𝑙 + 𝑟 − 1
𝑟 − 1

)
𝑧𝑙.

The coefficientsmentioned above are some binomial coefficient. One can prove
this identity by induction. Assuming it is true for 𝑟− 1, differentiate both sides
of the expression for value 𝑟 − 1 to obtain expressions for value 𝑟. Hence, if
𝜉𝑗 ≥ 0, the coefficients of 𝑧𝜉𝑗 are

(𝜉𝑗+𝑟−1
𝑟−1

)
; otherwise, the coefficient are zero.

℘Σ
(
𝜉
)
= {

∏𝑚
𝑗=1

(𝜉𝑗+𝑟−1
𝑟−1

)
, if 𝜉𝑗 ≥ 0 for 1 ≤ 𝑗 ≤ 𝑚,

0, otherwise.
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Now using definition 2.2,℘Σ
(
𝜉
)
becomes:

℘Σ
(
𝜉
)
=

𝑚∏

𝑗=1

{𝜉𝑗 + 𝑟 − 1
𝑟 − 1

}
.

This completes the proof of this Lemma. □

6. Proof of Theorems 2.3 - 2.5
In this section, we prove the multiplicity formulae given in Theorem 2.3-2.5.

Our proof strategies follow the approach used in the restriction from Sp(2𝑛) to
Sp(2𝑛 − 2) as in [GW09, Subsection 8.3.4].
Recall the notation𝑅𝔥 from Section 3. Themain idea of the proof is to use the

Weyl character formula (Theorem 3.2) for both𝐻 and 𝐺 to get two expressions
for 𝑅𝔥 ⋅Π𝜆|𝐻 . By equating the coefficient of e

𝜇 in these two expression, we find
the multiplicity𝑚(𝜆, 𝜇). We divide the proof into several parts.

First Part We find the coefficient of e𝜇 in 𝑅𝔥 ⋅ Π𝜆|𝐻 using the Weyl charac-
ter formula for 𝐻 in this part. Using the Weyl character formula for 𝐻 to Ψ𝜇,
equation (1) becomes:

𝑅𝔥 ⋅Π𝜆|𝐻 =
∑

𝜇

∑

𝑤∈𝑊𝔥

𝑚(𝜆, 𝜇) sgn(𝑤)e𝑤⋅
(
𝜇+𝜌𝔥

)
−𝜌𝔥 . (7)

Consider two dominant weights 𝜇 and 𝜇′ that appear in the sum. Since each
weight is conjugate under the Weyl group𝑊𝔥 to exactly one dominant weight,
the equation

𝑤 ⋅
(
𝜇 + 𝜌𝔥

)
− 𝜌𝔥 = 𝜇′

implies𝜇′ = 𝜇. Additionally, as𝜇+𝜌𝔥 is regular, the equation𝑤⋅
(
𝜇 + 𝜌𝔥

)
−𝜌𝔥 =

𝜇 implies 𝑤 = 1. Consequently, the coefficient of e𝜇 in equation (7) is𝑚(𝜆, 𝜇).

Second PartWe find an expression of the Weyl denominator at the end of this
part, which is needed in the next part. Consider the set Φ+

𝔤 (see equation (2))
of positive roots of 𝐺. Recall the notation 𝛼. Define 𝑃 and 𝑄 to be subsets ofΦ+

𝔤
defined as follows:

𝑃 = {𝛼 ∈ Φ+
𝔤 ∶ 𝛼 = 0}, 𝑄 = {𝛼 ∈ Φ+

𝔤 ∶ 𝛼 ≠ 0}.

So Φ+
𝔤 is the disjoint union of 𝑃 and 𝑄. We define 𝜌𝑆, 𝑅𝑆 for a set 𝑆 ⊂ Φ+

𝔤 as
follows analogously in equation (3).

𝜌𝑆 =
1
2
∑

𝛼∈𝑆
𝛼, 𝑅𝑆 =

∏

𝛼∈𝑆
(1 − e−𝛼) .

Hence,
𝑅𝔤 = 𝑅𝑃 ⋅ 𝑅𝑄, and e𝜌𝔤 = e𝜌𝑃 ⋅ e𝜌𝑄 . (8)
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Here is the exact description of 𝑃 for each pairs.

𝑃 =

⎧
⎪
⎨
⎪
⎩

{
𝜀𝑖 − 𝜀𝑗 ∶ 𝑚 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}
, for GL𝑛𝑚,{

𝜀𝑖 ± 𝜀𝑗 ∶ 𝑚 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
, for SO2𝑛

2𝑚+1, SO
2𝑛
2𝑚,{

𝜀𝑖 ± 𝜀𝑗 ∶ 𝑚 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
∪ {2𝜀𝑖 ∶ 𝑚 + 1 ≤ 𝑖 ≤ 𝑛}, for Sp2𝑛2𝑚,{

𝜀𝑖 ± 𝜀𝑗 ∶ 𝑚 + 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
}
∪ {𝜀𝑖 ∶ 𝑚 + 1 ≤ 𝑖 ≤ 𝑛}, for SO2𝑛+1

2𝑚+1, SO
2𝑛+1
2𝑚 .

Observe that the set 𝑃 can be considered as the set of positive roots of 𝐾, where
𝐾 is as follows:

𝐾 ≅

⎧
⎪
⎨
⎪
⎩

GL(𝑛 −𝑚), for GL𝑛𝑚,
Sp(2𝑛 − 2𝑚), for Sp2𝑛2𝑚,
SO(2𝑛 − 2𝑚 + 1), for SO2𝑛+1

2𝑚+1, SO
2𝑛+1
2𝑚 ,

SO(2𝑛 − 2𝑚), for SO2𝑛
2𝑚+1, SO

2𝑛
2𝑚.

Note that we can write 𝑅𝑃 = 𝑅𝔨 and e𝜌𝑃 = e𝜌𝔨 as 𝑃 = Φ+
𝔨 . Therefore, by

equation (8), 𝑅𝔤 = 𝑅𝔨 ⋅ 𝑅𝑄 and e𝜌𝔤 = e𝜌𝔨 ⋅ e𝜌𝑄 . Hence, using equation (5),
the denominator ∆𝔤 becomes

∆𝔤 = e𝜌𝑄 ⋅ 𝑅𝑄 ⋅ e𝜌𝔨 ⋅ 𝑅𝔨. (9)

Third Part In this part, we use the Weyl character formula for 𝐺 and break
the Weyl numerator into the cosets over 𝑊𝔨 ⧵𝑊𝔤. Further, we use the Weyl
dimension formula (Theorem 4.2) and get an expression of the multiplicity of
𝑚(𝜆, 𝜇) as an alternating sum over𝑊𝔨 ⧵𝑊𝔤 after finding the coefficient of e

𝜇

in a certain equation.
Using theWeyl character formula for𝐺 toΠ𝜆 and equation (9) we obtain the

following:

Π𝜆 =
1

e𝜌𝑄 ⋅ 𝑅𝑄 ⋅ e𝜌𝔨 ⋅ 𝑅𝔨
∑

𝑠∈𝑊𝔤

sgn(𝑠)e𝑠⋅(𝜆+𝜌𝔤). (10)

We break down this Weyl numerator into the cosets over𝑊𝔨 ⧵𝑊𝔤 as follows:

∑

𝑠∈𝑊𝔤

sgn(𝑠)e𝑠⋅(𝜆+𝜌𝔤) =
∑

𝑠∈𝑊𝔨⧵𝑊𝔤

sgn(𝑠)
⎧

⎨
⎩

∑

𝑤∈𝑊𝔨

sgn(𝑤)e(𝑤𝑠)⋅(𝜆+𝜌𝔤)
⎫

⎬
⎭

. (11)

We are not considering sgn as a function on coset space 𝑊𝔨 ⧵ 𝑊𝔤 but as a
function on a representative of each coset, see [GW09, Subsection 8.3.4]. Let
𝛾 = 𝑠 ⋅

(
𝜆 + 𝜌𝔤

)
for 𝑠 ∈ 𝑊𝔤. We denote 𝛾 =

∑𝑛
𝑖=1 𝛾𝑖𝜀𝑖. Note that 𝑠 ⋅ 𝜀𝑖 = 𝜀𝑠−1(𝑖).

So,

𝛾𝑖 = 𝜆𝑠(𝑖) + 𝜌𝑠(𝑖). (12)

As 𝜀𝑚+𝑖 = 0 for 𝑖 ≥ 1, we can express 𝛾 as 𝛾 = ∑𝑚
𝑖=1 𝛾𝑖𝜀𝑖. Let 𝛾 =

∑𝑛
𝑖=𝑚+1 𝛾𝑖𝜀𝑖.

This allows us to express 𝛾 = 𝛾 + 𝛾. Further, 𝑤(𝛾) = 𝛾 + 𝑤(𝛾) for 𝑤 ∈ 𝑊𝔨 as
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𝑤(𝑖) = 𝑖, for 1 ≤ 𝑖 ≤ 𝑚. Thus,

∑

𝑤∈𝑊𝔨

sgn(𝑤)e(𝑤𝑠)⋅(𝜆+𝜌𝔤) = e𝛾
⎧

⎨
⎩

∑

𝑤∈𝑊𝔨

sgn(𝑤)e𝑤⋅𝛾
⎫

⎬
⎭

. (13)

Equation (10) becomes the following after combining equations (13), (11)

Π𝜆 =
1

e𝜌𝑄 ⋅ 𝑅𝑄
∑

𝑠∈𝑊𝔨⧵𝑊𝔤

sgn(𝑠)e𝛾
⎧

⎨
⎩

∑
𝑤∈𝑊𝔨

sgn(𝑤)e𝑤⋅𝛾

e𝜌𝔨 ⋅ 𝑅𝔨

⎫

⎬
⎭

. (14)

Note that 𝛾 = ∑𝑛
𝑖=𝑚+1 𝛾𝑖𝜀𝑖 may not be a strictly dominant integral weight, but

it is a Weyl conjugate of a strictly dominant integral weight. The expression
within the parentheses in (14) corresponds to the Weyl character formula for
𝐾. Now when we restrict Π𝜆 from 𝔱𝔤 to 𝔱𝔥, the expression inside the paren-

theses provides dimension, say 𝐷. Observe that 𝑄 = Φ+
𝔤 , implies e𝜌𝑄 = e𝜌𝔤 .

Further Φ+
𝔤 = Φ+

𝔥 ∪Σ implies 𝑅𝑄 = 𝑅𝔥 ⋅𝑅Σ. Hence, taking the restriction of the
equation (14) we get,

Π𝜆|𝐻 = 1
e𝜌𝔤 ⋅ 𝑅𝔥 ⋅ 𝑅Σ

∑

𝑠∈𝑊𝔨⧵𝑊𝔤

sgn(𝑠)e𝛾𝐷. (15)

Wehave the following description of𝐷 using theWeyl dimension formula (The-
orem 4.2) for the group 𝐾,

𝐷 = 𝑑 ⋅ det
[
𝑔𝑖𝑗
]
, (16)

for𝑚 + 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where

𝑔𝑖𝑗 =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

( 𝛾𝑖
𝑛 − 𝑗

)
, for GL(𝑛 −𝑚),

( 𝛾𝑖 + 𝑛 − 𝑗
2𝑛 − 2𝑗 + 1

)
, for Sp(2𝑛 − 2𝑚),

( 𝛾𝑖 + 𝑛 − 𝑗
2𝑛 − 2𝑗 + 1

)
, for SO(2𝑛 − 2𝑚 + 1),

(𝛾𝑖 + 𝑛 − 𝑗 − 1
2

2𝑛 − 2𝑗

)
, for SO(2𝑛 − 2𝑚),

(17)

𝑑 =

⎧
⎪
⎨
⎪
⎩

1 for GL(𝑛 −𝑚)
1 for Sp(2𝑛 − 2𝑚)
2𝑛−𝑚 for SO(2𝑛 − 2𝑚 + 1)
2𝑛−𝑚−1 for SO(2𝑛 − 2𝑚).
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Using equation (6), the equation (15) can be written as:

𝑅𝔥 ⋅Π𝜆|𝐻 =
∑

𝑠∈𝑊𝔨⧵𝑊𝔤

∑

𝜉∈𝔱∗𝔥

sgn(𝑠)𝐷 ℘Σ(𝜉) e𝛾−𝜉−𝜌𝔤 , (18)

where 𝛾 = 𝑠 ⋅
(
𝜆 + 𝜌𝔤

)
. Equate the coefficient of e𝜇 in (18) with that in (7) to

obtain:
𝑚(𝜆, 𝜇) =

∑

𝑠∈𝑊𝔨⧵𝑊𝔤

sgn(𝑠)𝐷 ℘Σ(𝛾 − 𝜇 − 𝜌𝔤). (19)

Fourth Part In this part, wewrite the summation in equation (19) over𝔖𝑛−𝑚⧵
𝔖𝑛. Then we use the Weyl dimension formula for 𝐾 (Theorem 4.2) and parti-
tion value (Lemma 5.2) to get the final formula.
We can identify𝑊𝔨 ⧵𝑊𝔤 as follows:

𝔖𝑛−𝑚 ⧵ 𝔖𝑛, for GL𝑛𝑚,
((ℤ∕2ℤ)𝑛−𝑚 ⋊𝔖𝑛−𝑚) ⧵ ((ℤ∕2ℤ)𝑛 ⋊𝔖𝑛) , for Sp2𝑛2𝑚, SO

2𝑛+1
2𝑚+1, SO

2𝑛+1
2𝑚 ,

(
(ℤ∕2ℤ)𝑛−𝑚−1 ⋊𝔖𝑛−𝑚

)
⧵
(
(ℤ∕2ℤ)𝑛−1 ⋊𝔖𝑛

)
, for SO2𝑛

2𝑚+1, SO
2𝑛
2𝑚.

A set of representatives of𝑊𝔨⧵𝑊𝔤 can be taken to be a pair of representatives of
𝔖𝑛−𝑚 ⧵𝔖𝑛 and (ℤ∕2ℤ)𝑛−𝑚 ⧵ (ℤ∕2ℤ)𝑛. A set of representatives of (ℤ∕2ℤ)𝑛−𝑚 ⧵
(ℤ∕2ℤ)𝑛 is given by (ℤ∕2ℤ)𝑚 when writing 𝜎 ∈ (ℤ∕2ℤ)𝑚. We already have
the sum in (19) over𝔖𝑛−𝑚 ⧵𝔖𝑛 for GL𝑛𝑚. We need to do for other pairs. Given
𝑠 ∈𝑊𝔨 ⧵𝑊𝔤, we can write 𝑠 = 𝜎 ⋅ 𝑣, where 𝜎 ∈ (ℤ∕2ℤ)𝑚 and 𝑣 ∈ 𝔖𝑛−𝑚 ⧵𝔖𝑛.
Choose any representative 𝑣 ∈ 𝔖𝑛 for 𝑣. Thus,

𝑣 ⋅
(
𝜆 + 𝜌𝔤

)
=

𝑚∑

𝑗=1
(𝜆𝑣(𝑗) + 𝜌𝑣(𝑗))𝜀𝑗.

Note that each coordinate of 𝑣 ⋅
(
𝜆 + 𝜌𝔤

)
is positive. Further, if𝜌𝔤 = (𝜌1, 𝜌2,… , 𝜌𝑚),

each coordinate of𝜌𝔤 is also positive. As every coordinate of𝜇 is non-negative, if

𝜎 ∈ (ℤ∕2ℤ)𝑚 and𝜎 ≠ 1, it implies that at least one component of (𝜎𝑣) ⋅
(
𝜆 + 𝜌𝔤

)
−

𝜇 − 𝜌𝔤 is negative. Hence by Lemma 5.2,

℘Σ ((𝜎𝑣) ⋅
(
𝜆 + 𝜌𝔤

)
− 𝜇 − 𝜌𝔤) = 0 for 𝜎 ≠ 1, 𝑣 ∈ (𝔖𝑛−𝑚 ⧵ 𝔖𝑛).

Thus, we may take 𝜎 = 1, and we can express the summation over𝔖𝑛−𝑚 ⧵𝔖𝑛.
Therefore, equation (19) becomes:

𝑚(𝜆, 𝜇) =
∑

𝑠∈𝔖𝑛−𝑚⧵𝔖𝑛

sgn(𝑠)𝐷℘Σ(𝛾 − 𝜇 − 𝜌𝔤)

=
∑

𝑠∈𝔖𝑛−𝑚⧵𝔖𝑛

sgn(𝑠)
⎛
⎜
⎝
𝑑

∑

𝜎∈𝔖𝑛−𝑚

sgn(𝜎)
𝑛∏

𝑗=𝑚+1
𝑔𝜎(𝑗),𝑗

⎞
⎟
⎠
℘Σ(𝛾 − 𝜇 − 𝜌𝔤).
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The last equality is due to equation (16). Using the value of 𝑔𝑖𝑗 (in equation (17))
and ℎ𝑖𝑗 (in Theorem 4.2) and by equation (12), we have 𝑔𝜎(𝑗),𝑗 = ℎ𝑠𝜎(𝑗),𝑗. Hence,

𝑚(𝜆, 𝜇) = 𝑑
∑

𝑠∈𝔖𝑛−𝑚⧵𝔖𝑛

sgn(𝑠)
∑

𝜎∈𝔖𝑛−𝑚

sgn(𝜎)
𝑛∏

𝑗=𝑚+1
ℎ𝑠𝜎(𝑗),𝑗 ℘Σ(𝛾 − 𝜇 − 𝜌𝔤),

= 𝑑
∑

𝑠∈𝔖𝑛

sgn(𝑠)
𝑛∏

𝑗=𝑚+1
ℎ𝑠(𝑗),𝑗 ℘Σ(𝛾 − 𝜇 − 𝜌𝔤),

= 𝑑
∑

𝑠∈𝔖𝑛

sgn(𝑠)
𝑛∏

𝑗=𝑚+1
ℎ𝑠(𝑗),𝑗

⎛
⎜
⎝

𝑚∏

𝑗=1
𝑓𝑠(𝑗),𝑗

⎞
⎟
⎠
.

We have used Lemma 5.2 in the last equality, where

𝑓𝑠(𝑗),𝑗 =
{𝑢𝑠(𝑗),𝑗 + 𝑟 − 1

𝑟 − 1
}
,

as 𝛾 − 𝜇 − 𝜌𝔤 =
∑𝑚

𝑗=1
(
𝜆𝑠(𝑗) − 𝜇𝑗 + 𝑗 − 𝑠(𝑗)

)
𝜀𝑗 =

∑𝑚
𝑗=1 𝑢𝑠(𝑗),𝑗𝜀𝑗. Note that both

ℎ𝑖𝑗 and 𝑓𝑖𝑗 reduce to𝑀𝑖𝑗 defined in Section 2 in the respective cases. Therefore,
we get the desired matrix as in the statement of the Theorems 2.3-2.5. Hence,
this gives us the corresponding multiplicity𝑚(𝜆, 𝜇) formulae of Theorems 2.3-
2.5.
FifthPartNowwefind the corresponding interlacing condition for all pair and
we prove this by induction. We only give details for the general linear groups;
for other pairs follow similarly. We prove the multiplicity𝑚(𝜆, 𝜇) is nonzero if
and only if

𝜆𝑖 ≥ 𝜇𝑖 ≥ 𝜆𝑖+𝑛−𝑚 for 1 ≤ 𝑖 ≤ 𝑚. (20)

By assumption it is true for GL(𝑚 + 1) ⊂ GL(𝑛) and GL(𝑚) ⊂ GL(𝑚 + 1) and
together these two provide the condition (20) for GL(𝑚) ⊂ GL(𝑛).
This completes the proof of Theorems 2.3-2.5.

7. Comparison of multiplicities
We follow the same notation as in Section 5. Define 𝓁(𝜆), the length of 𝜆,

to be the largest integer 𝑠 such that 𝜆𝑠 ≠ 0. In this section, we consider the
branching for the following pairs (For consistency of the four pairs, note that
2𝑚 − 𝑛 = 𝑛 − 2(𝑛 −𝑚)):

GL𝑛2𝑚−𝑛 = ( GL(2𝑚 − 𝑛) ⊂ GL(𝑛) ) ,
Sp2𝑛2𝑚 = ( Sp(2𝑚) ⊂ Sp(2𝑛) ) ,

SO2𝑛+1
2𝑚+1 = ( SO(2𝑚 + 1) ⊂ SO(2𝑛 + 1) ) ,
SO2𝑛

2𝑚 = ( SO(2𝑚) ⊂ SO(2𝑛) ) .

The corollary derived from Theorems 2.3 - 2.5 is as follows.

Corollary 7.1. (1) Let 𝑛
2
≤ 𝑚 < 𝑛. For fixed pair (𝜆, 𝜇) with 𝓁(𝜇) ≤ 2𝑚−𝑛,

the branching multiplicity𝑚(𝜆, 𝜇) is independent of the pairs considered.
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(2) Let 𝑛
2
≤ 𝑚 < 𝑛. For fixed pair (𝜆, 𝜇) with 𝓁(𝜆) ≤ 2𝑚 − 𝑛, the branching

multiplicity𝑚(𝜆, 𝜇) is independent of the pairs considered.
(3) Let 0 ≤ 𝑚 < 𝑛. For fixed pair (𝜆, 𝜇) with 𝓁(𝜆) ≤ 𝑚, the branching

multiplicity𝑚(𝜆, 𝜇) is independent of the pairs Sp2𝑛2𝑚, SO
2𝑛+1
2𝑚+1, SO

2𝑛
2𝑚.

Proof. We will prove part (3) first, as it helps prove part (2). Since part (1) can
be proved similarly, we will omit its proof.
Assume 0 ≤ 𝑚 < 𝑛. By Theorem 2.4-2.5,𝑚(𝜆, 𝜇) is some scalar times the de-

terminant of a 𝑛×𝑛matrix, say𝑀. Under the condition 𝓁(𝜆) ≤ 𝑚,𝑀 becomes
a block matrix

𝑀 = ( 𝐴𝑚×𝑚 ∗
𝑂𝑛−𝑚×𝑚 𝐵(𝑛−𝑚)×(𝑛−𝑚)

).

It turns out that 𝐴𝑚×𝑚 is the same for all the three pairs Sp2𝑛2𝑚, SO
2𝑛+1
2𝑚+1, SO

2𝑛
2𝑚.

𝐵(𝑛−𝑚)×(𝑛−𝑚) is an upper triangular matrix with diagonal entries 1 in the case
Sp2𝑛2𝑚, hence𝑚(𝜆, 𝜇) = det𝐴 for Sp2𝑛2𝑚.
For the case SO2𝑛+1

2𝑚+1, det𝐵 = 1
2𝑛−𝑚

by using Theorem4.2 (for SO(2𝑛−2𝑚+1)).
Hence,𝑚(𝜆, 𝜇) = 2𝑛−𝑚 ⋅det𝐴 ⋅det𝐵 = 2𝑛−𝑚 ⋅det𝐴 ⋅ 1

2𝑛−𝑚
= det𝐴. Similarly for

the case SO2𝑛
2𝑚,𝑚(𝜆, 𝜇) = 2𝑛−𝑚−1 ⋅det𝐴 ⋅ 1

2𝑛−𝑚−1
= det𝐴. So𝑚(𝜆, 𝜇) = det𝐴 for

all three pairs Sp2𝑛2𝑚, SO
2𝑛+1
2𝑚+1, SO

2𝑛
2𝑚 under the condition 𝓁(𝜆) ≤ 𝑚. This proves

part (3) of the corollary.
Now we prove part (2). Assume 𝑛

2
≤ 𝑚 < 𝑛 and 𝓁(𝜆) ≤ 2𝑚 − 𝑛. Since

2𝑚−𝑛 < 𝑚 as we assume 𝑛
2
≤ 𝑚 < 𝑛, we can use part (3) and hence𝑚(𝜆, 𝜇) is

independent of the pairs Sp2𝑛2𝑚, SO
2𝑛+1
2𝑚+1, SO

2𝑛
2𝑚. Hence,𝑚(𝜆, 𝜇) will be indepen-

dent of all four pairs if𝑚(𝜆, 𝜇) is independent of the pairs Sp2𝑛2𝑚 andGL
𝑛
2𝑚−𝑛. For

GL𝑛2𝑚−𝑛, themultiplicitymatrix𝑀will be a block diagonalmatrix with det𝑀 =
det𝐴(2𝑚−𝑛)×(2𝑚−𝑛) ⋅𝐵(2𝑛−2𝑚)×(2𝑛−2𝑚) = det𝐴(2𝑚−𝑛)×(2𝑚−𝑛) as 𝐵(2𝑛−2𝑚)×(2𝑛−2𝑚) is
an upper triangular matrix with 1 on the diagonal. Now det𝐴(2𝑚−𝑛)×(2𝑚−𝑛) for
GL𝑛2𝑚−𝑛 is the same as det𝐴𝑚×𝑚 for Sp2𝑛2𝑚. This holds because the determinant
of𝑚×𝑚matrix is same as the principal (2𝑚−𝑛)×(2𝑚−𝑛)minor for symplectic
groups case. This proves part (2). □

PPPPPPPPP(𝐻,𝐺)
𝜇 (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (3, 0) (3, 1)

Sp84 45 40 10 16 4 4 1

SO9
5 45 40 10 16 4 4 1

SO8
4 45 40 10 16 4 4 1
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Table 1. Calculation of𝑚(𝜆, 𝜇) for 𝜆 = (3, 1, 0, 0).

Part (1) of the Corollary 7.1 determines multiplicities that are always inde-
pendent across all pairs for a given value of 𝜆. In part (2), the corollary gives a
criteria for 𝜆 that leads to the independence of all multiplicities among pairs.
One can find similar results in [Mil66, Theorem 2], proving branching mul-
tiplicity is independent of the pairs GL𝑛+1𝑛−1 and Sp

2𝑛
2𝑛−2. As a corollary, Miller

proves that multiplicities are independent of the pairsGL𝑛𝑛−2 and Sp
2𝑛
2𝑛−2, when

𝓁(𝜇) ≤ 𝑛 − 2. Table 1 verifies part (3) of Corollary 7.1.
We can describe the multiplicities as a product formula, when𝑚 = 𝑛−1 for

the mentioned pairs at the start of this section.

Corollary 7.2. The multiplicity𝑚(𝜆, 𝜇) is nonzero if and only if

𝜆𝑗 ≥ 𝜇𝑗 ≥ 𝜆𝑗+2 for 𝑗 = 1,… , 𝑛 − 1

When these inequalities are satisfied, let

𝑥1 ≥ 𝑦1 ≥ 𝑥2 ≥ 𝑦2 ≥⋯ ≥ 𝑥𝑛−1 ≥ 𝑦𝑛−1 ≥ 𝑥𝑛
be the non-increasing rearrangement of {𝜆1,… , 𝜆𝑛, 𝜇1,… , 𝜇𝑛−1}. Then,

𝑚(𝜆, 𝜇) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

[∏𝑛−1
𝑗=1 (𝑥𝑗 − 𝑦𝑗 + 1)

]
, for GL𝑛𝑛−2,

[∏𝑛−1
𝑗=1 (𝑥𝑗 − 𝑦𝑗 + 1)

]
(𝑥𝑛 + 1), for Sp2𝑛2𝑛−2,

[∏𝑛−1
𝑗=1 (𝑥𝑗 − 𝑦𝑗 + 1)

]
(2𝑥𝑛 + 1), for SO2𝑛+1

2𝑛−1,
[∏𝑛−1

𝑗=1 (𝑥𝑗 − 𝑦𝑗 + 1)
]
, for SO2𝑛

2𝑛−2.

In Corollary 7.2,𝑚(𝜆, 𝜇) is known in this form for the pair Sp2𝑛2𝑛−2 in [GW09,
Theorem 8.1.5]. Such a corollary for all pairs considered above seems new. It
is a direct consequence of Theorem 2.3 (in case of GL𝑛𝑛−2) and Theorem 2.5 (in
case of SO2𝑛+1

2𝑛−1 and of SO
2𝑛
2𝑛−2).

Proof. 𝑐(𝜆, 𝜇) ∶=
[∏𝑛−1

𝑗=1 (𝑥𝑗 − 𝑦𝑗 + 1)
]
(𝑥𝑛 + 1) for Sp2𝑛2𝑛−2 is known. We use it

to prove other equality. If we compare the multiplicity matrices of SO2𝑛
2𝑛−2 and

Sp2𝑛2𝑛−2, we have all columns are identical except the last column. Let us denote
the multiplicity by 𝑑(𝜆, 𝜇) for SO2𝑛

2𝑛−2. In SO
2𝑛
2𝑛−2, last column of multiplicity

matrix has all entry 1, hence we have

𝑐(𝜆, 𝜇) = {
(𝜇𝑛−1 + 1)𝑑(𝜆, 𝜇) if 0 ≤ 𝜇𝑛−1 ≤ 𝜆𝑛,
(𝜆𝑛 + 1)𝑑(𝜆, 𝜇) if 𝜆𝑛 < 𝜇𝑛−1 ≤ 𝜆𝑛−1.

When 0 ≤ 𝜇𝑛−1 ≤ 𝜆𝑛, then 𝑥𝑛 = 𝜇𝑛−1 and when 𝜆𝑛 < 𝜇𝑛−1 ≤ 𝜆𝑛−1, then
𝑥𝑛 = 𝜆𝑛−1. Hence, 𝑐(𝜆, 𝜇) = (𝑥𝑛 +1)𝑑(𝜆, 𝜇) gives the result for the pair SO2𝑛

2𝑛−2.
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Let us denote themultiplicity by 𝑏(𝜆, 𝜇) for SO2𝑛+1
2𝑛−1. In a similar way, we have

1
2𝑏(𝜆, 𝜇) =

⎧

⎨
⎩

(𝜇𝑛−1 +
1
2
)𝑑(𝜆, 𝜇) if 0 ≤ 𝜇𝑛−1 ≤ 𝜆𝑛,

(𝜆𝑛 +
1
2
)𝑑(𝜆, 𝜇) if 𝜆𝑛 < 𝜇𝑛−1 ≤ 𝜆𝑛−1.

Hence, 𝑏(𝜆, 𝜇) = 2(𝑥𝑛+
1
2
)𝑑(𝜆, 𝜇) = (2𝑥𝑛+1)𝑑(𝜆, 𝜇) gives the result for SO2𝑛+1

2𝑛−1.
To prove for GL𝑛𝑛−2, we compare the multiplicity matrices of GL

𝑛
𝑛−2 with

SO2𝑛
2𝑛. We showed all columns are the same for both matrices. The first (𝑛 − 2)

columns and the last column are identical. The (𝑛 − 1)-th column is also the
same as

{𝜆𝑖+𝑛−𝑖
1

}
=
(𝜆𝑖+𝑛−𝑖

1

)
, since 𝜆𝑖+𝑛− 𝑖 ≥ 0. Hence, multiplicity forGL𝑛𝑛−2 is

same with multiplicity for SO2𝑛
2𝑛. This completes the proof of Corollary 7.2. □

Remark 7.3. Themultiplicity for the restriction problem from Sp(2𝑛) to Sp(2𝑛−
2)need not be 1, and is a bit complicated . The content of the above corollary in this
case is that if 𝜇 = (𝜇1 ≥ 𝜇2 ≥⋯ ≥ 𝜇𝑛−1 ≥ 0), and 𝜆 = (𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝑛 ≥ 0)
are highest weight for Sp(2𝑛 − 2) and Sp(2𝑛), then if 𝜇𝑛−1 = 0, forcing 𝑥𝑛 = 0 in
the notation of Corollary 7.2 and therefore

𝑚Sp(2𝑛−2)(𝜆, 𝜇) = 𝑚GL(𝑛−2)(𝜆, 𝜇),

where now 𝜆 is considered as a highest weight ofGL(𝑛) and 𝜇 as a highest weight
of GL(𝑛 − 2) as 𝜇𝑛−1 = 0. More generally, we have the following equalities:

𝑚SO(2𝑛−2)(𝜆, 𝜇) = 𝑚Sp(2𝑛−2)(𝜆, 𝜇) = 𝑚SO(2𝑛−1)(𝜆, 𝜇) = 𝑚GL(𝑛−2)(𝜆, 𝜇),

where 𝜇 = (𝜇1 ≥ 𝜇2 ≥⋯ ≥ 𝜇𝑛−1 ≥ 0) with 𝜇𝑛−1 = 0.

In Corollary 7.2, observe that 𝑥𝑛 can be either 𝜆𝑛 or 𝜇𝑛−1 depending on the
specific inequalities. For the pairGL𝑛𝑛−2, note that 𝑥𝑛must be zero since 𝜇𝑛−1 =
0. Further, note that the multiplicity formula 𝑚(𝜆, 𝜇) for the pair SO2𝑛

2𝑛−2 does
not depend on 𝑥𝑛.
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