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Hopf Galois structures, skew braces for
groups of size 𝒑𝒏𝒒: The cyclic Sylow

subgroup case

Namrata Arvind and Saikat Panja

Abstract. Let 𝑛 ≥ 1 be an integer, 𝑝, 𝑞 be distinct odd primes. Let 𝐺, 𝑁 be
two groups of order 𝑝𝑛𝑞 with their Sylow-𝑝-subgroups being cyclic. We enu-
merate theHopf-Galois structures on aGalois𝐺-extension, with type𝑁. This
also computes the number of skew braces with additive group isomorphic to
𝑁 and multiplicative group isomorphic to 𝐺. Further when 𝑞 < 𝑝, we give a
complete classification of theHopf-Galois structures onGalois-𝐺-extensions.
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1. Introduction
The study of Hopf-Galois structures comes under the realm of group the-

ory and number theory. These structures were first studied by S. Chase and M.
Sweedler in 1969, in their work [CS69]. Subsequently in [GP87], C. Greither
and B. Pareigis studied and described Hopf-Galois structures for separable ex-
tensions. In recent times, algebraic objects called skew braces were introduced
in the PhD thesis of D. Bachiller. They have been studied by various mathe-
maticians like W. Rump, D. Bachiller, F. Cedo in [CJO14], [BCJ16] etc.. Skew
braces are known to give set-theoretic solutions to the Yang-Baxter equations.
First observed by D. Bachiller in his PhD thesis and subsequently made precise
by A. Smoktunowicz, L. Vendramin and N. Byott in their work [SV18] is a con-
nection between the study of skew braces and that of Hopf-Galois structures.
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Formore details, and background on this topic, and the interplay between skew
braces and Hopf-Galois structures, one can refer to the book [Chi+21] of L. N.
Childs et. al. and the Ph.D. thesis of K. N. Zenouz [Zen18].
AHopf-Galois structure on a finite field extension is defined in the following

way. Assume 𝐾∕𝐹 is a finite Galois field extension. An 𝐹-Hopf algebra ℋ,
with an action on 𝐾 such that 𝐾 is an 𝐻-module algebra and the action makes
𝐾 into an ℋ-Galois extension, will be called a Hopf-Galois structure on 𝐾∕𝐹.
A left skew brace is a triple (Γ,+,×) where (Γ,+), (Γ,×) are groups and satisfy
𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + 𝑎−1 + (𝑎 × 𝑐), for all 𝑎, 𝑏, 𝑐 ∈ Γ.
Given a group 𝑇, the holomorph of 𝑇 is defined as the semidirect product

𝑇 ⋊ Aut(𝑇) = {(𝑡, 𝜁) ∶ 𝑡 ∈ 𝑇, 𝜁 ∈ Aut(𝑇)},

via the identity map. It is denoted by Hol(𝐺). Let 𝐺 and𝑁 be two finite groups
of the same order. By 𝑒(𝐺,𝑁) we mean the number of Hopf-Galois structures
on a finite Galois field extension 𝐿∕𝐾 with Galois group isomorphic to 𝐺, and
the type isomorphic to𝑁. In [GP87], the authors gave a bijection betweenHopf-
Galois structures on a finite Galois extension with Galois group 𝐺 and regular
subgroups in Perm(𝐺), which are normalised by 𝜆(𝐺). Further in [Byo96], N.
Byott showed that

𝑒(𝐺,𝑁) = |Aut(𝐺)|
|Aut(𝑁)|

⋅ 𝑒′(𝐺,𝑁), (1.1)

where 𝑒′(𝐺,𝑁) is the number of regular subgroups of Hol(𝑁) isomorphic to 𝐺.
A subgroup Γ of the holomorph Hol(𝑇) of a group 𝑇 is said to be regular if and
only if the projection 𝜋1 on the the first component (which is just a map, not a
homomorphism) (𝑡, 𝜁)↦ 𝑡 is a bijection. Note that such a subgroup Γ of Hol(𝑇)
satisfies that it has exactly one element (𝑒𝑇, 𝜁) ∈ Γ with 𝜁 = 𝐼, the identity
automorphism. We will also use this condition to check regular embeddings of
the concerned groups in the article.
It turns out that 𝑒′(𝐺,𝑁) also gives the number of skew braces with the addi-

tive group isomorphic to 𝑁 and the multiplicative group isomorphic to 𝐺. The
number 𝑒(𝐺,𝑁) has been computed for several groups. For example, N. Byott
determined 𝑒(𝐺,𝐺) when 𝐺 is isomorphic to a cyclic group [Byo13]; C. Tsang
determined 𝑒(𝐺,𝑁) when 𝐺 is a quasisimple group [Tsa21]; N. K. Zenouz con-
sider the groups of order 𝑝3 [Zen18] to determine 𝑒(𝐺,𝑁) ; T. Kohl determined
𝑒(𝐺,𝐺) when 𝐺 is a dihedral group [Koh20].
Previously in [AP22], the authors computed 𝑒(𝐺,𝑁) whenever 𝐺 and 𝑁 are

isomorphic to ℤ𝑛 ⋊ ℤ2, where 𝑛 is odd and its radical is a Burnside num-
ber. Groups of order 𝑝2𝑞 with cyclic Sylow subgroups have been considered
in [CCD20]. We can show that any group of order 𝑝𝑛𝑞 with cyclic Sylow sub-
groups, when 𝑝 and 𝑞 are distinct primes, is a semidirect product of two cyclic
groups (see Section 2). In this article, we compute 𝑒(𝐺,𝑁) (and 𝑒′(𝐺,𝑁)), when-
ever 𝐺 and 𝑁 are groups of order 𝑝𝑛𝑞 with cyclic Sylow-𝑝 subgroup, where 𝑝
and 𝑞 are distinct odd primes. We do this by looking at the number of regular
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subgroups of Hol(𝑁) which are isomorphic to 𝐺. Finally whenever 𝑞 < 𝑝 we
give a necessary and sufficient condition on when the pair (𝐺,𝑁) is realizable.
We now fix some notations. For a ring 𝑅, we will use 𝑅× to denote the set of

multiplicative units of 𝑅. For a group𝐺, the identity element will be sometimes
denoted by 𝑒𝐺 and mostly by 1, when the context is clear. The automorphism
group of a group𝐺 will be denoted by Aut(𝐺), and the holomorph𝐺⋊idAut(𝐺)
will be denoted by Hol(𝐺). The binomial coefficients will be denoted by

( 𝑙
𝑚

)
.

The Euler totient function will be denoted by 𝜑. We will use ℤ𝑚 to denote the
cyclic group of order𝑚.We will useℤ𝑚 as a group as well as a ring, which will
be clear from the context. Equality sign will be used for congruence as well.
Now, we state the two main results of this article. To state the second result we
use notations from Section 2.

Theorem1.1. Let𝑝 > 𝑞 be oddprimes and𝑞 ∣ 𝑝−1. Let𝐺 denote the nonabelian
group of the formℤ𝑝𝑛 ⋊ℤ𝑞 and 𝐶 denote the cyclic group of order 𝑝𝑛𝑞. Then the
following are true:

(1) 𝑒′(𝐺,𝐺) = 𝑒(𝐺,𝐺) = 2 + 2𝑝𝑛(𝑞 − 2),
(2) 𝑒′(𝐺, 𝐶) = 𝑞 − 1, and 𝑒(𝐺, 𝐶) = 𝑝𝑛,
(3) 𝑒′(𝐶,𝐺) = 𝑝2𝑛−1, and 𝑒(𝐶,𝐺) = 2𝑝𝑛−1(𝑞 − 1).

Theorem 1.2. Let 𝑝 < 𝑞 be odd primes and 𝑝𝑎||𝑞 − 1. For 1 ≤ 𝑏 ≤ min{𝑛, 𝑎},
let 𝐺𝑏 denote the unique nonabelian group of the form ℤ𝑞 ⋊ ℤ𝑝𝑛 determined by
𝑏, and 𝐶 denote the cyclic group of 𝑝𝑛𝑞. Then the following results hold;

(1) 𝑒′(𝐺𝑏, 𝐺𝑏) = 𝑒(𝐺𝑏, 𝐺𝑏) = 2
(
𝑝𝑛−𝑏 + 𝑞

(
𝜑(𝑝𝑛) − 𝑝𝑛−𝑏

))
,

(2) 𝑒′(𝐺𝑏1 , 𝐺𝑏2) = 2𝑞𝑝𝑛+𝑏1−𝑏2−1(𝑝−1), and 𝑒(𝐺𝑏1 , 𝐺𝑏2) = 2𝑞𝑝𝑛−1(𝑝−1) for
𝑏1 ≠ 𝑏2,

(3) 𝑒′(𝐶,𝐺𝑏) = 2𝑝𝑛−𝑏𝑞, and 𝑒(𝐶,𝐺𝑏) = 2(𝑝 − 1)𝑝𝑛−1,
(4) 𝑒′(𝐺𝑏, 𝐶) = 𝑝𝑛+𝑏−2(𝑝 − 1), and 𝑒(𝐺𝑏, 𝐶) = 𝑝𝑛−1𝑏.

The rest of the article is organised as follows. In Section 2, we give a detailed
description of the groups under consideration and determine their automor-
phism groups. Next, in Section 3 and Section 4 we will prove Theorem 1.1 and
Theorem 1.2 respectively. Lastly, in Section 5 we discuss the realizability prob-
lem and solve them for some of the groups mentioned in this article.

Acknowledgement. We are immensely thankful to the reviewer for suggest-
ing numerous changes to clarify arguments and shortening the proofs, espe-
cially that of Lemma 2.5.

2. Preliminaries
2.1. The groups under consideration. In this subsection, we will describe
the groups under consideration and fix some notations. Let 𝑝 and 𝑞 be dis-
tinct odd primes. We look at groups of order 𝑝𝑛𝑞 whose Sylow-𝑝-subgroups are
cyclic. These come under two families, depending on whether 𝑝 > 𝑞 or 𝑝 < 𝑞.
We start by recalling the following result of Burnside.
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Lemma 2.1. [Bur55, Theorem II, Section 243] Let 𝐺 be a finite group. Let 𝑟 be
the smallest prime dividing |𝐺|, the order of the group 𝐺. Further let |𝐺| = 𝑟𝑘𝑡,
𝑟 ∤ 𝑡. If a Sylow 𝑟-subgroup of 𝐺 is cyclic, then 𝐺 has a normal 𝑟-complement,
that is a normal subgroup𝐻 such that |𝐺 ∶ 𝐻| = 𝑟𝑘.

Let now𝐺 be a group of order 𝑝𝑛𝑞, where 𝑛 ≥ 1, and 𝑝, 𝑞 are distinct primes.
Assume that all Sylow 𝑝-subgroups are cyclic (of course, any Sylow 𝑞-subgroup
is cyclic). Then by Lemma 2.1, when 𝑝 > 𝑞 a Sylow 𝑝-subgroup is normal
in 𝐺, and when 𝑞 > 𝑝 a Sylow 𝑞-subgroup is normal in 𝐺. Clearly, all Sylow
subgroups of 𝐺 are normal precisely when 𝐺 is cyclic.
In case 𝑝 > 𝑞, the group 𝐺 is isomorphic to a semidirect product of ℤ𝑝𝑛 and

ℤ𝑞. Since Aut(ℤ𝑝𝑛) is cyclic, the semidirect product is either trivial (in this case
the group is cyclic) or uniquely nontrivial. Let 𝐺 ≅ ℤ𝑝𝑛 ⋊ℤ𝑞. If 𝑞 ∤ 𝑝 − 1 then
𝐺 is cyclic. In case 𝑞|𝑝 − 1, let 𝜙 ∶ ℤ𝑞 → Aut(ℤ𝑝𝑛) be the homomorphism
defined as 𝜙(1) = 𝑘. Here 𝑘 is an element of Aut(ℤ𝑝𝑛) of order 𝑞. Hereafter, we
denote ℤ𝑝𝑛 ⋊𝜙 ℤ𝑞 by ℤ𝑝𝑛 ⋊𝑘 ℤ𝑞. Let

⟨𝑥, 𝑦|𝑥𝑝𝑛 = 𝑦𝑞 = 1, 𝑦𝑥𝑦−1 = 𝑥𝑘⟩
be a presentation ofℤ𝑝𝑛⋊𝑘ℤ𝑞. Note that since 𝑒(𝐺,𝐺) is already knownwhen-
ever 𝐺 is cyclic, we will assume 𝑞|𝑝 − 1 for our calculations.
Now if 𝑝 < 𝑞, using Lemma 2.1 we get that 𝐺 is either a cyclic group or a

non-trivial semidirect product of ℤ𝑞 and ℤ𝑝𝑛 . Next, we elaborate on different
possible semidirect products in this regard. Once again in this case we assume
that 𝑝 ∣ 𝑞 − 1. Let 𝑝𝑎||𝑞 − 1 and for 𝑏 ≤ min{𝑛, 𝑎} fix 𝜓𝑏 ∶ ℤ𝑝𝑛 ⟶ Aut(ℤ𝑞)
to be a homomorphism, such that |Im 𝜓𝑏| = 𝑝𝑏. Take 𝐺𝑏 = ℤ𝑞 ⋊𝜓𝑏 ℤ𝑝𝑛 . The
group 𝐺𝑏 is unique up to isomorphism. The presentation of this group can be
taken to be

⟨𝑥, 𝑦|𝑥𝑝𝑛 = 1, 𝑦𝑞 = 1, 𝑥𝑦𝑥−1 = 𝑦𝑘⟩,
where 𝑘 is an element of order 𝑝𝑏 in Aut(ℤ𝑞) = ℤ×

𝑞 . From now on we denote
ℤ𝑞 ⋊𝜓𝑏 ℤ𝑝𝑛 by ℤ𝑞 ⋊𝑘 ℤ𝑝𝑛 .

2.2. The basic lemmas. In this subsection we note down the basic group-
theoretic results, which will be used throughout the article.

Lemma 2.2. Let 𝑝 be a positive odd integer. Take 𝑎 = 𝑏𝑝𝑐 where 𝑝 ∤ 𝑏. Then we
have that (1 + 𝑝)𝑎 ≡ 1 + 𝑑𝑝𝑐+1 (mod 𝑝𝑐+2) for some 𝑝 ∤ 𝑑, for all integer 𝑐 ≥ 0.

Proof. We prove it by induction on 𝑐. If 𝑐 = 0, then (1 + 𝑝)𝑎 = 1 + 𝑎𝑝 + 𝑎′𝑝2,
for some 𝑎′ ∈ ℤ. Hence (1 + 𝑝)𝑎 ≡ 1 + 𝑎𝑝 (mod 𝑝2) with 𝑑 = 𝑎. Next,
assume it to be true for all 𝑙 ≤ 𝑐 and in particular for 𝑙 = 𝑐. Hence (1 + 𝑝)𝑏𝑝𝑐 =
1 + 𝑑𝑝𝑐+1 + 𝑑′𝑝𝑐+2 for some 𝑑′ ∈ ℤ. Then we have

(1 + 𝑝)𝑏𝑝𝑐+1 =
(
1 + 𝑑𝑝𝑐+1 + 𝑑′𝑝𝑐+2

)𝑝 = (1 + 𝑑′′𝑝𝑐+1)𝑝,

for some 𝑑′′ ∈ 𝑍 and (𝑑′′, 𝑝) = 1. Hence it follows that (1+𝑝)𝑏𝑝𝑐+1 ≡ 1+𝑑′′𝑝𝑐+2
(mod 𝑝𝑐+3), which also finishes the induction, and hence the proof. □
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We will use the following matrix form of the elements of the automorphism
group of ℤ𝑝𝑛 ⋊𝑘 ℤ𝑞.

Lemma 2.3. Let 𝐺 be the non-abelian group isomorphic toℤ𝑝𝑛 ⋊𝑘 ℤ𝑞. We have

Aut(𝐺) ≅ {(𝛽 𝛼
0 1) ∶ 𝛽 ∈ ℤ×

𝑝𝑛 , 𝛼 ∈ ℤ𝑝𝑛}

.

Proof. We first embed 𝐺 as a normal subgroup of Hol(ℤ𝑝𝑛). Take the homo-
morphism 𝜓 defined as

𝜓(𝑥) = (1 𝑘
0 1) , 𝜓(𝑦) = (𝑘 0

0 1) .

This embedding is injective, as 𝑘 is a unit and 𝜓(𝑥𝑖𝑦𝑗) = (𝑘
𝑗 𝑘𝑖
0 1 ). Now con-

sider the following map

Φ ∶ Hol(ℤ𝑝𝑛)⟶ Aut(𝐺) defined as Φ(𝑧)(𝑤) = 𝑧𝑤𝑧−1

for all 𝑧 ∈ Hol(ℤ𝑝𝑛) and 𝑦 ∈ 𝐺 is an injective group homomorphism, since
kerΦ consists only of the identity matrix. From [Wal86, Theorem B] we have
|Aut(𝐺)| = |Hol(ℤ𝑝𝑛)|. Thus Φ is an isomorphism. □

The following lemma is easy to prove, but we state it here for our reference.

Lemma 2.4. Let 𝑝, 𝑞 be primes such that (𝑝, 𝑞) = 1 and 𝑞 ∣ 𝑝 − 1. Let 𝑘 be a
multiplicative unit inℤ𝑝𝑛 , of multiplicative order 𝑞. Then 𝑘−1 is a multiplicative
unit in ℤ𝑝𝑛 .

Lemma 2.5. Let 𝐺𝑏 ≅ ℤ𝑞 ⋊𝑘 ℤ𝑝𝑛 , where 𝑘 is an element of order 𝑝𝑏 in ℤ×
𝑞 .

Assume 𝑝 ∣ 𝑞 − 1, then for 𝑏 > 0, we have that Aut(𝐺𝑏) ≅ ℤ𝑝𝑛−𝑏 ×Hol(ℤ𝑞).

Proof. The proof will be divided into two steps. First, we calculate the size of
the automorphism group. In the next step, we will determine the group’s de-
scription in terms of generators and relations, fromwhich the result will follow.
Let us take an automorphismΨ of𝐺𝑏. Assume thatΨ(𝑥) = 𝑦𝛼𝑥𝛾 andΨ(𝑦) =

𝑦𝛽𝑥𝛿, where 0 ≤ 𝛼, 𝛽 ≤ 𝑞 − 1 and 0 ≤ 𝛾, 𝛿 ≤ 𝑝𝑛 − 1. Note that we have
Ψ(𝑦)𝑞 = 𝑦𝛽(1+𝑘𝛿+𝑘2𝛿+𝑘(𝑞−1)𝛿)𝑥𝑞𝛿. Since Ψ(𝑦)𝑞 = 1, we must have 𝛿 = 0. Thus
𝛽 should be a unit in ℤ𝑞. Now consider the equation Ψ(𝑥)Ψ(𝑦) = Ψ(𝑦)𝑘Ψ(𝑥).
This imposes the condition that 𝑦𝛼+𝛽𝑘𝛾𝑥𝛾 = 𝑦𝛽𝑘+𝛼𝑥𝛾. Hence we should have
𝛽𝑘𝛾 ≡ 𝛽𝑘 (mod 𝑞), whence 𝑘𝛾−1 ≡ 1 (mod 𝑞), as 𝛽 is a unit inℤ𝑞. Since 𝑘 is an
element of order𝑝𝑏, we get that 𝛾 ∈ {𝑅𝑝𝑏+1 ∶ 0 ≤ 𝑅 < 𝑝𝑛−𝑏}. Next considering
the equation Ψ(𝑥)𝑝𝑛 = 1, we have that 𝑦𝛼(1+𝑘𝛾+𝑘2𝛾+…+𝑘(𝑝

𝑛−1)𝛾)𝑥𝑝𝑛𝛾 = 1. Since
𝑥𝑝𝑛𝛾 = 1, we have that 𝛼(1 + 𝑘𝛾 + 𝑘2𝛾 +…+ 𝑘(𝑝𝑛−1)𝛾) = 0 (mod 𝑞). Regardless
of the value of 𝑘, any 0 ≤ 𝛼 ≤ 𝑞 satisfies the last congruence. Hence the group
is of order 𝑝𝑛−𝑏𝑞(𝑞 − 1).
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We can easily check that 𝑍(𝐺𝑏) ≅ ⟨𝑥𝑝𝑏⟩. Since 𝑍(𝐺𝑏∕𝑍(𝐺𝑏)) is trivial, using
[Wal86, Theorem B] we get that Aut(𝐺𝑏∕𝑍(𝐺𝑏)) ≅ Hol(ℤ𝑞). Now we consider
the following homomorphism

𝜉 ∶ Aut(𝐺𝑏)→ Aut(𝐺𝑏∕𝑍(𝐺𝑏)),
which is well defined since 𝑍(𝐺𝑏) is a characteristic subgroup of 𝐺𝑏. Then the
following statements hold true;

(1) For an element (𝑢 𝑣
0 1) ∈ Hol(ℤ𝑞), the map 𝑥 ↦ 𝑦𝑣𝑥 and 𝑦 ↦ 𝑦𝑢 is an

automorphism of 𝐺𝑏 and hence Hol(ℤ𝑞) ≅ Aut(𝐺𝑏∕𝑍(𝐺𝑏)) ⊆ Aut(𝐺𝑏)
(2) ker 𝜉 acts trivially on ⟨𝑦⟩, and ⟨𝜗⟩ ⊆ ker 𝜉, where 𝜗(𝑥) = 𝑥1+𝑝𝑏 . Also,

⟨𝜗⟩ has order 𝑝𝑛−𝑏, which is the size of ker 𝜉.
(3) ker 𝜉 ∩ Hol(𝑍𝑞) = {id} and for Ψ1 ∈ ker 𝜉, Ψ2 ∈ Hol(ℤ𝑞) one has

Ψ1Ψ2 = Ψ2Ψ1.
This finishes the proof. □

We denote the elements of Aut(𝐺𝑏) by (𝛾, (
𝛽 𝛼
0 1)) ∈ ℤ×

𝑝𝑛 × Hol(ℤ𝑞), such

that 𝛾𝑝𝑛−𝑏 = 1.

Remark 2.6. We note down the action of the automorphism group of 𝐺𝑏 on
the group 𝐺𝑏, by means of generators. This will be necessary for counting the
Hopf-Galois structures concerning 𝐺𝑏’s. For 𝑏 > 0, the action is as follows.

(𝛾, (𝛽 𝛼
0 1)) ⋅ 𝑥 = 𝑦𝛼𝑥𝛾 and, (𝛾, (𝛽 𝛼

0 1)) ⋅ 𝑦 = 𝑦𝛽 .

Remark 2.7. For 𝑏 = 0, the group 𝐺𝑏 ≅ ℤ𝑝𝑛 × ℤ𝑞. Since (𝑝, 𝑞) = 1 and
both are abelian groups, it follows from [BCM06, Theorem 3.2] that Aut(𝐺𝑏) ≅
ℤ𝑝𝑛−1(𝑝−1) ×ℤ𝑞−1 in this case. The action is defined to be component-wise.

3. The case 𝒑 > 𝒒
This section is devoted to the proof of Theorem 1.1. As discussed in Sec-

tion 2, up to isomorphism there are two groups of order 𝑝𝑛𝑞 whenever their
Sylow subgroups are cyclic. Counting the number of skew braces with multi-
plicative group𝐺 and additive group𝑁 is equivalent to (up to multiplication by
a constant; see [AP22, Proof of Proposition 3.2]) counting the number of regu-
lar embeddings of 𝐺 in Hol(𝑁). Then using Eq. (1.1), we are able to conclude
about the number of Hopf-Galois structures on 𝐺-extensions of type 𝑁. We
will use the regularity criterion given in Section 1. This section will be divided
into three subsections, depending on the isomorphism types of 𝐺 and𝑁. From
Lemma 2.3, we have that Aut(ℤ𝑝𝑛⋊𝑘ℤ𝑞) ≅ Hol(ℤ𝑝𝑛), where the action is given
by,

(𝛽 𝛼
0 1) ⋅ 𝑥

𝑖𝑦𝑗 = 𝑥𝛽𝑖+𝛼𝑘−1−𝛼𝑘𝑗−1𝑦𝑗.
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3.1. Embedding ofℤ𝒑𝒏⋊𝒌ℤ𝒒 into Hol(ℤ𝒑𝒏⋊𝒌ℤ𝒒). LetΦ ∶ ℤ𝑝𝑛 ⋊𝑘ℤ𝑞 ⟶
Hol(ℤ𝑝𝑛 ⋊𝑘 ℤ𝑞) be a regular embedding. Let

Φ(𝑥) = (𝑥𝑖1𝑦𝑗1 , (𝛽1 𝛼1
0 1 )) ,Φ(𝑦) = (𝑥𝑖2𝑦𝑗2 , (𝛽2 𝛼2

0 1 )) .

From (Φ(𝑥))𝑝𝑛 = 1 we get 𝑦𝑝𝑛𝑗1 = 1 which will imply,
𝑗1 = 0 (mod 𝑞), (3.1)

since 𝑝𝑛𝑗1 = 0 (mod 𝑞) and (𝑝, 𝑞) = 1,

𝛽𝑝
𝑛

1 = 1 (mod 𝑝𝑛), (3.2)

𝑖1(1 + 𝛽1 + 𝛽21 + … + 𝛽𝑝
𝑛−1

1 ) = 0 (mod 𝑝𝑛), (3.3)

𝛼1(1 + 𝛽1 + 𝛽21 + … + 𝛽𝑝
𝑛−1

1 ) = 0 (mod 𝑝𝑛). (3.4)

Similarly from Φ(𝑦𝑥𝑦−1) = Φ(𝑥𝑘) we get
𝛽𝑘−11 = 1 (mod 𝑝𝑛), (3.5)

which implies 𝛽1 = 1 (mod 𝑝𝑛) from Eq. (3.2), Eq. (3.5) and using Lemma 2.4;
furthermore,

𝛼1 ⋅ (𝑘 − 𝛽2) = 0 (mod 𝑝𝑛), (3.6)

𝑘𝑖1 ⋅ (𝑘𝑗2−1𝛽2 − 1) = 𝛼1 ⋅ (1 − 𝑘𝑗2) (mod 𝑝𝑛). (3.7)

We note that in general,

Φ(𝑦)𝛿 = (𝑥𝓁𝛿𝑦𝛿𝑗2 , (𝛽
𝛿
2 𝛼2(1 + 𝛽2 + 𝛽22 +⋯ + 𝛽𝛿−12 )

1 )) ,

where

𝓁𝛿 = 𝑖2
⎛
⎜
⎝

𝛿−1∑

𝑡=0

(
𝛽2𝑘𝑗2

)𝑡⎞
⎟
⎠
+
(
𝛼2𝑘𝑗2−1 − 𝛼2𝑘2𝑗2−1

) ⎛
⎜
⎝
1 +

𝛿−2∑

𝑢=1
(

𝑢∑

𝑣=0
𝛽𝑣2) 𝑘

𝑢𝑗2
⎞
⎟
⎠
. (3.8)

Using Φ(𝑦)𝑞 = 1 we get
𝛽𝑞2 = 1 (mod 𝑝𝑛), (3.9)

𝛼2(1 + 𝛽2 + 𝛽22 + … + 𝛽𝑞−12 ) = 0 (mod 𝑝𝑛) 𝑗2 ≠ 0, (3.10)
𝓁𝑞 = 0 (mod 𝑝𝑛). (3.11)

From Eq. (3.9) we get 𝛽2 = 𝑘𝑎, for some 0 ≤ 𝑎 ≤ 𝑞 − 1, since ℤ∗
𝑝𝑛 has a unique

subgroup of order 𝑞 and is generated by 𝑘. First let us show that, in any regular
embedding 𝑗2 ≠ 0 (mod 𝑞). If possible let 𝑗2 = 0. Then we get that 𝛽2 = 𝑘
from Eq. (3.7). This forces that for any 0 ≤ 𝜔1 ≤ 𝑝𝑛 − 1 and 0 ≤ 𝜔2 ≤ 𝑞 − 1

Φ(𝑥)𝜔1Φ(𝑦)𝜔2 = (𝑥𝜔1𝑖1+𝑖2(1+𝑘+⋯+𝑘𝜔2−1), (𝑘
𝜔2 ⋆
0 1)) . (3.12)

Thus we see that ⟨𝜋1(Φ(𝑥)𝜔1Φ(𝑦)𝜔2)⟩ ≠ ℤ𝑝𝑛 ⋊𝑘 ℤ𝑞, which will imply the map
Φ is not regular. Hence 𝑗2 ≠ 0. We now divide the possibilities of 𝑎 into 3 cases.
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3.1.1. Case I: 𝒂 = 𝟎. Using Eq. (3.6) and Eq. (3.7), we conclude that 𝛼1 = 0
(mod 𝑝𝑛), 𝑗2 = 1 (mod 𝑞) and, 𝛼2 = 0 (mod 𝑝𝑛). Since 𝑖1 is a unit in ℤ𝑝𝑛 and
𝑖2 ∈ ℤ𝑝𝑛 can take any value, the total number of embeddings in this case is given
by 𝑝𝑛𝜑(𝑝𝑛). Moreover, all of these embeddings are regular. We remark that all
the above embedding corresponds to the canonical Hopf-Galois structure.

3.1.2. Case II:𝒂 = 𝟏. Note that usingEq. (3.7)we get that𝑘𝑖1 = −𝛼1 (mod 𝑝𝑛).
We deal with this in two subcases depending on the value of 𝑗2. First, we con-
sider the case 𝑗2 being equal to 𝑞 − 1. In this case using 𝓁𝑞 = 0, we get that

𝑖2 gets determined by the value of 𝛼2 since (
𝑘−1∑
𝑡=0

(
𝛽2𝑘𝑗2

)𝑡) = 𝑞 is a unit in ℤ𝑝𝑛 .

Hence the number of embedding in this subcase is given by 𝑝𝑛𝜑(𝑝𝑛).
For the other case, since the element 𝑘𝑗2(1 − 𝑘𝑎) is a unit and 𝑗2 + 𝑎 ≠ 0

(mod 𝑞) we get

1 +
𝑞−2∑

𝑠=1
(

𝑠∑

𝑡=0
𝑘𝑡𝑎) 𝑘𝑠𝑗2

= 1
𝑘𝑗2(1 − 𝑘𝑎)

⎧

⎨
⎩

𝑞−1∑

𝑡=1

(
1 − 𝑘𝑡𝑎

)
𝑘𝑡𝑗2

⎫

⎬
⎭

= 1
𝑘𝑗2(1 − 𝑘𝑎)

⋅ (1 − 1) = 0,

Thus Φ(𝑦)𝑞 = 1 does not impose any conditions on 𝑖2 and 𝛼2. Hence, in this
subcase, the total number of possibilities is 𝑝2𝑛𝜑(𝑝𝑛)(𝑞 − 2). Since 𝑗2 ≠ 0, we
conclude that all the embeddings are regular.

3.1.3. Case III: 𝒂 ≥ 𝟐. This condition together with Eq. (3.6) and Eq. (3.7),
imply that 𝛼1 = 0 and 𝑗2 = 𝑎 − 1 (mod 𝑞). Since 𝑎 + 𝑗2 ≠ 0 (mod 𝑞), a
mutatis mutandis of Case II gives that 𝑖2 and 𝛼2 can be chosen independently,
whence each of them has 𝑝𝑛 possibilities. Thus, in this case, the total number
of possibilities is given by 𝑝2𝑛𝜑(𝑝𝑛)(𝑞 − 2). Similar to the previous case, all the
embeddings are regular.
Summarizing the above cases we get the following result.

Lemma 3.1. The total number of regular embeddings of ℤ𝑝𝑛 ⋊ ℤ𝑞
insideHol(ℤ𝑝𝑛 ⋊ℤ𝑞) is given by 2𝑝𝑛𝜑(𝑝𝑛) + 2𝑝2𝑛𝜑(𝑝𝑛)(𝑞 − 2).

Proposition 3.2. Let 𝐺 be a non-abelian groups of the form ℤ𝑝𝑛 ⋊ ℤ𝑞, where 𝑝
and 𝑞 are primes satisfying 𝑞|𝑝 − 1. Then 𝑒(𝐺,𝐺) is given by 2 + 2𝑝𝑛(𝑞 − 2).

Proof. From Lemma 3.1 we get the total number of regular embeddings. Di-
viding this number by the Automorphism of 𝐺 will give us the total number of
Hopf-Galois structures. □

3.2. Embedding of 𝑮 = ℤ𝒑𝒏 ⋊ ℤ𝒒 in the Hol(ℤ𝒑𝒏 × ℤ𝒒). Next we consider
the case of regular embeddings of 𝐺 = ℤ𝑝𝑛 ⋊ ℤ𝑞 in the Hol(ℤ𝑝𝑛 × ℤ𝑞). Let us
fix the presentation of 𝐶 = ℤ𝑝𝑛 × ℤ𝑞 to be ⟨𝑟, 𝑠|𝑟𝑝

𝑛 = 𝑠𝑞 = 1, 𝑟𝑠 = 𝑠𝑟⟩. Then it
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can be shown that Hol(𝐶) ≡ Hol(ℤ𝑝𝑛) ×Hol(ℤ𝑞). We take a typical element of

Hol(𝐶) to be ((𝑏 𝑎
0 1) , (

𝑑 𝑐
0 1)), where 𝑎, 𝑐 are elements ofℤ𝑝𝑛 ,ℤ𝑞 respectively

and 𝑏, 𝑑 are elements ofℤ×
𝑝𝑛 ,ℤ

×
𝑞 respectively. Starting with an embeddingΦ of

𝐺 inside Hol(𝐶) and assuming that

Φ(𝑥) = ((𝑏1 𝑎1
0 1 ) , (

𝑑1 𝑐1
0 1 )) ,Φ(𝑦) = ((𝑏2 𝑎2

0 1 ) , (
𝑑2 𝑐2
0 1 )) .

From Φ(𝑥)𝑝𝑛 = 𝑒Hol(𝐶) we get the equations

𝑏𝑝
𝑛

1 = 1 (mod 𝑝𝑛), (3.13)

𝑎1
(
1 + 𝑏1 +⋯ + 𝑏𝑝

𝑛−1
1

)
= 0 (mod 𝑝𝑛), (3.14)

𝑑𝑝
𝑛

1 = 1 (mod 𝑞), (3.15)

𝑐1
(
1 + 𝑑1 +⋯ + 𝑑𝑝

𝑛−1
1

)
= 0 (mod 𝑞). (3.16)

Note that𝑑𝑞−11 = 1 (mod 𝑞) and (𝑞−1, 𝑝𝑛) = 1. Combining thiswithEq. (3.15),
we get that 𝑑1 = 1. Then plugging 𝑑1 = 1 in Eq. (3.16), conclude that 𝑐1 = 0.
For ensuring regularity, we need to take 𝑎1 is a unit inℤ𝑝𝑛 . Using the equation
Φ(𝑦)𝑞 = 1 we get the equations

𝑏𝑞2 = 1 (mod 𝑝𝑛), (3.17)

𝑎2
(
1 + 𝑏2 +⋯ + 𝑏𝑞−12

)
= 0 (mod 𝑝𝑛), (3.18)

𝑑𝑞2 = 1 (mod 𝑞), (3.19)

𝑐2
(
1 + 𝑑2 +⋯ + 𝑑𝑞−12

)
= 0 (mod 𝑞). (3.20)

Since the order of 𝑑2 divides 𝑞 − 1, we get 𝑑2 = 1 from Eq. (3.19). Finally
comparing both sides of the equation Φ(𝑥)𝑘Φ(𝑦) = Φ(𝑦)Φ(𝑥)we get (using the
conclusions of the preceding discussions)

𝑏𝑘−11 = 1 (mod 𝑝𝑛) (3.21)

𝑏2𝑎1 + 𝑎2 = 𝑏𝑘1𝑎2 + 𝑎1
(
1 + 𝑏1 +⋯ + 𝑏𝑘−11

)
(mod 𝑝𝑛). (3.22)

Using Lemma 2.4, Eq. (3.13) and Eq. (3.21) we conclude that 𝑏1 = 1. Putting
the value of 𝑏1 in Eq. (3.22) we get that 𝑏2 = 𝑘. Further to ensure regularity
we need to impose 𝑐2 ≠ 0 (using a similar argument in the discussion after
Eq. (3.12)). Thus the total number of regular embeddings in this case is given
by 𝜑(𝑝𝑛)𝑝𝑛(𝑞 − 1).

Proposition 3.3. Let 𝐶 be the cyclic group of order 𝑝𝑛𝑞 and 𝐺 be the nonabelian
group isomorphic to ℤ𝑝𝑛 ⋊ ℤ𝑞, where 𝑝 and 𝑞 are primes. Then 𝑒(𝐺, 𝐶) = 𝑝𝑛
and 𝑒′(𝐺, 𝐶) = 𝑞 − 1.
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3.3. Embedding of 𝑪 = ℤ𝒑𝒏 ×ℤ𝒒 in the Hol(ℤ𝒑𝒏 ⋊ℤ𝒒). Recall the descrip-
tion of Hol(𝐺) from Section 3.1 and the presentation for 𝐶 from Section 3.2.
Consider a homomorphism Φ ∶ 𝐶 ⟶ Hol(𝐺) determined by

Φ(𝑟) = (𝑥𝑖1𝑦𝑗1 , (𝛽1 𝛼1
0 1 )) ,Φ(𝑠) = (𝑥𝑖2𝑦𝑗2 , (𝛽2 𝛼2

0 1 )) .

Given that Φ(𝑟) has to be an element of order 𝑝𝑛 and the embedding is regular,
using a similar argument as in Section 3.1 we conclude that 𝑗1 = 0, 𝑖1 is a unit
in ℤ𝑝𝑛 and, 𝑗2 is a unit in ℤ𝑞. From Φ(𝑟)𝑝𝑛 = 1, we get that

𝑖1
(
1 + 𝛽1 +⋯ + 𝛽𝑝𝑛−1

)
= 0 (mod 𝑝𝑛),

𝛼1
(
1 + 𝛽1 +⋯ + 𝛽𝑝𝑛−1

)
= 0 (mod 𝑝𝑛),

𝛽𝑝
𝑛

1 = 1 (mod 𝑝𝑛).
From the last equation above and [AP22, Corollary 2.2] we get that 𝛽1 = 1
(mod 𝑝). Hence the first two equations will always be satisfied irrespective of
choices of 𝑖1 and 𝛼1. From the equation Φ(𝑠)𝑞 = 1, we get

𝛽𝑞2 = 1 (mod 𝑝𝑛), (3.23)

𝛼2(1 + 𝛽2 + 𝛽22 + … + 𝛽𝑞−12 ) = 0 (mod 𝑝𝑛) , (3.24)
𝓁𝑞 = 0 (mod 𝑝𝑛), (3.25)

where 𝓁𝑞 is as defined in Section 3.1. Furthermore Φ(𝑟)Φ(𝑠) = Φ(𝑠)Φ(𝑟) gives
that

𝛼2(𝛽1 − 1) = 𝛼1(𝛽2 − 1), (mod 𝑝𝑛) (3.26)

𝑖1 + 𝛽1𝑖2 + 𝛼1𝑘−1
(
1 − 𝑘𝑗2

)
= 𝑖2 + 𝑘𝑗2𝛽2𝑖1 (mod 𝑝𝑛). (3.27)

Let 𝛽2 = 𝑘𝑎 for some 𝑎 ≥ 0. We divide this into two cases 𝑎 = 0 and 𝑎 ≠ 0.

3.3.1. Case I: a=0. In this case we get 𝛼2 = 0 fromEq. (3.24). Hence Eq. (3.26)
is always satisfied. Note that Eq. (3.25) holds true, since 𝑗2 + 𝑎 ≠ 𝑞 by us-
ing similar arguments as of Section 3.1. Putting 𝛽2 = 1 in Eq. (3.27) we get(
𝑖1 + 𝛼1𝑘−1

) (
1 − 𝑘𝑗2

)
= 𝑖2 (1 − 𝛽2) (mod 𝑝𝑛). Hence the choice of 𝛼1 gets de-

termined by those of 𝑖1, 𝑖2, 𝛽1 and, 𝑗2. Hence the total number of embeddings
in this case becomes 𝜑(𝑝𝑛)𝑝2𝑛−1(𝑞 − 1).

3.3.2. Case II: 𝒂 ≠ 𝟎. From Eq. (3.26), substituting 𝛼1 = 𝛼2(𝛽1 − 1)(𝑘𝑎 − 1)−1
in Eq. (3.27) we get

𝑖1 (𝑘𝑎 − 1)
(
1 − 𝑘𝑗2+𝑎

)
= (1 − 𝛽1)

(
𝑖2 (𝑘𝑎 − 1) + 𝛼2𝑘−1

(
1 − 𝑘𝑗2

))
(mod 𝑝𝑛).

(3.28)

We claim that 𝑗2+𝑎 = 𝑞. Indeed, if 𝑗2+𝑎 ≠ 𝑞, we have that the LHS of Eq. (3.28)
is a unit inℤ𝑝𝑛 , whereas (1−𝛽1) is never a unit (since 𝛽1 = 1 (mod 𝑝𝑛)). Next,
putting 𝑗2 + 𝑎 = 𝑞 in Eq. (3.28), the LHS becomes 0. Substituting 𝑗2 + 𝑎 = 𝑞
in Eq. (3.25) we get 𝑖2 = −𝛼2𝑘−1(1 − 𝑘𝑗2)(𝑘𝑗2𝑞−1)(1 + (1 + 𝑘𝑎)𝑘𝑗2 +⋯+(1 +
𝑘𝑎 +⋯ + 𝑘(𝑞−2)𝑎)𝑘(𝑞−2)𝑗2) (mod 𝑝𝑛). Further substituting this value of 𝑖2 to
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Eq. (3.28), we get that both sides of the equation become zero. Hence we get
that in this case, the total number of regular embeddings of𝐶 in Hol(𝐺) is given
by 𝜑(𝑝𝑛)𝑝2𝑛−1(𝑞 − 1).

Proposition 3.4. Let 𝐶 be the cyclic group of order 𝑝𝑛𝑞 and 𝐺 be the nonabelian
group isomorphic to ℤ𝑝𝑛 ⋊ ℤ𝑞. Then 𝑒(𝐶,𝐺) = 2𝑝𝑛−1(𝑞 − 1) and 𝑒′(𝐶,𝐺) =
𝑝2𝑛−1.

Now Theorem 1.1 follows from Proposition 3.2, Proposition 3.3, and Propo-
sition 3.4.

4. The case 𝒑 < 𝒒
In this section, we prove Theorem 1.2. We use methods, described in the

beginning of Section 3. In this case, there are exactly 𝑏+1 types of groups up to
isomorphism, where 𝑏 = min{𝑎, 𝑛}with 𝑝𝑎||𝑞−1. This section will be divided
into four subsections, depending on the isomorphism types of 𝐺 = 𝐺𝑏1 and
𝑁 = 𝐺𝑏2 , where 0 ≤ 𝑏1, 𝑏2 ≤ 𝑛.

4.1. Isomorphic type. First, we consider the isomorphic case. Let𝐺 = ℤ𝑞⋊𝑘
ℤ𝑛
𝑝, where 𝑘 is an element of order 𝑝𝑏. We are looking at 𝑒(𝐺,𝐺).

4.1.1. The case 𝒃 = 𝟎. In this case, the groups are cyclic and 𝑒′(𝐺,𝐺), 𝑒(𝐺,𝐺)
have been enumerated in [Byo13, Theorem 2].

4.1.2. The case when 𝟎 < 𝒃 ≤ 𝒏. Let us take a group homomorphism Φ ∶
𝐺𝑏 ⟶ Hol(𝐺𝑏) defined by

Φ(𝑥) = (𝑦𝑗1𝑥𝑖1 , (𝛾1, (
𝛽1 𝛼1
0 1 ))) ,

and Φ(𝑦) = (𝑦𝑗2𝑥𝑖2 , (𝛾2, (
𝛽2 𝛼2
0 1 ))) .

From Φ(𝑦)𝑞 = 1 and from Φ(𝑥𝑦) = Φ(𝑦𝑘𝑥), we get the relations 𝑖2 = 0, 𝛽2 = 1,
𝛾2 = 1 and

𝛼2(𝑘 − 𝛽1) = 0 (mod 𝑞), (4.1)

𝑗2(𝑘𝑖1−1𝛽1 − 1) = 𝛼2(1 + 𝑘 + 𝑘2⋯ 𝑘𝑖1−1) (mod 𝑞). (4.2)

Thus if 𝛼2 = 0, then 𝛽1 = 𝑘1−𝑖1 . If 𝛼2 ≠ 0, then 𝛽1 = 𝑘 and 𝛼2 = 𝑗2(𝑘 − 1).
From Φ(𝑥)𝑝𝑛 = 1, we get the following equivalences in ℤ𝑞.

𝛽1
𝑝𝑛 = 1 (4.3)

𝛼1(1 + 𝛽1 + 𝛽1
2⋯ 𝛽𝑝

𝑛−1
1 ) = 0. (4.4)
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By explicit calculations, we can show that, the exponent of 𝑦 in Φ(𝑥)𝑝𝑛 is given
by

Exp𝑦
(
Φ(𝑥)𝑝𝑛

)
=𝑗1

⎛
⎜
⎝

𝑝𝑛−1∑

𝑢=0
𝑚𝑢

⎞
⎟
⎠

+ 𝛼1
𝑚(𝑘𝛾1 − 1)

⎧

⎨
⎩

𝑝𝑛−1∑

𝑣=1
𝑚𝑝𝑛−𝑣

(
𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 ) − 𝑘𝑖1

)⎫

⎬
⎭

,

where𝑚 = 𝛽1𝑘𝑖1 . Using Eq. (4.1) and Eq. (4.2), we can show that𝑚 ∈ {𝑘, 𝑘𝑖1+1}

First, let us take 𝑚 = 𝑘. Then
𝑝𝑛−1∑
𝑢=0

𝑚𝑢 ≡ 0 (mod 𝑞). We aim to show that the

other summand is also zero in ℤ𝑞. We have in ℤ𝑞

𝑝𝑛−1∑

𝑣=1
𝑚𝑝𝑛−𝑣

(
𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 ) − 𝑘𝑖

)
=

𝑝𝑛∑

𝑣=1
𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 )−𝑣.

Note that here 𝑖1 and 𝛾1 are fixed. Denote by Γ(𝑣) = 𝑖1(1 + 𝛾1 + … + 𝛾𝑣−11 ) − 𝑣
(mod 𝑝𝑛). Suppose for 1 ≤ 𝑣1 ≠ 𝑣2 ≤ 𝑝𝑛 we have Γ(𝑣1) ≡ Γ(𝑣2) (mod 𝑝𝑛).
Then we have 𝑖(𝛾𝑣11 − 𝛾𝑣21 ) ≡ (𝑣1 − 𝑣2)(𝛾1 − 1) (mod 𝑝𝑛). Since the Sylow-𝑝-
subgroup of ℤ×

𝑝𝑛 is generated by (1 + 𝑝) and 𝛾1 is an element having 𝑝-power
order, say an element of order 𝑝𝑔. Then 𝑝𝑛−𝑔||𝛾1 − 1. Thus 𝑣1 − 𝑣2 ≡ 0
(mod 𝑝𝑔), using Lemma 2.2. Conversely if 𝑣1 − 𝑣2 ≡ 0 (mod ord𝛾1), then
𝑖(𝛾𝑣11 − 𝛾1𝑣2) ≡ (𝑣1− 𝑣2)(𝛾1−1) (mod 𝑝𝑛). Thus Γ gives rise to a function from

ℤ𝑝𝑛 to the subset {𝑝𝑔, 2𝑝𝑔, 3𝑝𝑔,… , 𝑝𝑛}. Thus the sum is reduced to 𝑝𝑔
𝑝𝑛−𝑔∑
𝑡=1

𝑘𝑡𝑝𝑔 .

If 𝑘𝑝𝑔 = 1, we get the sum to be zero. Otherwise this sum is 𝑝𝑔 𝑘
𝑝𝑛 − 1
𝑘𝑝𝑔 − 1

= 0.
This finishes the proof.
Now, take the case when 𝑚 = 𝑘𝑖1+1. Then again the multiplier of 𝑗1 is zero

in ℤ𝑞. We claim that the other summand is also zero in the above expression.
We have in this case,

𝑝𝑛−1∑

𝑣=1
𝑚𝑝𝑛−𝑣

(
𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 ) − 𝑘𝑖1

)

=
𝑝𝑛∑

𝑣=1
𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 −𝑣)−𝑣 −

𝑝𝑛∑

𝑣=1
𝑘𝑖1(1−𝑣)−𝑣

=

⎧
⎪
⎨
⎪
⎩

𝑝𝑛∑
𝑣=1

𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 )−(𝑖1+1)𝑣 when 𝑖1 + 1 ≠ 0 (mod 𝑝)
𝑝𝑛∑
𝑣=1

𝑘𝑖1(1+𝛾1+…+𝛾𝑣−11 −𝑣)−𝑣 −
𝑝𝑛∑
𝑣=1

𝑘𝑖1(1−𝑣)−𝑣 otherwise.
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We start by considering the first subcase, i.e. 𝑖1 + 1 being a unit in ℤ𝑝𝑛 . Again
denote by Γ(𝑣) = 𝑖1

(
1 + 𝛾1 + … + 𝛾𝑣−11 − 𝑣

)
− (𝑖1 + 1)𝑣. Then Γ(𝑣1) ≡ Γ(𝑣2)

(mod 𝑝𝑛) implies that 𝑖1(𝛾
𝑣1
1 − 𝛾𝑣21 ) ≡ (𝑖1 + 1)(𝛾1 − 1)(𝑣1 − 𝑣2) (mod 𝑝𝑛).

Then proceeding as before, we get the result. Next, consider the second sub-
case. In this case, we show that both of the sums are zero. Take Γ1(𝑣) =
𝑖1
(
1 + 𝛾1 + … + 𝛾𝑣−11 − 𝑣

)
−(𝑖1+1)𝑣 andΓ2(𝑣) = 𝑖1(1−𝑣)−𝑣. Assume𝑝ℎ||𝑖1+1,

then Γ2(𝑣′) = Γ2(𝑣′′) iff 𝑣′ ≡ 𝑣′′ (mod 𝑝𝑛−ℎ), using Lemma 2.2. Thus Γ2 deter-
mines a function to the subset {𝑝𝑛−ℎ, 2𝑝𝑛−ℎ,… , 𝑝𝑛} and hence the second term
of the expression above vanishes. An argument similar to the previous cases
of Γ(𝑣), shows that the first term is 0 as well in ℤ𝑞. Thus we have proved the
following lemma.

Lemma 4.1. In Exp𝑦
(
Φ(𝑥)𝑝𝑛

)
, if the coefficient of 𝑗1 is zero in ℤ𝑞, then so is the

coefficient of 𝛼1.

We claim that 𝑖1 is a unit. Suppose 𝑖1 is not a unit. We note that Φ(𝑥)𝑝
𝑛−1 =

(𝑦𝐽 , (1, (1 0
0 1))), for some 𝐽. Note that if 𝛽1 = 0 then 𝛼1 = 0, otherwise 1+𝛽1+

…+𝛽𝑝
𝑛−1

1 = 0, whence thematrix entry is justified. Now, if 𝐽 = 0 then this map
is not regular. Otherwise when 𝐽 ≠ 0, we get 𝐽 is a unit in ℤ𝑞. Since 𝑝 is a unit
is ℤ𝑞, we get that Φ(𝑥1)𝑝

𝑛 is not identity element. This proves claim. Now we
are ready to count the number of Hopf-Galois structures on extensions, whose
group is of the form𝐺𝑏 for some 0 < 𝑏 < 𝑛. This will be divided into four cases.
Before proceeding, we note that none of the cases, impose any condition on 𝑗2
and 𝛾1.
Case 1: The case 𝛽1 = 1. This implies 𝛼2 = 0. Since if 𝛼2 ≠ 0, then 𝛽1 = 𝑘 ≠ 1.
From 𝛼2 = 0 we get that 𝑖1 ≡ 1 (mod 𝑝𝑏), from which we get that 𝑖1 has 𝑝𝑛−𝑏
possibilities. Further 𝛼1 = 0 from Eq. (4.4). In this case, 𝑗1 has 𝑞 possibilities
since 𝑚 ≠ 1, using Lemma 4.1. Thus in this case we get 𝜑(𝑞)𝑞𝑝2(𝑛−𝑏) embed-
ding.
Case 2: The case 𝛽1 ≠ 1, and 𝛼2 = 0. Note that 𝛼2 = 0 implies that 𝛽1 =
𝑘1−𝑖1 . Also, 𝛽1 ≠ 1 imposes the condition that 𝑖1 has 𝜑(𝑝𝑛) − 𝑝𝑛−𝑏 possibili-
ties. In this case, 𝑗1 and 𝛼1 have 𝑞 possibilities each. Thus in this case we have
𝜑(𝑞)

(
𝜑(𝑝𝑛) − 𝑝𝑛−𝑏

)
𝑞2𝑝𝑛−𝑏 embeddings.

Case 3: The case 𝛽1 ≠ 1, 𝛼2 ≠ 0, and 1 + 𝑖1 ≡ 0 (mod 𝑝𝑏). Since 1 + 𝑖1 ≡ 0
(mod 𝑝𝑏), we get𝑚 = 1. Hence the value of 𝑗1 gets fixed. Thus in this case, we
have 𝜑(𝑞)𝑞𝑝2(𝑛−𝑏) embeddings.
Case 4: The case 𝛽1 ≠ 1, 𝛼2 ≠ 0, and 1 + 𝑖1 ≢ 0 (mod 𝑝𝑏). In this case 𝑖1 has
𝜑(𝑝𝑛) − 𝑝𝑛−𝑏 possibilities. Similar to Case 2, 𝑗1 has 𝑞 possible values. Thus in
this case, we have 𝜑(𝑞)

(
𝜑(𝑝𝑛) − 𝑝𝑛−𝑏

)
𝑞2𝑝𝑛−𝑏 embeddings.

In all of the cases above the embeddings are regular, which is guaranteed by
the conditions that 𝑖1 and 𝑗2 are units. Furthermore, In conclusion, we have
proved the following result.
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Proposition 4.2. Let 𝐺𝑏 = ℤ𝑞 ⋊𝑘 ℤ𝑝𝑛 , where 𝑘 ∈ ℤ𝑞 is of order 𝑝𝑏 for some
0 < 𝑏 ≤ 𝑛. Then 𝑒′ (𝐺𝑏, 𝐺𝑏) = 𝑒 (𝐺𝑏, 𝐺𝑏) = 2

(
𝑝𝑛−𝑏 + 𝑞

(
𝜑(𝑝𝑛) − 𝑝𝑛−𝑏

))
.

4.2. Non-isomorphic type. This casewill be divided into three cases, depend-
ing on the values of 𝑏1 and 𝑏2.

4.2.1. The case 𝟏 ≤ 𝒃𝟏 ≠ 𝒃𝟐 ≤ 𝒏. We will need a variation of Lemma 4.1, for
dealing with this case. We start with a presentation of these two groups. For
𝑡 = 1 and 2, let us fix

𝐺𝑏𝑡 =
⟨
𝑥𝑡, 𝑦𝑡

|||||𝑥
𝑝𝑛
𝑡 = 𝑦𝑞𝑡 = 1, 𝑥𝑡𝑦𝑡𝑥−1𝑡 = 𝑦𝑘𝑡𝑡

⟩
,

where 𝑘𝑡 is an element of order 𝑝𝑏𝑡 . Now we consider Φ ∶ 𝐺𝑏1 ⟶ Hol
(
𝐺𝑏2

)

is an regular embedding and Φ(𝑥1) = (𝑦𝑗12 𝑥
𝑖1
2 , (𝛾1, (

𝛽1 𝛼1
0 1 ))), then it can be

proved that,

Exp𝑦
(
Φ(𝑥)𝑝𝑛

)
=𝑗

⎛
⎜
⎝

𝑝𝑛−1∑

𝑢=0
𝑚𝑢

⎞
⎟
⎠

+ 𝛼1
𝑚(𝑘𝛾12 − 1)

⎧

⎨
⎩

𝑝𝑛−1∑

𝑣=1
𝑚𝑝𝑛−𝑣 (𝑘𝑖2(1+𝛾1+…+𝛾

𝑣−1
1 )

2 − 𝑘𝑖22 )
⎫

⎬
⎭

,

where𝑚 = 𝛽1𝑘
𝑖1
2 . It can be shown that𝑚 ∈

{
𝑘1, 𝑘1𝑘

𝑖1
2

}
modulo 𝑞, using Eq. (4.1)

and Eq. (4.2). Note that in any of the cases 𝑏1 < 𝑏2 or 𝑏2 < 𝑏1, 𝑚 is purely a
power of 𝑘1 or 𝑘2, since ℤ×

𝑝𝑛 is cyclic. Then a variation of the argument before
Lemma 4.1, proves the following result.

Lemma 4.3. In Exp𝑦
(
Φ(𝑥1)𝑝

𝑛) if the coefficient of 𝑗1 is 0 in ℤ𝑞, then so is the
coefficients of 𝛼1.
Hoping that the reader is now familiar with the flow of arguments, without

loss of generality in this case we will assume that the embedding is given by,

Φ(𝑥1) = (𝑦𝑗12 𝑥
𝑖1
2 (𝛾1, (

𝛽1 𝛼1
0 1 ))) ,Φ(𝑦1) = (𝑦𝑗22 (1, (1 𝛼2

0 1 ))) ,

where 𝑖1 is a unit inℤ𝑝𝑛 (using same argument as in Section 4.1), 𝛾1 is a unit in
ℤ𝑝𝑛 satisfying 𝛾

𝑝𝑛−𝑏2
1 = 1, and 𝑗2 is a unit in ℤ𝑞. Comparing the both sides of

the equation Φ(𝑥1)Φ(𝑦1) = Φ(𝑦1)𝑘1Φ(𝑥1), we get
𝛼2(𝑘1 − 𝛽1) = 0 (mod 𝑞), (4.5)

𝑘𝑖12 𝛽1𝑗2 = 𝑗2𝑘1 + 𝑗2
(
1 + 𝑘2 + … + 𝑘𝑖1−12

)
(mod 𝑞). (4.6)

From Eq. (4.5) either 𝛼2 = 0 or 𝛽1 = 𝑘1. Irrespective of the cases 𝛽1𝑘
𝑖1
1 ≠ 1.

Thus from Lemma 4.3 𝑗1 can take any value from ℤ𝑞. Now, in the first case,
𝛽1 = 𝑘1𝑘

−𝑖1
2 (from Eq. (4.6)). Also 𝛾1 and 𝛼1 have 𝑝𝑛−𝑏2 and 𝑞 many choices
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respectively. This gives that total number of embeddings in this case is given by
𝜑(𝑞)𝜑(𝑝𝑛)𝑞2𝑝𝑛−𝑏2 . In the second case, 𝛼2 = (𝑘2 − 1)𝑗2 and 𝛾1, 𝛼1 have 𝑝𝑛−𝑏2 , 𝑞
many choices respectively. Thus the total number of embeddings arising from
this case is given by 𝜑(𝑞)𝜑(𝑝𝑛)𝑞2𝑝𝑛−𝑏2 . Given that 𝑖1 and 𝑗2 are units, we get
that the constructed map is regular. We now have the following result.

Proposition 4.4. Let 𝐺𝑏𝑡 = ℤ𝑞 ⋊𝑘𝑡 ℤ𝑝𝑛 , where 𝑘𝑡 is an element of ℤ𝑝𝑛 of order
𝑝𝑏𝑡 , for 𝑡 = 1, 2. Let 0 < 𝑏1 ≠ 𝑏2 ≤ 𝑛. Then

𝑒′
(
𝐺𝑏1 , 𝐺𝑏2

)
= 2𝑞𝑝𝑛+𝑏1−𝑏2−1(𝑝 − 1), 𝑒

(
𝐺𝑏1 , 𝐺𝑏2

)
= 2𝑞𝑝𝑛−1(𝑝 − 1).

4.2.2. The case 𝟎 = 𝒃𝟏 < 𝒃𝟐 ≤ 𝒏. In this case 𝐺𝑏1 is cyclic and hence the
presentations of the groups 𝐺𝑏1 and 𝐺𝑏2 are chosen to be

𝐺𝑏1 =
⟨
𝑥1, 𝑦1

|||||𝑥
𝑝𝑛
1 = 𝑦𝑞1 = 1, 𝑥1𝑦1𝑥−11 = 𝑦1

⟩
,

𝐺𝑏2 =
⟨
𝑥2, 𝑦2

|||||𝑥
𝑝𝑛
2 = 𝑦𝑞2 = 1, 𝑥2𝑦2𝑥−12 = 𝑦𝑘22

⟩
,

with 𝑘2 ∈ ℤ𝑝𝑛 being an element of multiplicative order 𝑝𝑏2 . Fix a homomor-
phism Φ ∶ 𝐺𝑏1 ⟶ Hol(𝐺𝑏2) given by

Φ(𝑥1) = (𝑦𝑗12 𝑥
𝑖1
2 (𝛾1, (

𝛽1 𝛼1
0 1 ))) ,Φ(𝑦1) = (𝑦𝑗22 𝑥

𝑖2
2 (𝛾2, (

𝛽2 𝛼2
0 1 ))) .

From the conditionΦ(𝑦1)𝑞, we get the conditions that 𝑖2 = 0, 𝛾2 = 0 and 𝛽2 = 1.
To ensure the regularity of the maps, we will need 𝑖1 and 𝑗2 to be units in ℤ𝑝𝑛
and ℤ𝑞 respectively (see Section 4.1). Equating the two sides of the equality
Φ(𝑥1)Φ(𝑦1) = Φ(𝑦1)Φ(𝑥1), we get that

𝛼2(1 − 𝛽1) = 0 (mod 𝑞), (4.7)

𝛽1𝑘
𝑖1
2 𝑗2 = 𝑗2 + 𝛼2

(
1 + 𝑘2 + … + 𝑘𝑖1−12

)
(mod 𝑞). (4.8)

Hence from Eq. (4.7) we have either 𝛼2 = 0 or 𝛽1 = 1. In case 𝛼2 = 0, plugging
the value in Eq. (4.8) we get that 𝛽1𝑘

𝑖1
2 = 1, whence 𝑗1 has fixed choice, once 𝛼1

is fixed. Furthermore 𝛼1, 𝛾1 have 𝑞, 𝑝𝑛−𝑏2 choices. In the case 𝛽 + 1 = 1, from
Eq. (4.8) we get that 𝛼2 = 𝑗2(𝑘2 − 1) and 𝛽1𝑘

𝑖1
2 ≠ 1. Hence Lemma 4.3 applies.

Thus 𝑗1, and 𝛾1 have 𝑞, and 𝑝𝑛−𝑏2 possibilities. We conclude that in both cases
the number of regular embedding of the cyclic group of order 𝑝𝑛𝑞 in Hol

(
𝐺𝑏2

)

is given by 𝑞𝜑(𝑞)𝑝𝑛−𝑏2𝜑(𝑝𝑛). We have the following result.

Proposition 4.5. Let 𝐶 denotes the cyclic group of order 𝑝𝑛𝑞 and 𝐺𝑏 ≅ ℤ𝑞 ⋊𝑘𝑏
ℤ𝑝𝑛 , where 𝑘𝑏 ∈ ℤ𝑞 is an element of multiplicative order 𝑝𝑏. Then

𝑒′(𝐶,𝐺𝑏) = 2𝑝𝑛−𝑏𝑞, and 𝑒(𝐶,𝐺𝑏) = 2(𝑝 − 1)𝑝𝑛−1
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4.2.3. The case 𝟎 = 𝒃𝟐 < 𝒃𝟏 ≤ 𝒏. Here we count the number 𝑒′(𝐺𝑏1 , 𝐺𝑏2)
(equivalently 𝑒(𝐺𝑏1 , 𝐺𝑏2)). Here 𝐺𝑏2 is a cyclic group of order 𝑝

𝑛𝑞. In this case,
we have,

Hol(𝐺𝑏2) ≅ {
(
𝑦𝑗2𝑥

𝑖
2, (𝜔, 𝛿)

)||||||
(𝑗,𝑖)∈ℤ𝑞×ℤ𝑝𝑛

(𝜔,𝛿)∈ℤ×
𝑞×ℤ×

𝑝𝑛
} .

We fix an embedding Φ ∶ 𝐺𝑏1 ⟶ Hol
(
𝐺𝑏2

)
determined by

Φ(𝑥1) =
(
𝑦𝑗12 𝑥

𝑖1
2 , (𝜔1, 𝛿1)

)
, Φ(𝑥1) =

(
𝑦𝑗22 𝑥

𝑖2
2 , (𝜔2, 𝛿2)

)
.

From Φ(𝑦1)𝑞 = 1, we get 𝜔2 = 1, 𝛿2 = 1 and 𝑖2 = 0. Considering Φ(𝑥1)𝑝
𝑛 = 1

we get that 𝜔𝑝
𝑛

1 = 1, 𝛿𝑝
𝑛

1 = 1, and

𝑗1
(
1 + 𝜔1 + … + 𝜔𝑝

𝑛−1
1

)
= 0 (mod 𝑞), (4.9)

𝑖1
(
1 + 𝛿1 + … + 𝛿𝑝

𝑛−1
1

)
= 0 (mod 𝑝𝑛).. (4.10)

Finally comparing both sides of the equation Φ(𝑥1)Φ(𝑦1) = Φ(𝑦1)𝑘1Φ(𝑥1), we
get that 𝜔1 = 𝑘1 and hence Eq. (4.9) gets satisfied automatically. To ensure
that the embedding is regular, we will need that 𝑖1 and 𝑗2 are units. Any choice
of 𝛿1 satisfies Eq. (4.10). Thus 𝑗1, 𝑗2, 𝑖1, and 𝛿1 have 𝜑(𝑞), 𝑞, 𝜑(𝑝𝑛), and 𝑝𝑛−1
possibilities respectively. We conclude with the following result.

Proposition 4.6. Let𝐺𝑏 ≅ ℤ𝑞⋊𝑘𝑏 ℤ𝑝𝑛 , where 𝑘𝑏 is an element ofℤ𝑞 of order 𝑝𝑏,
1 ≤ 𝑏 ≤ 𝑛, and 𝐶 denote the cyclic group of order 𝑝𝑛𝑞. Then we have

𝑒′ (𝐺𝑏, 𝐶) = 𝑝𝑛+𝑏−2(𝑝 − 1), 𝑒 (𝐺𝑏, 𝐶) = 𝑝𝑛−1𝑞.

TheTheorem1.2 follows fromProposition 4.2, Proposition 4.4, Proposition 4.5,
and Proposition 4.6.

5. Realizable pair of groups
Given twofinite groups𝐺 and𝑁 of the same order, we say that the pair (𝐺,𝑁)

is realizable if there exists a Hopf-Galois structure on a Galois 𝐺-extension, of
type𝑁. In other words a pair (𝐺,𝑁) is realizable if 𝑒(𝐺,𝑁) ≠ 0. This is equiva-
lent to saying there exists a skew brace with its multiplicative group isomorphic
to 𝐺 and its additive group isomorphic to 𝑁. This problem is not well stud-
ied since given an integer 𝑛, the classification of all the groups of size 𝑛 is not
known. However, they have been studied for a variety of groups. When 𝐺 is a
cyclic group of odd order and the pair (𝐺,𝑁) is realizable then in [Byo13], the
author showed that if𝑁 is abelian then it is cyclic. If𝑁 is a non-abelian simple
group and 𝐺 is a solvable group with the pair (𝐺,𝑁) being realizable, then in
[Tsa23]𝑁was completely classified. Whenever𝑁 or𝐺 is isomorphic toℤ𝑛⋊ℤ2
for an odd 𝑛 then their realizabilities were studied in [AP23].
Among a few available techniques, the notion of bijective crossed homomor-

phism to study realizability problems for a pair of groups of the same order was
introduced byTsang in thework [Tsa19]. Given an element 𝔣 ∈ Hom(𝐺,Aut(𝑁)),
a map 𝔤 ∈ Map(𝐺,𝑁) is said to be a crossed homomorphism with respect to 𝔣 if
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𝔤(𝑎𝑏) = 𝔤(𝑎)𝔣(𝑎)(𝔤(𝑏)) for all 𝑎, 𝑏 ∈ 𝐺. Setting 𝑍1𝔣 (𝐺,𝑁) = {𝔤 ∶ 𝔤 is bijective
crossed homomorphism with respect to 𝔣}, we have the following two results.

Proposition 5.1. [Tsa19, Proposition 2.1]The regular subgroups ofHol(𝑁)which
are isomorphic to 𝐺 are precisely the subsets ofHol(𝑁) of the form {(𝔤(𝑎), 𝔣(𝑎)) ∶
𝑎 ∈ 𝐺}, where 𝔣 ∈ Hom(𝐺,Aut(𝑁)), 𝔤 ∈ 𝑍1𝔣 (𝐺,𝑁).

Proposition 5.2. [TQ20, Proposition 3.3]Let𝐺,𝑁 be two groups such that |𝐺| =
|𝑁|. Let 𝔣 ∈ Hom(𝐺,Aut(𝑁)) and 𝔤 ∈ 𝑍1𝔣 (𝐺,𝑁) be a bijective crossed homomor-
phism (i.e. (𝐺,𝑁) is realizable). Then if𝑀 is a characteristic subgroup of 𝑁 and
𝐻 = 𝔤−1(𝑀), we have that the pair (𝐻,𝑀) is realizable.

Wewill need the following two results, where the realizability of cyclic groups
have been characterized. We will use modifications of these characterizations
towards proving the realizability of groups of the form ℤ𝑝𝑛 ⋊ℤ𝑞.

Proposition 5.3. [Tsa22, Theorem 3.1]Let𝑁 be a group of odd order 𝑛 such that
the pair (ℤ𝑛, 𝑁) is realizable. Then 𝑁 is a 𝐶-group (i.e. all the Sylow subgroups
are cyclic).

Proposition 5.4. [Rum19, Theorem 1] Let 𝐺 be a group of order 𝑛 such that
(𝐺,ℤ𝑛) is realizable. Then 𝐺 is solvable and almost Sylow-cyclic (i.e. its Sylow
subgroups of odd order are cyclic, and every Sylow-2 subgroup of G has a cyclic
subgroup of index at most 2).

Theorem 5.5. Let 𝑁 be a group of order 𝑞𝑝𝑛, where 𝑞 is a prime, 𝑞 < 𝑝 and
(𝑞, 𝑝) = 1. Then the pair (ℤ𝑝𝑛 ⋊ ℤ𝑞, 𝑁) (or (𝑁,ℤ𝑝𝑛 ⋊ ℤ𝑞)) is realizable if and
only if𝑁 ≅ ℤ𝑝𝑛 ⋊ℤ𝑞.

Proof. Let (ℤ𝑝𝑛 ⋊ℤ𝑞, 𝑁) be realizable. By Proposition 5.1 there exists a bijec-
tive crossed homomorphism 𝔤 ∈ 𝑍1𝔣 (ℤ𝑝𝑛 ⋊ ℤ𝑞, 𝑁) for some 𝔣 ∈ Hom(ℤ𝑝𝑛 ⋊
ℤ𝑞,Aut(𝑁)). Let 𝐻𝑝 be the Sylow-𝑝 subgroup of 𝑁 (it is unique since 𝑞 <
𝑝). Then using Proposition 5.2 the pair (𝔤−1𝐻𝑝, 𝐻𝑝) is realizable. Note that
ℤ𝑝𝑛 ⋊ ℤ𝑞 has unique subgroup of order 𝑝𝑛, which is cyclic. This implies that
(ℤ𝑝𝑛 , 𝐻𝑝) is realizable. Hence by Proposition 5.3 we get that 𝐻𝑝 is isomorphic
to ℤ𝑝𝑛 and therefore𝑁 ≅ ℤ𝑝𝑛 ⋊ℤ𝑞. Conversely if𝑁 ≅ ℤ𝑝𝑛 ⋊ℤ𝑞 then the pair
(ℤ𝑝𝑛 ⋊ℤ𝑞, 𝑁) is realizable since 𝑒(ℤ𝑝𝑛 ⋊ℤ𝑞, 𝑁) is non-zero from Section 3.
Now if the pair (𝑁,ℤ𝑝𝑛 ⋊ ℤ𝑞) is realizable, then by Proposition 5.1 there

exists a bijective crossed homomorphism 𝔤 ∈ 𝑍1𝔣 (𝑁,ℤ𝑝𝑛 ⋊ ℤ𝑞) for some 𝔣 ∈
Hom(𝐺,Aut(ℤ𝑛 ⋊ ℤ2)). Since ℤ𝑝𝑛 is a characteristic subgroups of ℤ𝑝𝑛 ⋊ ℤ𝑞,
we get that 𝔤−1(ℤ𝑝𝑛) is a subgroup of𝑁 and (𝔤−1(ℤ𝑝𝑛),ℤ𝑝𝑛) is realizable. Then
by Proposition 5.4, we have that 𝔤−1(ℤ𝑝𝑛) is almost Sylow-cylic and therefore
isomorphic to ℤ𝑝𝑛 . Hence 𝑁 ≅ ℤ𝑝𝑛 ⋊ ℤ𝑞. Conversely if 𝑁 ≅ ℤ𝑝𝑛 ⋊ ℤ𝑞, then
by Section 3 we have the pair (𝑁,ℤ𝑝𝑛 ⋊ℤ𝑞) is realizable. □



HOPF GALOIS STRUCTURES, SKEW BRACES FOR GROUPS OF SIZE 𝑝𝑛𝑞 1583

References
[AP22] Arvind, N. & Panja, S.Onℤ𝑛⋊ℤ2-Hopf-Galois structures. J. Algebra. 596 pp. 37-52

(2022), MR4366304, Zbl 1485.12006, doi: 10.1016/j.jalgebra.2021.12.035. 1567, 1571,
1575

[AP23] Arvind, N. & Panja, S. Hopf-Galois realizability of ℤ𝑛 ⋊ ℤ2. J. Pure Appl.
Algebra. 227, Paper No. 107261, 6 (2023), MR4510807, Zbl 1508.20005,
doi: 10.1016/j.jpaa.2022.107261. 1581

[BCJ16] Bachiller, D., Cedó, F. & Jespers, E. Solutions of the Yang-Baxter equation associ-
ated with a left brace. J. Algebra. 463 pp. 80-102 (2016), MR3527540, Zbl 1348.16027,
doi: 10.1016/j.jalgebra.2016.05.024. 1566

[BCM06] Bidwell, J., Curran, M. & McCaughan, D. Automorphisms of direct products of
finite groups. Arch. Math. (Basel). 86, 481-489 (2006), MR2241597, Zbl 1103.20016,
doi: 10.1007/s00013-005-1547-z. 1571

[Bur55] Burnside, W. Theory of groups of finite order. Dover Publications, Inc., New York.
xxiv+512, MR0069818, Zbl 1375.20001. 1569

[Byo13] Byott, N. Nilpotent and abelian Hopf-Galois structures on field exten-
sions. J. Algebra. 381 pp. 131-139 (2013), MR3030514, Zbl 1345.12002,
doi: 10.1016/j.jalgebra.2013.02.008. 1567, 1576, 1581

[Byo96] Byott, N. Uniqueness of Hopf Galois structure for separable field exten-
sions. Comm. Algebra. 24, 3217-3228 (1996), MR1402555, Zbl 0878.12001,
doi: 10.1080/00927879608825743. 1567

[CCD20] Campedel, E., Caranti, A. & Del Corso, I. Hopf-Galois structures on ex-
tensions of degree 𝑝𝑞 and skew braces of order 𝑝2𝑞: the cyclic Sylow p-
subgroup case. J. Algebra. 556 pp. 1165-1210 (2020), MR4089566, Zbl 1465.12006,
doi: 10.1016/j.jalgebra.2020.04.009. 1567

[Chi+21] Childs, L., Greither, C., Keating, K., Koch, A., Kohl, T., Truman, P. & Under-
wood, R.Hopf algebras and Galois module theory. (AmericanMathematical Society,
Providence, RI), MR4390798, Zbl 1489.16001, doi: 10.1090/surv/260. 1567

[CJO14] Cedó, F., Jespers, E. & Okniński, J. Braces and the Yang-Baxter equation. Comm.
Math. Phys.. 327, 101-116 (2014), MR3177933, Zbl 1287.81062, doi: 10.1007/s00220-
014-1935-y. 1566

[CS69] Chase, S.& Sweedler,M.Hopf algebras andGalois theory. (Springer-Verlag, Berlin-
New York,1969), MR0260724, Zbl 0197.01403. 1566

[GP87] Greither, C. & Pareigis, B. Hopf Galois theory for separable field extensions.
J. Algebra. 106, 239-258 (1987), MR0878476, Zbl 0615.12026, doi: 10.1016/0021-
8693(87)90029-9. 1566, 1567

[Koh20] Kohl, T. Enumerating dihedral Hopf-Galois structures acting on dihedral
extensions. J. Algebra. 542 pp. 93-115 (2020), MR4018326, Zbl 1462.12002,
doi: 10.1016/j.jalgebra.2019.08.040. 1567

[Rum19] Rump, W. Classification of cyclic braces, II. Trans. Amer. Math. Soc.. 372, 305-328
(2019), MR3968770, Zbl 1417.81140, doi: 10.1090/tran/7569. 1582

[SV18] Smoktunowicz, A. & Vendamin, L. On skew brace (with an appendix by N. Byott
and L. Vendramin). J. Comb. Algebra. 2, 47-86 (2018), MR3763907, Zbl 1416.16037,
doi: 10.4711/JCA/2-1-3. 1566

[TQ20] Tsang, C. & Qin, C. On the solvability of regular subgroups in the holomorph of a
finite solvable group. Internat. J. Algebra Comput.. 30, 253-265 (2020), MR4077413,
Zbl 1493.20002, doi: 10.1142/S0218196719500735. 1582

[Tsa19] Tsang, C. Non-existence of Hopf-Galois structures and bijective crossed homomor-
phisms. J. Pure Appl. Algebra. 223, 2804-2821 (2019),MR3912948, Zbl 1472.12001,
doi: 10.1016/j.jpaa.2018.09.06. 1581, 1582

http://www.ams.org/mathscinet-getitem?mr=4366304
http://www.emis.de/cgi-bin/MATH-item?1485.12006
http://dx.doi.org/10.1016/j.jalgebra.2021.12.035
http://www.ams.org/mathscinet-getitem?mr=4510807
http://www.emis.de/cgi-bin/MATH-item?1508.20005
http://dx.doi.org/10.1016/j.jpaa.2022.107261
http://www.ams.org/mathscinet-getitem?mr=3527540
http://www.emis.de/cgi-bin/MATH-item?1348.16027
http://dx.doi.org/10.1016/j.jalgebra.2016.05.024
http://www.ams.org/mathscinet-getitem?mr=2241597
http://www.emis.de/cgi-bin/MATH-item?1103.20016
http://dx.doi.org/10.1007/s00013-005-1547-z
http://www.ams.org/mathscinet-getitem?mr=0069818
http://www.emis.de/cgi-bin/MATH-item?1375.20001
http://www.ams.org/mathscinet-getitem?mr=3030514
http://www.emis.de/cgi-bin/MATH-item?1345.12002
http://dx.doi.org/10.1016/j.jalgebra.2013.02.008
http://www.ams.org/mathscinet-getitem?mr=1402555
http://www.emis.de/cgi-bin/MATH-item?0878.12001
http://dx.doi.org/10.1080/00927879608825743
http://www.ams.org/mathscinet-getitem?mr=4089566
http://www.emis.de/cgi-bin/MATH-item?1465.12006
http://dx.doi.org/10.1016/j.jalgebra.2020.04.009
http://www.ams.org/mathscinet-getitem?mr=4390798
http://www.emis.de/cgi-bin/MATH-item?1489.16001
http://dx.doi.org/10.1090/surv/260
http://www.ams.org/mathscinet-getitem?mr=3177933
http://www.emis.de/cgi-bin/MATH-item?1287.81062
http://dx.doi.org/10.1007/s00220-014-1935-y
http://dx.doi.org/10.1007/s00220-014-1935-y
http://www.ams.org/mathscinet-getitem?mr=0260724
http://www.emis.de/cgi-bin/MATH-item?0197.01403
http://www.ams.org/mathscinet-getitem?mr=0878476
http://www.emis.de/cgi-bin/MATH-item?0615.12026
http://dx.doi.org/10.1016/0021-8693(87)90029-9
http://dx.doi.org/10.1016/0021-8693(87)90029-9
http://www.ams.org/mathscinet-getitem?mr=4018326
http://www.emis.de/cgi-bin/MATH-item?1462.12002
http://dx.doi.org/10.1016/j.jalgebra.2019.08.040
http://www.ams.org/mathscinet-getitem?mr=3968770
http://www.emis.de/cgi-bin/MATH-item?1417.81140
http://dx.doi.org/10.1090/tran/7569
http://www.ams.org/mathscinet-getitem?mr=3763907
http://www.emis.de/cgi-bin/MATH-item?1416.16037
http://dx.doi.org/10.4711/JCA/2-1-3
http://www.ams.org/mathscinet-getitem?mr=4077413
http://www.emis.de/cgi-bin/MATH-item?1493.20002
http://dx.doi.org/10.1142/S0218196719500735
http://www.ams.org/mathscinet-getitem?mr=3912948
http://www.emis.de/cgi-bin/MATH-item?1472.12001
http://dx.doi.org/10.1016/j.jpaa.2018.09.06


1584 NAMRATA ARVIND AND SAIKAT PANJA

[Tsa21] Tsang, C. Hopf-Galois structures on finite extensions with quasisimple Galois
group. Bull. Lond. Math. Soc.. 53, 148-160 (2021),MR4224519, Zbl 1509.20009,
doi: 10.1112/blms.12407. 1567

[Tsa22] Tsang, C. Hopf-Galois structures on cyclic extensions and skew braces with cyclic
multiplicative group. Proc. Amer. Math. Soc. Ser. B. 9 pp. 377-392 (2022), MR4500760,
Zbl 1509.20009 doi: 10.1090/bproc/138. 1582

[Tsa23] Tsang, C. Non-abelian simple groups which occur as the type of a Hopf–Galois
structure on a solvable extension. Bulletin Of The London Mathematical Society.
(2023),MR4672898,Zbl 1528.20017, doi: 10.1112/blms.12860. 1581

[Wal86] Walls, G. Automorphism groups. Amer. Math. Monthly. 93, 459-462 (1986),
MR843190,doi: 10.1080/00029890.1986.11971854. 1570, 1571

[Zen18] Zenouz, N.OnHopf-Galois Structures and Skew Braces of Order 𝑝3. PhDThesis, The
University Of Exeter, UK. (2018),MR4639134. 1567

namchey@gmail.com

(Namrata Arvind) The Institute ofMathematical Sciences, 4th Cross St, CIT Campus,
Tharamani, Chennai, Tamil Nadu 600113, India

panjasaikat300@gmail.com

(Saikat Panja)Harish-Chandra Research Institute- Main Building, Chhatnag Road,
Jhusi, Uttar Pradesh 211019, India

This paper is available via http://nyjm.albany.edu/j/2024/30-66.html.

http://www.ams.org/mathscinet-getitem?mr=4224519
http://www.emis.de/cgi-bin/MATH-item?1509.20009
http://dx.doi.org/10.1112/blms.12407
http://www.ams.org/mathscinet-getitem?mr=4500760
http://www.emis.de/cgi-bin/MATH-item?1509.20009 
http://dx.doi.org/10.1090/bproc/138
http://www.ams.org/mathscinet-getitem?mr=4672898
http://www.emis.de/cgi-bin/MATH-item?1528.20017
http://dx.doi.org/10.1112/blms.12860
http://www.ams.org/mathscinet-getitem?mr=843190
http://dx.doi.org/10.1080/00029890.1986.11971854
http://www.ams.org/mathscinet-getitem?mr=4639134
mailto:namchey@gmail.com
mailto:panjasaikat300@gmail.com
http://nyjm.albany.edu/j/2024/30-66.html

	1. Introduction
	2. Preliminaries
	3. The case p>q
	4. The case p < q
	5. Realizable pair of groups
	References

