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On Spin(2023)-torsors

Nikita A. Karpenko

Abstract. The torsion index of a spin group Spin(𝑑), describing the split-
ting behaviour of generic Spin(𝑑)-torsor 𝐸, is a 2-power 2𝑡 with the torsion
exponent 𝑡 determined by B. Totaro in 2005. The critical exponent 𝑖𝑡 is respon-
sible for partial splitting behaviour of 𝐸 and takes values inside the doubleton
{𝑡 − 1, 𝑡}. For all 𝑑 ≤ 16, the value of 𝑖𝑡 is known to be high. The very first
case of the low value, obtained very recently, is 𝑑 = 17. In the present work,
we develop a newmethodwhich allows one to show that 𝑖𝑡 = 𝑡−1 for most 𝑑.
In particular, it is shown that 𝑖𝑡 is low for every 𝑑 = 2𝑟 + 1 with 𝑟 ≥ 4 as well
as for 𝑑 = 2023, playing the role of a “randomly chosen” high dimension. For
𝑑 = 2023, using an extension of the new method (applicable to arbitrary 𝑑),
several exponents beyond the critical one are also determined.
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1. Introduction
We use notation and terminology of [5]. Given a generic 𝑑-dimensional qua-

dratic form 𝑞 (over a field) of trivial discriminant and Clifford invariant, where
𝑑 = 2𝑛 + 1 or 𝑑 = 2𝑛 + 2 for some 𝑛 ≥ 1, we write 𝑡 for the torsion exponent of
the algebraic group Spin(𝑑), depending only on 𝑛 and determined in [9, The-
orem 0.1], and we are interested to determine the critical exponent 𝑖𝑡 of 𝑞, i.e.,
the integer such that 2𝑖𝑡 is the index of the 𝑡th (orthogonal) grassmannian of 𝑞,
where the index of a variety is the g.c.d. of degrees of its closed points.
By definition, the quadratic form 𝑞 is given by a generic torsor 𝐸 under the

spin group Spin(𝑑). The integer 2𝑡 is the g.c.d. of finite extensions of the base
field of 𝐸 trivializing 𝐸, or, equivalently, splitting 𝑞. The integer 2𝑖𝑡 provides

Received September 26, 2023.
2020Mathematics Subject Classification. 20G15; 14C25.
Key words and phrases. Quadratic forms over fields; affine algebraic groups; spin groups;

projective homogeneous varieties; Chow rings.
The author’s work has been supported by a Discovery Grant from the National Science and

Engineering Research Council of Canada. It has been finalized during his stay at the Université
de Lorraine.

ISSN 1076-9803/2024

550

http://nyjm.albany.edu/nyjm.html
http://nyjm.albany.edu/j/2024/Vol30.htm


ON SPIN(2023)-TORSORS 551

similar information on partial trivialization of 𝐸 and partial splitting of 𝑞, see
[5] for details.
The possible values of 𝑖𝑡 are 𝑡 and 𝑡 − 1. We say that the critical exponent is

high if 𝑖𝑡 = 𝑡. Otherwise we say that it is low which means that 𝑞 acquires Witt
index 𝑡 over a finite base field extension of degree not divisible by 2𝑡.
The critical exponent is high for any 𝑑 ≤ 16. It has been shown in [5, Theo-

rem 4.1 and Corollary 4.4] that the critical exponent is low for 𝑑 = 17 and for
𝑑 = 18. With the help of computer calculations, the same has been shown for
𝑑 = 19 and 𝑑 = 20 in [6]. No other cases of low critical exponent were known
so far.
As follows from [7, Lemma 2.3], if the critical exponent is low for 𝑑 = 2𝑛+1,

then it is also low for 𝑑 = 2𝑛 + 2. For this reason, below we are assuming that
𝑑 is odd.
As the main result of the present work, we develop in the next section (§2)

a new method which allows one to show that the critical exponent if low for
most 𝑛, the precise statement being Theorem 2.8 (with a minor addition given
by Proposition 2.9). For 𝑛 ≥ 10 which are not covered by these two results, the
critical exponent is yet to be determined.
Proposition 2.9 deals with 𝑛 = 16 and is added in order to cover all values of

𝑛 given by 2-powers. It is proved by the method of [5], where the case of 𝑛 = 8
is treated. The 2-power higher than 16 are covered by Theorem 2.8 which is
proved by entirely different means.
In the last section (§3), we develop an extension of the new method of §2

which allows one to determine several exponents beyond the critical one. We
illustrate the power of the extension applying it to a “randomly chosen” high
dimension 𝑑 = 2023.

2. The critical exponent
The following result, based on a joint effort of [2], [6], and [7], reduces the

determination of the critical exponent to an “elementary” computation. Let us
write 𝑋 for the highest grassmannian of a split 𝑑-dimensional quadratic form
and let us write𝑌 for the complete flag variety of the tautological vector bundle
T on 𝑋. By [4, Example 3.3.5], the CH(𝑋)-algebra CH(𝑌) is generated by the
Chern classes 𝑥1, … , 𝑥𝑛 of the line bundles given by the successive quotients of
the tautological (rank 1 up to rank 𝑛) bundles on 𝑌. Moreover, the elementary
symmetric polynomials in 𝑥1, … , 𝑥𝑛 are equal to the Chern classes of T , and
these are the defining relations of the CH(𝑋)-algebra CH(𝑌). By the results of
[3, §86], originally obtained in [10], the ringCH(𝑋) is generated by the elements
𝑒1, … , 𝑒𝑛, satisfying the condition 2𝑒𝑖 = (−1)𝑖𝑐𝑖(T ) and subject to the relations

𝑒2𝑖 − 2𝑒𝑖−1𝑒𝑖+1 + 2𝑒𝑖−2𝑒𝑖+2 −⋯+ (−1)𝑖−12𝑒1𝑒2𝑖−1 + (−1)𝑖𝑒2𝑖 = 0,

where 𝑖 = 1, … , 𝑛 and where 𝑒𝑖 ∶= 0 for 𝑖 > 𝑛. The condition on 2𝑒𝑖 determines
𝑒𝑖 because the additive group of CH(𝑋) is free of torsion.



552 NIKITA A. KARPENKO

Let 𝐶𝑌 ⊂ CH(𝑌) be the subring generated by 𝑥1, … , 𝑥𝑛. Let us consider the
element

𝑒 ∶= ∏
𝐼⊂{𝑡+1,…,𝑛}

(𝑒1 −
∑
𝑖∈𝐼

𝑥𝑖) ∈ CH2𝑛−𝑡 (𝑌). (1)

By [7, Proposition 4.4], the element 𝑐 ∶= 2𝑒 is in 𝐶𝑌 .

Proposition 2.1. The critical exponent is low if and only if 𝑒 ∉ 𝐶𝑌 . Equivalently,
the critical exponent is low if and only if the class of 𝑐 in 𝐶𝑌∕2𝐶𝑌 is nontrivial.

Proof. Let 𝑋𝑡 be the 𝑡th grassmannian of the split 𝑑-dimensional quadratic
form used in the definition of 𝑋 and 𝑌. By Lemma 2.2, the pull-back homo-
morphismCH(𝑋𝑡) → CH(𝑌)with respect to the projection𝑌 → 𝑋𝑡 is injective;
we identify CH(𝑋𝑡) with its image in CH(𝑌).
By [6, Proposition 3.4], the element 𝑒 belongs to CH(𝑋𝑡). By Lemma 3.2, the

intersection of 𝐶𝑌 ∩ CH(𝑋𝑡) coincides with the subring 𝐶 ⊂ CH(𝑋𝑡) generated
by the Chern classes of the tautological (rank 𝑡) vector bundle on 𝑋𝑡. In partic-
ular, 𝑐 = 2𝑒 ∈ 𝐶.
By [6, Theorem 3.6], the critical exponent satisfies (and is determined by) the

formula deg(𝐶[𝑒]) = 2𝑖𝑡ℤ, where 𝐶[𝑒] ⊂ CH(𝑋𝑡) is the 𝐶-subalgebra generated
by 𝑒, and where deg is the degree homomorphism CH(𝑋𝑡) → ℤ given by the
push-forward with respect to the structure morphism of the projective variety
𝑋𝑡. Note that deg(𝐶) = 2𝑡ℤ because the index of the 𝑡th grassmannian of a
generic 𝑑-dimensional quadratic form (without restrictions on its discriminant
and Clifford invariant), given by a generic torsors under the orthogonal group
O(𝑑), equals 2𝑡 (see, e.g., [9, Theorem 3.2]).
In the case where 𝑒 ∈ 𝐶𝑌 , we conclude that 𝑒 ∈ 𝐶. This implies that

deg(𝐶[𝑒]) = deg(𝐶) = 2𝑡ℤ and therefore 𝑖𝑡 = 𝑡.
Now assume that 𝑒 ∉ 𝐶𝑌 . Equivalently, the element 𝑐 = 2𝑒 ∈ 𝐶 is nontrivial

modulo 2𝐶. By duality in 𝐶, explained in [8, Theorem 1.1], there is an element
𝑐′ ∈ 𝐶 such that deg(𝑐 ⋅ 𝑐′) is an odd multiple of 2𝑡. Then deg(𝑒 ⋅ 𝑐′) is an odd
multiple of 2𝑡−1 and we conclude that 𝑖𝑡 = 𝑡 − 1. □

The following general statement, contained in the case of a Borel subgroup
𝑄 in [2, Proof of Lemma 2.2], has been used in the above proof:

Lemma 2.2. Let𝑄 ⊂ 𝑃 ⊂ 𝐺 be two parabolic subgroups of a split reductive group
𝐺 over afield𝐹. The pull-back homomorphism𝜋∗∶ CH(𝐺∕𝑃) → CH(𝐺∕𝑄)with
respect to the projection 𝜋∶ 𝐺∕𝑄 → 𝐺∕𝑃 is a split monomorphism.

Proof. By [1, Proposition 20.5], for any extension field 𝐾∕𝐹, the map 𝐺(𝐾) →
(𝐺∕𝑃)(𝐾) of the sets of 𝐾-points is surjective. Applying this property to the
function field of the variety𝐺∕𝑃, one sees that the 𝑃-torsor given by the generic
fiber of the quotient map 𝐺 → 𝐺∕𝑃 is trivial. In particular, the generic fiber of
𝜋 has a rational point. The class 𝑥 ∈ CH(𝐺∕𝑄) of its closure in 𝐺∕𝑄 satisfies
𝜋∗(𝑥) = 1. By projection formula, for any 𝑦 ∈ CH(𝐺∕𝑃)wehave𝜋∗(𝜋∗(𝑦)⋅𝑥) =
𝑦 ⋅ 𝜋∗(𝑥) = 𝑦. It follows that 𝜋∗ is a split monomorphism. □
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The following approach opens up a way to see that the critical exponent is
low for most (in particular, for infinitely many) values of 𝑑 (see Theorem 2.8).
Assume that 𝑛 ≥ 3 (assuring that 𝑡 ≥ 1) and set 𝑑′ ∶= 2𝑡 + 1. Let 𝑋′ be
the highest grassmannian of a split 𝑑′-dimensional quadratic form, and let 𝑌′

be the complete flag variety of the tautological (rank 𝑡) vector bundle T ′ on
𝑋′. We write 𝐶𝑌′ for the subring in CH(𝑌′) generated by the Chern classes
of the tautological vector bundles on 𝑌′. Note that 𝐶𝑌′ ∩CH(𝑋′) is the subring
𝐶𝑋′ ⊂ CH(𝑋′), generated by the Chern classes 𝑐1(T ′), … , 𝑐𝑡(T ′) ofT ′. Wewrite
𝑒′1 for the element in CH(𝑋′) satisfying the condition 2𝑒′1 = −𝑐1(T ′). Note
once again that this condition determines 𝑒′1 because the group CH(𝑋

′) is free
of torsion.

Proposition 2.3. The critical exponent is low for dimension 𝑑 = 2𝑛+1 provided
that (𝑒′1)

2𝑛−𝑡 ∉ 𝐶𝑋′ , where 𝑡 is the torsion exponent of Spin(𝑑).

Proof. By Proposition 2.1, in order to prove Proposition 2.3, it suffices to show
that the inclusion 𝑒 ∈ 𝐶𝑌 implies the inclusion (𝑒′1)

2𝑛−𝑡 ∈ 𝐶𝑌′ .
There is a (unique) ring homomorphism 𝜋∶ CH(𝑌) → CH(𝑌′), mapping 𝑥𝑖

to 𝑥′𝑖 and 𝑒𝑖 to 𝑒
′
𝑖 for every 𝑖 = 1, … , 𝑡 and killing both 𝑥𝑖 and 𝑒𝑖 for 𝑖 = 𝑡+1,… , 𝑛.

Since the generators 𝑥𝑡+1, … , 𝑥𝑛, involved in formula (1), vanish under 𝜋, we
have𝜋(𝑒) = 𝜋(𝑒1)2

𝑛−𝑡 . Since𝜋(𝑒1) = 𝑒′1 and𝜋(𝐶𝑌) = 𝐶𝑌′ , the result follows. □

A control on the condition of Proposition 2.3, required for its applications, is
worked out in [9, §5]. As in [9, §5], let us define the degree of a subset in {1, … , 𝑛}
to be the sum of its elements. The following statement is actually proven in [9,
§5] but is not explicitly formulated there. It will be generalized in Lemma 3.4
below. We write 𝐶𝑋 for the subring in CH(𝑋), generated by the Chern classes
of the tautological vector bundle T on 𝑋.

Lemma 2.4 ([9, §5]). For any given integer 𝛼 ≥ 0, one has 𝑒2𝛼1 ∉ 𝐶𝑋 if and only
if there is a set 𝐼 ⊂ {1, … , 𝑛} of degree 2𝛼 that can be written as a disjoint union of
subsets of order at most 2 and of degree a power of 2.

Proof. Note that 2𝑒1 = −𝑐1(T ) ∈ 𝐶𝑋 and the additive group of 𝐶𝑋 is a free
abelian group of finite rank and, in particular, free of torsion. As explained in [9,
§4], the element (2𝑒1)2

𝛼 is divisible by 22𝛼−1 in 𝐶𝑋 . In other terms, the element
𝑐 ∶= 2𝑒2𝛼1 ∈ CH(𝑋) belongs to 𝐶𝑋 ⊂ CH(𝑋). We have 𝑒2𝛼1 ∉ 𝐶 if and only if 𝑐
is nonzero modulo 2 in 𝐶𝑋 . Below we view 𝑐 as an element of 𝐶𝑋∕2𝐶𝑋 . Note
that the quotient 𝐶𝑋∕2𝐶𝑋 is the exterior algebra on 𝑐𝑖 ∶= 𝑐𝑖(T ), 𝑖 = 1, … , 𝑛,
i.e., the generators 𝑐1, … , 𝑐𝑛 are subject to the relations 𝑐2𝑖 = 0. In particular, the
products 𝑐𝐼 ∶=

∏
𝑖∈𝐼 𝑐𝑖 with 𝐼 ⊂ {1, … , 𝑛} form a basis of theℤ∕2ℤ-vector space

𝐶𝑋∕2𝐶𝑋 . (The same products viewed in 𝐶𝑋 also form a basis of the free abelian
group 𝐶𝑋 .)
By [9, Lemma 5.1], for the list

𝑐1; 𝑐2; 𝑐4, 𝑐1𝑐3; 𝑐8, 𝑐1𝑐7, 𝑐2𝑐6, 𝑐3𝑐5; … (2)
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of elements of𝐶𝑋∕2𝐶𝑋 of the form 𝑐2𝑗 with 𝑗 ≥ 0 or 𝑐2𝑗−𝑖𝑐2𝑗+𝑖 with 1 ≤ 𝑖 ≤ 2𝑗−1,
the element 𝑐 is equal to the sumover all subsets 𝑆 of the list with total degree 2𝛼
of the product of the elements in 𝑆. Anymonomial in this sum that involves the
same generator 𝑐𝑖 twice is zero and so can be omitted. Otherwise, themonomial
is 𝑐𝐼 for some set 𝐼 ⊂ {1, … , 𝑛} of degree 2𝛼 and the coefficient at this monomial
in the decomposition of 𝑐 equals the number (modulo 2) of ways of writing 𝐼 as
a disjoint union of subsets of order at most 2 and of degree a power of 2.
With this information in hand, Lemma 2.4 follows from Lemma 2.5 right

below. □

Lemma 2.5 ([9]). For any subset 𝐼 ⊂ {1, … , 𝑛} (of any degree), the number of
ways of decomposing 𝐼 into a disjoint union of subsets as above is always 0 or 1
(not just modulo 2); that is, if 𝐼 can be decomposed into such subsets, then the
decomposition is unique.

Proof. The statement of Lemma 2.5 and its proof appear inside [9, Proof of
Lemma 5.4]. □

We are ready to apply Proposition 2.3. As a warm up, we prove

Lemma 2.6. The critical exponent is low for 𝑑 = 2023.

Proof. For 𝑑 = 2023, we have 𝑛 = 1011, 𝑡 = 993, and 𝑛 − 𝑡 = 18. By Lemma
2.4, (𝑒′1)

218 ∉ 𝐶𝑋′ if and only if there is a set 𝐼 ⊂ {1, … , 993} of degree 218 that
can be written as a disjoint union of subsets of order at most 2 and of degree a
power of 2. The union 𝐼 of the doubletons {29 ± 𝑖}with 𝑖 = 1, … , 28 satisfies the
condition. □

In fact, the critical exponent is low for all 𝑑 in a large interval around 2023:

Proposition 2.7. The critical exponent is low for 𝑑 = 2𝑛+1 provided that 786 ≤
𝑛 ≤ 1024.

Proof. For every such 𝑑, the difference 𝑛 − 𝑡 is constantly 18. Therefore, it
suffices to show that the critical exponent is low in the case of the minimal
𝑛 = 786. For this, we need to find a set 𝐼 ⊂ {1, … , 𝑡 = 𝑛 − (𝑛 − 𝑡) = 786 − 18 =
768} of degree 2𝑛−𝑡 = 218 that can be written as a disjoint union of subsets of
order at most 2 and of degree a power of 2. Since 768 = 29 + 28, the union 𝐼 of
the doubletons {29 ± 𝑖} with 𝑖 = 1, … , 28 (used in the proof of Lemma 2.6) still
suits. □

Here comes the main result of this text, which will be proved similarly. It
shows that for 𝑁 large enough, the proportion of 𝑛 < 𝑁 such that the critical
exponent is low for 𝑑 = 2𝑛 + 1 is over 91%. Indeed, for 𝑠 → ∞, the proportion
of 𝑛 ∈ [2𝑠, 2𝑠+1] for which the critical exponent is low by Theorem 2.8 tends to

1 − 2−𝑠(2𝑠 + 2𝑠−1 − 2𝑠+
1
2 ) =

√
2 − 2−1 > 0.91.
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Theorem 2.8. The critical exponent is low for 𝑑 = 2𝑛 + 1 (and therefore for
𝑑 = 2𝑛 + 2 as well, see §1) provided that

𝑛 ∈ [2𝑠 + 3𝑠 − 3, 2𝑠+
1
2 − 2𝑠 − 1] ∪ [2𝑠 + 2𝑠−1 + 2𝑠, 2𝑠+1]

for some positive integer 𝑠.

Proof. Assume first that 𝑛 ∈ [2𝑠+3𝑠−3, 2𝑠+
1
2 −2𝑠−1].Applying [9, Theorem

0.1], let us show that 𝑛−𝑡 = 2𝑠−1. If wewere in the second case of [9, Theorem
0.1], then 𝑛 would have the form 𝑛 = 2𝑠 + 𝑏 with some 0 ≤ 𝑏 ≤ 𝑠 − 3 implying
that 𝑛 ≤ 2𝑠 + 𝑠 − 3, a contradiction. Therefore, by [9, Theorem 0.1], 𝑛 − 𝑡 is the
integral part of log2(1 + 𝑛(𝑛 + 1)∕2) which is equal to 2𝑠 − 1, indeed.
Since the difference 𝑛 − 𝑡 is constant for 𝑛 on the interval

[2𝑠 + 3𝑠 − 3, 2𝑠+
1
2 − 2𝑠 − 1],

it suffices to show that the critical exponent is low in the case of the minimal
𝑛 = 2𝑠 + 3𝑠 − 3. For this, we need to find a set 𝐼 ⊂ {1, … , 2𝑠 + 𝑠 − 2} of degree
22𝑠−1 that can be written as a disjoint union of subsets of order at most 2 and
of degree a power of 2. The union 𝐼 of the singleton {2𝑠} and the doubletons
{2𝑠−1 ± 𝑖} with 𝑖 = 1, … , 2𝑠−1 − 1 suits.
Now assume that 𝑛 ∈ [2𝑠 + 2𝑠−1 + 2𝑠, 2𝑠+1]. Then we are in the first case of

[9, Theorem 0.1] which tells us that 𝑛 − 𝑡 = 2𝑠. Therefore, it suffices to show
that the critical exponent is low in the case of the minimal 𝑛 = 2𝑠 + 2𝑠−1 + 2𝑠.
For this, we need to find a set 𝐼 ⊂ {1, … , 2𝑠 + 2𝑠−1} of degree 22𝑠 that can be
written as a disjoint union of subsets of order at most 2 and of degree a power
of 2. The union 𝐼 of the doubletons {2𝑠 ± 𝑖} with 𝑖 = 1, … , 2𝑠−1 suits. □

Note that Theorem 2.8 in particular states the critical exponent is low for
𝑑 = 2𝑛 + 1 with 𝑛 any 2-power starting from 32. The same has been shown for
𝑑 = 17 and 𝑛 = 8 in [5]. We use the method of [5] to resolve the missing case
of 𝑑 = 33 and 𝑛 = 16:

Proposition 2.9. The critical exponent is low for 𝑑 = 2𝑛 + 1 with 𝑛 = 16.

Proof. We use notation from the paragraph before Proposition 2.3. Note that
𝑡 = 10 for 𝑑 = 2𝑛 + 1 with 𝑛 = 16.
The modulo 2 Chow group Ch(𝑌) ∶= CH(𝑌)∕2CH(𝑌) has a ℤ∕2ℤ-basis

given by the products

𝑥𝑎11 …𝑥𝑎1616 𝑒𝐼 with 𝑎𝑖 < 𝑖 and 𝐼 ⊂ {1, … , 8}, (3)

where 𝑒𝐼 ∶=
∏

𝑖∈𝐼 𝑒𝑖. Theℤ∕2ℤ-subspace 𝐶𝑌 ⊂ Ch(𝑌) is generated by the part
of the basis without 𝑒𝐼 (i.e., with 𝐼 = ∅).
By [5, Remark 3.4], 𝑒, as a polynomial in 𝑒1 over the ring

𝑅 ∶= (ℤ∕2ℤ)[𝑥11, … , 𝑥16],
contains monomials of 2-power degrees only. For 𝑒1 viewed in Ch(𝑌), one has
𝑒2𝑖1 = 𝑒2𝑖 for any 𝑖 ≥ 0, where we set 𝑒𝑖 ∶= 0 for 𝑖 > 𝑛. Every element of 𝑅,
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viewed in 𝐶𝑌 ⊂ Ch(𝑌), can be written (uniquely) as a sum of 𝑥𝑎11 …𝑥𝑎1616 with
𝑎𝑖 < 𝑖. The element 𝑒 ∈ Ch(𝑌) is a unique linear combination of 𝑒1, 𝑒2, 𝑒4, 𝑒8, 𝑒16
with coefficients in 𝐶𝑌 . We prove 𝑒 ∉ 𝐶𝑌 by showing that the coefficient at 𝑒16
is nonzero.
By [5, Remark 3.4], the coefficient at 𝑒161 in the polynomial 𝑒 is a sum of some

monomials
𝑥𝑎1111 …𝑥𝑎1616 (4)

with 2-powers 𝑎11, … , 𝑎16 satisfying 𝑎11 +⋯+ 𝑎16 = 64 − 16 = 48. Since
𝑥1616 = 𝑐1(T )𝑥1516 + 𝑐2(T )𝑥1416 +⋯+ 𝑐15(T )𝑥16 + 𝑐16(T ) ∈ 𝐶𝑌 ⊂ Ch(𝑌)

and 𝑐𝑖(T ) = 0 ∈ Ch(𝑋) ⊂ Ch(𝑌) for 𝑖 > 0, the power 𝑥1616 vanishes in 𝐶. By
symmetry of the relations on 𝑥1, … , 𝑥16 in 𝐶𝑌 , for every 𝑖 = 1, … , 15, the power
𝑥16𝑖 also vanishes in 𝐶𝑌 . It follows that amongmonomials (4) only the one with
𝑎11 = ⋯ = 𝑎16 = 8 remains nonzero in 𝐶. This monomial actually appears
(with coefficient 1 modulo 2) and belongs to basis (3). Consequently 𝑒 ∉ 𝐶𝑌 ,
and [5, Proposition 3.2] terminates the proof. □

3. Beyond the critical exponent
Returning to 𝑑 = 2023, we would also like to determine several exponents

𝑖𝑡+1, 𝑖𝑡+2, … following the critical one 𝑖𝑡. Recall that for arbitrary 𝑑 the se-
quence of all exponents 𝑖0, … , 𝑖𝑛 is non-strictly increasing with 𝑖𝑚 = 𝑚 for
𝑚 ≤ 𝑡 − 2 and 𝑖𝑛−2 = 𝑖𝑛−1 = 𝑖𝑛 = 𝑡. For every 𝑚 = 0,… , 𝑛, the integer 𝑖𝑚
is defined to be such that 2𝑖𝑚 is the index (i.e., the g.c.d. of degrees of closed
points) of the𝑚th grassmannian of a generic 𝑑-dimensional quadratic form of
trivial discriminant and Clifford invariant.
Proposition 3.1 below is a generalization of Proposition 2.1 which is still

based on a joint effort of [2], [6], and [7]. For an arbitrary dimension 𝑑 = 2𝑛+1
and the corresponding torsion exponent 𝑡, it reduces the computation of 𝑖𝑚 for
arbitrary𝑚 ≥ 𝑡 − 1 to an “elementary” computation. For any𝑚 = 𝑡 − 1, 𝑡, 𝑡 +
1, … , 𝑛, let us define

𝑒 ∶= ∏
𝐼⊂{𝑚+1,…,𝑛}

(𝑒1 −
∑
𝑖∈𝐼

𝑥𝑖) ∈ CH2𝑛−𝑡 (𝑌).

(For 𝑚 = 𝑡, this formula coincides with (1). For 𝑚 < 𝑡 − 1 the formula makes
sense as well, but by [7, Corollary A.3] the result is always 0.) By [7, Corollary
4.6], for any integer 𝛼 ≥ 0, the element 2𝑒2𝛼 is in 𝐶𝑌 . As a consequence, 𝑐 ∶=
2𝑚−𝑡+1𝑒2𝑚−𝑡+1−1 ∈ 𝐶𝑌 .

Proposition 3.1. For a given𝑚 ≥ 𝑡, one has 𝑖𝑚 = 𝑡−1 is and only if the element
𝑐 is nontrivial modulo 2𝐶𝑌 ; otherwise 𝑖𝑚 = 𝑡. For 𝑚 = 𝑡 − 1, one has has 𝑖𝑚 =
𝑚 − 1 = 𝑡 − 2 is and only if 𝑒 ∉ 𝐶𝑌 ; otherwise 𝑖𝑚 = 𝑚 = 𝑡 − 1.

Proof. Wemodify the lines of the proof of Proposition 2.1. Let 𝑋𝑚 be the𝑚𝑡th
grassmannian of the split 𝑑-dimensional quadratic form used in the definition
of 𝑋 and 𝑌. By Lemma 2.2, the pull-back homomorphism CH(𝑋𝑚) → CH(𝑌)
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with respect to the projection 𝑌 → 𝑋𝑚 is injective; we identify CH(𝑋𝑚)with its
image in CH(𝑌).
By [6, Proposition 3.4], the element 𝑒 belongs to CH(𝑋𝑚). We will proceed

with the proof of Proposition 3.1 after the following

Lemma 3.2. The intersection of 𝐶𝑌 ∩ CH(𝑋𝑚) coincides with the subring 𝐶 ⊂
CH(𝑋𝑚) generated by the Chern classes of the tautological (rank𝑚) vector bundle
on 𝑋𝑚.

Proof. Since 𝐶 ⊂ 𝐶𝑌 , the inclusion 𝐶 ⊂ 𝐶𝑌 ∩CH(𝑋𝑚) holds trivially. To prove
the opposite inclusion, we proceed as follows.
The rings 𝐶 and 𝐶𝑌 are identified with the Chow rings of the following two

varieties: the variety of𝑚-dimensional totally isotropic subspaces and the vari-
ety of complete flags of totally isotropic subspaces of a (2𝑛)-dimensional non-
degenerate alternating bilinear form (see [6, Remark 3.3]). Under this iden-
tification, the embedding 𝐶 ↪ 𝐶𝑌 becomes the pull-nack homomorphism of
Lemma2.2with𝐺 being the split symplectic group Sp(2𝑛). It follows by Lemma
2.2 that the embedding is a splitmonomorphism. Therefore, the quotient𝐶𝑌∕𝐶
is free of torsion.
Let us take any 𝑎 ∈ 𝐶𝑌 ∩ CH(𝑋𝑚). Since 𝑎 ∈ CH(𝑋𝑚), by [11, Propositions

2.11 and 2.1] there exists a nonzero integer 𝑟 such that 𝑟𝑎 ∈ 𝐶. Since 𝑎 ∈ 𝐶𝑌
and 𝐶𝑌∕𝐶 is free of torsion, we conclude that 𝑎 ∈ 𝐶. □

Returning to the proof of Proposition 3.1, since 2𝑒 ∈ 𝐶𝑌 , we conclude by
Lemma 3.2 that 2𝑒 ∈ 𝐶.
By [6, Theorem 3.6], the exponent 𝑖𝑚 satisfies (and is determined by) the for-

mula deg(𝐶[𝑒]) = 2𝑖𝑚ℤ, where 𝐶[𝑒] ⊂ CH(𝑋𝑚) is the 𝐶-subalgebra generated
by 𝑒, and where deg is the degree homomorphism CH(𝑋𝑚) → ℤ given by the
push-forward with respect to the structure morphism of the projective variety
𝑋𝑚. Note that deg(𝐶) = 2𝑚ℤ because the index of the 𝑚th grassmannian of a
generic 𝑑-dimensional quadratic form (without restrictions on its discriminant
and Clifford invariant), given by a generic torsors under the orthogonal group
O(𝑑), equals 2𝑚 (see, e.g., [9, Theorem 3.2]).
Let us first treat the case of 𝑚 = 𝑡 − 1. If 𝑒 ∈ 𝐶𝑌 , we conclude that 𝑒 ∈ 𝐶,

deg(𝐶[𝑒]) = deg(𝐶) = 2𝑚ℤ, and 𝑖𝑚 = 𝑚 = 𝑡 − 1. Otherwise, the element 2𝑒
of 𝐶 is nontrivial modulo 2𝐶 and by duality in 𝐶, explained in [8], there is an
element 𝑐′ ∈ 𝐶 such that deg(𝑐 ⋅ 𝑐′) is an odd multiple of 2𝑚. Then deg(𝑒 ⋅ 𝑐′) is
an odd multiple of 2𝑚−1 and we conclude that 𝑖𝑚 = 𝑚 − 1 = 𝑡 − 2.
Now we treat the case of 𝑚 ≥ 𝑡, starting with the assumption that 𝑐 ∉ 2𝐶𝑌 ,

which is equivalent to the assumption that 𝑐 ∉ 2𝐶. Then again we can find an
element 𝑐′ ∈ 𝐶 such that deg(𝑐 ⋅ 𝑐′) is an odd multiple of 2𝑚. It follows that
deg(𝑒2𝑚−𝑡+1−1 ⋅ 𝑐′) is an odd multiple of 2𝑡−1 and we conclude that 𝑖𝑚 = 𝑡 − 1.
Finally, assume that 𝑐 ∈ 2𝐶. Note that for any integer 𝑙 ≥ 1, 2𝑏𝑒𝑙 ∈ 𝐶, where

𝑏 is the sum of base-2 digits of 𝑙. Since 𝑏 ≤ 𝑚−𝑡 for 𝑙 < 2𝑚−𝑡+1−1, we conclude
that 2𝑚−𝑡𝐶[𝑒] ⊂ 𝐶. Therefore, 𝑖𝑚 ≥ 𝑚 − (𝑚 − 𝑡) = 𝑡 meaning that 𝑖𝑚 = 𝑡. □
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Since, as we already know, 𝑖𝑡 = 𝑡 − 1 = 992 for 𝑑 = 2023, the possible values
of the exponents beyond 𝑖𝑡 for this dimension are 𝑡 − 1 = 992 and 𝑡 = 993. We
are not able to determine the largest 𝑚 with 𝑖𝑚 = 𝑡 − 1. The upper bound on
such𝑚 for general 𝑑, resulting from Proposition 3.1 by the reason of dimension
of the variety 𝑋𝑚, is not exact as demonstrates the following example:

Example 3.3. The upper bound, resulting from [7, Theorem 3.2], is given by
the maximal𝑚 such that

dim𝑋𝑚 = 𝑚(𝑚 − 1)
2 + 𝑚(𝑑 − 2𝑚) ≥ 2𝑛−𝑡+1 − 2𝑛−𝑚.

For 𝑑 = 31 and 𝑛 = 15 (for which 𝑡 = 9), this upper bound on the largest 𝑚
with 𝑖𝑚 = 𝑡 − 1 is 14. However, since we always have 𝑡 = 𝑖𝑛 = 𝑖𝑛−1 = 𝑖𝑛−2, the
actual value of𝑚 is at most 𝑛 − 3 = 12.

For 𝑑 = 2023, the upper bound on the largest 𝑚 with 𝑖𝑚 = 𝑡 − 1, resulting
from Proposition 3.1, is 1000. Therefore, 𝑖𝑚 = 𝑡 for all 𝑚 ≥ 1001. We are
going to generalize the technique used in the proof of Lemma 2.6 to show that
𝑖𝑚 = 𝑡 − 1 for𝑚 in the closed interval [𝑡 = 993, 996]. (The value of 𝑖𝑚 with𝑚
from 997 to 1000 remains undetermined.)
We first extend Lemma 2.4 on the power 𝑒2𝛼1 to an arbitrary power 𝑒𝑙1 of 𝑒1.

Let us write a given integer 𝑙 ≥ 1 as a sum 2𝛼1 +⋯+ 2𝛼𝑏 of 𝑏 distinct 2-powers
for some appropriate 𝑏 ≥ 1 (equal to the sum of the base-2 digits of 𝑙). Then,
clearly, 𝑐 ∶= 2𝑏𝑒𝑙1 ∈ 𝐶𝑋 , where, as in the proof of Lemma 2.4, 𝐶𝑋 stands for the
subring in CH(𝑋), generated by Chern classes of the tautological vector bundle
T . The following lemma, generalizing Lemma 2.4 as well as [9, Lemma 5.4],
controls vanishing of 𝑐 in 𝐶𝑋∕2𝐶𝑋 :

Lemma 3.4. For 𝑐 ∈ 𝐶𝑋 as right above, one has 𝑐 ∉ 2𝐶𝑋 if and only if there is
a set 𝐼 ⊂ {1, … , 𝑛} of degree 𝑙 that can be written as a disjoint union of subsets of
order at most 2 and of degree a power of 2.

Proof. We rephrase the proof of [9, Lemma 5.3] in order to show that the the
class of 𝑐 in the quotient 𝐶𝑋∕2𝐶𝑋 is equal to the sum over all subsets 𝑆 of list
(2) with total degree 𝑙 of the product of the elements in 𝑆. This follows from [9,
Lemma 5.1] once we show that for each subset 𝑆 of list (2) with total degree 𝑙,
the number of ways of partitioning 𝑆 into subsets with total degrees 2𝛼1 , … , 2𝛼𝑏
is odd. Clearly, this question depends only on the degrees of the elements of 𝑆,
which are all powers of 2; that is, it suffices to show that for any nonnegative
integers 𝑎1, … , 𝑎𝑟 such that 2𝑎1+⋯+2𝑎𝑟 = 𝑙, the number of partitions of the set
𝑆 = {1, … , 𝑟} into subsets 𝑆 = ∐𝑏

𝑗=1 𝑆𝑗 such that
∑

𝑖∈𝑆𝑗
2𝑎𝑖 = 2𝛼𝑗 for 𝑗 = 1,… , 𝑏

is odd.
By [9, Lemma 5.2], the number of subsets 𝑆𝑏 such that

∑
𝑖∈𝑆𝑏

2𝑎𝑖 = 2𝛼𝑏 is
congruent modulo 2 to

( 𝑙
2𝛼𝑏
)
and thus to 1 (see [3, Lemma 78.6]). The total

number of partitions as above is the product of this odd number of subsets 𝑆𝑏
with the analogous number of partitions of 𝑆 ⧵ 𝑆𝑏 (for any choice of 𝑆𝑏), a set
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with total degree 𝑙 − 2𝛼𝑏 rather than 𝑙. By induction on 𝑏, the latter number of
partitions is odd. Therefore, the number of partitions we consider is also odd.
By Lemma 2.5, for any subset 𝐼 ⊂ {1, … , 𝑛} (of any degree), the number of

ways of decomposing 𝐼 into a disjoint union of subsets as above is always 0 or
1. This proves Lemma 3.4. □

We now get an extension of Lemma 2.6:

Proposition 3.5. For 𝑑 = 2023 (where 𝑛 = 1011 and 𝑡 = 993) we have 𝑖𝑚 = 𝑡−1
for𝑚 = 994, 995, 996.

Proof. We start with a general conclusion concerning an arbitrary 𝑑 = 2𝑛 +
1 and the corresponding torsion exponent 𝑡, generalizing Proposition 2.3. By
Proposition 3.1, for a given𝑚 ≥ 𝑡 one has 𝑖𝑚 = 𝑡 − 1 is and only if the element

𝑐 ∶= 2𝑚−𝑡+1𝑒2𝑚−𝑡+1−1 ∈ 𝐶𝑌 ⊂ CH(𝑌)

is nontrivial modulo 2𝐶𝑌 . Setting to 0 the generators 𝑥𝑚+1, … , 𝑥𝑛 as well as
𝑒𝑚+1, … , 𝑒𝑛 (like in the proof of Proposition 2.3) of the ringCH(𝑌) (and “keeping
unchanged” the remaining generators), we transform 𝑒 to (𝑒′1)

2𝑛−𝑚 and therefore
𝑐 to

𝑐′ ∶= 2𝑚−𝑡+1(𝑒′1)
2𝑛−𝑡+1−2𝑛−𝑚 ∈ 𝐶𝑋′ ⊂ CH(𝑋′),

where the variety 𝑋′ is the highest grassmannian of a split quadratic form of
dimension 𝑑′ ∶= 2𝑚+ 1. We conclude that 𝑖𝑚 = 𝑡 − 1 provided that 𝑐′ ∉ 2𝐶𝑋′ .
The conditionwe came to is controlled by Lemma 3.4 and is satisfied if and only
if there is a set 𝐼 ⊂ {1, … ,𝑚} of degree

𝑙 ∶= 2𝑛−𝑡+1 − 2𝑛−𝑚 = 2𝑛−𝑡 + 2𝑛−𝑡−1 +⋯+ 2𝑛−𝑚

that can bewritten as a disjoint union of subsets of order atmost 2 and of degree
a power of 2.
Returning to 𝑑 = 2023, to prove Proposition 3.5, it suffices to show that 𝑖996 =

992. So, we set𝑚 = 996. Recall that 𝑡 = 993 for this 𝑑. Note that the sum

29 + 28 + 27 + 26 + 25 = 992

does not exceed𝑚. The union 𝐼 of the doubletons {29 ± 𝑖} with 𝑖 running from
1 to 28 + 27 + 26 + 25 satisfies the above condition. □

Remark 3.6. For any 𝑑 and the corresponding 𝑡, the method of the proof of
Proposition 3.5 does not allow one to determine the avant-critical exponent 𝑖𝑡−1
because (𝑒1)2

𝑛−𝑡+1 (and therefore (𝑒′1)
2𝑛−𝑡+1) turns out to vanish. However, as al-

ready mentioned in [7, §3], 𝑖𝑡−1 = 𝑡 −1 for, asymptotically, 100% of dimensions
𝑑. This follows from Proposition 3.1 by the reason that dim(𝑋𝑡−1) < 2𝑛−𝑡+1 for
the majority of 𝑑, see [7, Proposition A.4].
By a fatal coincidence, 𝑑 = 2023 falls into the 0% and the avant-critical ex-

ponent for it remains undetermined.
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