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Linear independence between odd and even
periods of modular forms

Hui Xue

Abstract. We investigate the linear dependence between an odd period and
an even period ofmodular forms. We show that two periods of different parity
are linearly independent provided that the even period has index at least 6 or
the odd period has index at least 7.

Contents

1. Introduction and statements of results 521
2. The proofs 524
Acknowledgment 531
References 531

1. Introduction and statements of results
For each even integer 𝑘 ≥ 4, let𝑀𝑘 be the space of modular forms of weight

𝑘 for SL2(ℤ), and let 𝑆𝑘 be its subspace of cuspforms. For each 0 ≤ 𝑡 ≤ 𝑘 − 2,
the 𝑡th period of 𝑓 ∈ 𝑆𝑘 is defined as [6]

𝑟𝑡(𝑓) ∶= ∫
𝑖∞

0
𝑓(𝑧)𝑧𝑡𝑑𝑧 = 𝑡!

(−2𝜋𝑖)𝑡+1
𝐿(𝑓, 𝑡 + 1). (1)

Here, the 𝐿-series of a cuspform 𝑓(𝑧) =
∑∞

𝑛=1 𝑎𝑛(𝑓)𝑒
2𝜋𝑖𝑛𝑧 ∈ 𝑆𝑘 is 𝐿(𝑓, 𝑠) =

∑∞
𝑛=1

𝑎𝑛(𝑓)
𝑛𝑠

. Each 𝑟𝑡 defines a linear map from 𝑆𝑘 to ℂ, that is 𝑟𝑡 ∈ 𝑆∗𝑘 (the dual
space of 𝑆𝑘).
The set of odd periods {𝑟2𝑖+1}

𝑘∕2−2
𝑖=0 and the set of even periods {𝑟2𝑖}

𝑘∕2−1
𝑖=0 be-

have differently, and they are subject tomany linear dependence relations, called
the Eichler-Shimura relations; see Manin [6] for more details. However, not
much is known about the linear independence of a subset of the periods: the
first work in this direction seems to be [1], in which Fukuhara found an ex-
plicit subset of odd periods that forms a basis for 𝑆∗𝑘 . As a corollary, Fukuhara
[2] found a special basis for𝑀𝑘 consisting of products of two Eisenstein series.
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Most recently, Lei et al. [5, 4] have provided some evidence for the linear in-
dependence of odd periods and even periods, respectively. The main theme of
[5, 4] is that odd or odd periods of modular forms are linearly independent un-
less forced by dimension considerations. On the other hand, very little seems to
be known about the relationship between even and odd periods: for instance,
the Eichler-Shimura relations only address them separately. In the present pa-
per, we will extend the ideas of [5, 4] to provide some evidence for the linear
independence between odd and even periods. More precisely, we will show the
following.

Theorem 1.1. Let 𝓁 and 𝓁′ be positive even integers such that 𝓁 < 𝑘
2
− 1 and

𝓁′ ≤ 𝑘
2
, and suppose that 𝓁 ≥ 6 or 𝓁′ ≥ 8. If dim 𝑆𝑘 ≥ 2, then the even period 𝑟𝓁

and the odd period 𝑟𝓁′−1 are linearly independent.

The restriction to periods 𝑟𝓁 and 𝑟𝓁′−1 for even integers𝓁 <
𝑘
2
−1 and𝓁′ ≤ 𝑘

2
is

due to the Eichler-Shimura relations 𝑟𝓁+𝑟𝑘−2−𝓁 = 0 and 𝑟𝓁′−1−𝑟𝑘−1−𝓁′ = 0. In
fact, numerical computation done by Daozhou Zhu ([10]) shows that Theorem
1.1 holds true for all positive even integers 𝓁 and 𝓁′ for 𝑘 ≤ 100 and dim 𝑆𝑘 ≥ 2.
So, we propose the following natural speculations.

Conjecture 1.2. (1) Let 𝓁 and 𝓁′ be positive even integers such that 𝓁 < 𝑘
2
− 1

and 𝓁′ ≤ 𝑘
2
. If dim 𝑆𝑘 ≥ 2, then the even period 𝑟𝓁 and the odd period 𝑟𝓁′−1 are

linearly independent.
(2) More generally, suppose 2 ≤ 𝓁1 < 𝓁2 < ⋯ < 𝓁𝑎 < 𝑘

2
− 1 and 2 ≤ 𝓁′1 <

⋯ < 𝓁′𝑏 ≤ 𝑘
2
are even integers. If 𝑎 + 𝑏 ≤ dim 𝑆𝑘, then the set of periods

{𝑟𝓁1 ,⋯ , 𝑟𝓁𝑎 , 𝑟𝓁′1−1,⋯ , 𝑟𝓁′𝑏−1} is linearly independent.

We now give an account of the main idea of the proof. For an even integer
𝑘 ≥ 2, let 𝐸𝑘(𝑧) denote the normalized Eisenstein series of weight 𝑘 given by

𝐸𝑘(𝑧) = 1 − 2𝑘
𝐵𝑘

∞∑

𝑛=1
𝜎𝑘−1(𝑛)𝑞𝑛,

where 𝐵𝑘 is the 𝑘-th Bernoulli number, 𝜎𝑘−1(𝑛) =
∑

𝑑∣𝑛 𝑑
𝑘−1 and 𝑞 = 𝑒2𝜋𝑖𝑧. It

should be noted that 𝐸2(𝑧), although holomorphic, is not a modular form; it is
a quasi-modular form instead [9].
Let 𝑓 ∈ 𝑀𝑘 and 𝑔 ∈ 𝑀𝓁. For some integer 𝑑 ≥ 0, the 𝑑-th Rankin-Cohen

bracket of 𝑓 and 𝑔 is defined as [8, (1)]:

[𝑓, 𝑔]𝑑 =
∑

0≤𝑟≤𝑑
(−1)𝑟

(𝑑 + 𝑘 − 1
𝑑 − 𝑟

)(𝑑 + 𝓁 − 1
𝑟

)
𝑓(𝑟)𝑔(𝑑−𝑟),

where 𝑓(𝑟) ∶= 1
(2𝜋𝑖)𝑟

𝑑𝑟𝑓
𝑑𝑧𝑟

is the normalized 𝑟th derivative of 𝑓with respect to 𝑧. In
this paper, we are only interested in the cases when both 𝑓 and 𝑔 are Eisenstein
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series and 𝑑 = 0, 1. In order to include 𝐸2 in the Rankin-Cohen brackets, we
also define ([3, p. 214 (ii)] and [4, (1.2)])

[𝐸𝑘, 𝐸2]𝑑 ∶=
∑

0≤𝑟≤𝑑
(−1)𝑟

(𝑑 + 𝑘 − 1
𝑑 − 𝑟

)(𝑑 + 𝓁 − 1
𝑟

)
𝐸(𝑟)𝑘 𝐸(𝑑−𝑟)2 (2)

− (−1)𝑑 12
𝑘 + 𝑑

𝐸(𝑑+1)𝑘

for 𝑘 > 2, where 𝐸(𝑖)2 on the right hand side is the normalized 𝑖th derivative of
𝐸2 with respect to the variable 𝑧, for 0 ≤ 𝑖 ≤ 𝑑. Then, [𝐸𝑘, 𝐸2]𝑑 is a modular
form in𝑀𝑘+2+2𝑑.
Next, we recall the Rankin’s identity for the two cases 𝑑 = 0, 1. Let 𝑘 > 𝓁 ≥ 2

and 𝑘′ ≥ 𝓁′ ≥ 2 be even integers such that 𝐾 ∶= 𝑘 + 𝓁 + 2 = 𝑘′ + 𝓁′. Then,
by ([7, (77)], [3, pp. 213-215]) we have the following formulas for the Petersson
inner products

⟨𝑔, 𝐸𝑘′𝐸𝓁′ − 𝐸𝐾⟩ = (−1)
𝑘′

2
Γ(𝐾 − 1)Γ(𝑘′)
(4𝜋)𝐾−1(2𝜋)𝑘′

2𝑘′

𝐵𝑘′
2𝓁′

𝐵𝓁′
𝐿(𝑔, 𝐾 − 1)𝐿(𝑔, 𝑘′) (3)

and

⟨𝑔, [𝐸𝑘, 𝐸𝓁]1⟩ = (−1)
𝑘
2
+1Γ(𝐾 − 1)Γ(𝑘 + 1)

(4𝜋)𝐾−1(2𝜋)𝑘
2𝑘
𝐵𝑘

2𝓁
𝐵𝓁
𝐿(𝑔, 𝐾 − 2)𝐿(𝑔, 𝑘 + 1) (4)

For later application we need to normalize [𝐸𝑘, 𝐸𝓁]1 and 𝐸𝑘𝐸𝓁 − 𝐸𝐾 , so that
their 𝑞-coefficients become 1. It follows from [4, Section 2] that

𝑎1(𝐸𝑘′𝐸𝓁′ − 𝐸𝐾) =
⎧

⎨
⎩

− 2𝑘′

𝐵𝑘′
− 2𝓁′

𝐵𝓁′
+ 2𝐾

𝐵𝐾
if 𝓁′ ≥ 4

−24 (1 + 𝐾−2
12𝐵𝐾−2

− 1
𝐵𝐾−2

− 𝐾
12𝐵𝐾

) if 𝓁′ = 2
, (5)

and

𝑎1([𝐸𝑘, 𝐸𝓁]1) =
⎧

⎨
⎩

2𝑘𝓁
𝐵𝑘

− 2𝑘𝓁
𝐵𝓁

if 𝓁 ≥ 4
4𝑘
𝐵𝑘
− 24𝑘

(𝑘+1)𝐵𝑘
− 4𝑘

𝐵2
if 𝓁 = 2

. (6)

We normalize [𝐸𝑘, 𝐸𝓁]1, denoted∆1𝑘,𝓁(𝑧), so that its 𝑞-coefficient 𝑎1(∆
1
𝑘,𝓁) be-

comes 1. Similarly, we normalize𝐸𝑘𝐸𝓁−𝐸𝐾 , denoted∆𝑘′,𝓁′(𝑧), so that 𝑎1(∆𝑘′,𝓁′)
= 1. The following result follows immediately from (3)-(6).

Proposition 1.3. Let 𝑘 > 𝓁 ≥ 2 and 𝑘′ ≥ 𝓁′ ≥ 2 be even integers such that
𝐾 ∶= 𝑘+𝓁+2 = 𝑘′+𝓁′. Letℋ𝐾 denote the set of normalized Hecke eigenforms
in 𝑆𝐾 . Then

∆1𝑘,𝓁 = 𝐴1
𝑘,𝓁 ⋅

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝐾 − 2)𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑔,

where

𝐴1
𝑘,𝓁 ∶= (−1)

𝑘
2
+1Γ(𝐾 − 1)Γ(𝑘 + 1)

(4𝜋)𝐾−1(2𝜋)𝑘
2𝑘
𝐵𝑘

2𝓁
𝐵𝓁

⋅ 1
𝑎1([𝐸𝑘, 𝐸𝓁]1)
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with 𝑎1([𝐸𝑘, 𝐸𝓁]1) given by (6). Also,

∆𝑘′,𝓁′ = 𝐴𝑘′,𝓁′ ⋅
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝐾 − 1)𝐿(𝑔, 𝑘′)
⟨𝑔, 𝑔⟩

𝑔,

where

𝐴𝑘′,𝓁′ ∶= (−1)
𝑘′

2
Γ(𝐾 − 1)Γ(𝑘′)
(4𝜋)𝐾−1(2𝜋)𝑘′

2𝑘′

𝐵𝑘′
2𝓁′

𝐵𝓁′
⋅ 1
𝑎1(𝐸𝑘′𝐸𝓁′ − 𝐸𝐾)

with 𝑎1(𝐸𝑘′𝐸𝓁′ − 𝐸𝐾) given in (5).

Remark 1.4. We want to point out that the actual values of 𝐴1
𝑘,𝓁 and 𝐴𝑘′,𝓁′ are

not important, as long as they are nonzero and are independent of 𝑔 ∈ℋ𝐾 ; see
Section 2. It is also important to note that for each 𝑔 ∈ℋ𝐾 the value 𝐿(𝑔, 𝑘+1)
is positive because 𝑘+1 > 𝐾+1

2
is within the region of absolute convergence for

the Euler product of 𝐿(𝑔, 𝑠).

Now, assume that 𝓁 and 𝓁′ satisfy the conditions of Theorem 1.1, and that
𝑟𝓁 and 𝑟𝓁′ are linearly dependent. Our strategy is to compare the 𝑎2 Fourier
coefficients of ∆1𝑘,𝓁 and ∆𝑘′,𝓁′ , to reach a contradiction. On one hand, using
results from [4, 5], we show (Lemma2.2) that for 𝓁 ≥ 6 or 𝓁′ ≥ 8 and 𝐾 ≥ 100

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| > 18. (7)

On the other hand, by some detailed analysis on the 𝐿-values 𝐿(𝑔, 𝐾 − 1) and
𝐿(𝑔, 𝐾 − 2) for 𝑔 ∈ℋ𝐾 , we obtain (Proposition 2.6) for 𝐾 ≥ 100

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| < 16.007. (8)

These arguments enable us to finish the proof for 𝐾 ≥ 100. The case 𝐾 < 100
has been verified numerically by Daozhou Zhu; see [10]. Altogether, the proof
of Theorem 1.1 is complete.

2. The proofs
We shall first establish a lower bound for |𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)|. In order to

do this we first recall the following results on the 𝑎2-coefficients of ∆1𝑘,𝓁 and
∆𝑘′,𝓁′ for large 𝐾.

Proposition 2.1. We have

lim
𝑘→∞

𝑎2(∆1𝑘,𝓁)

2(1 + 2𝓁−1)
= 1, and lim

𝑘′→∞

𝑎2(∆𝑘′,𝓁′)
1 + 2𝓁′−1

= 1.

Moreover, when 𝐾 ≥ 100, we have

𝑎2(∆1𝑘,𝓁) = (2 + 2𝓁)(1 + 𝛿1), and 𝑎2(∆𝑘′,𝓁′) = (1 + 2𝓁′−1)(1 + 𝛿),

where |𝛿1| < 0.11294, and |𝛿| < 0.21703.
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Proof. The bound for |𝛿| is obtained by plugging 𝐾 = 100 in the calculations
in [5, Lemma 3.8]. The bound for |𝛿1| is obtained by plugging 𝐾 = 100 into the
calculations in [4, Proposition 3.4]. □

Lemma 2.2. Let 𝐾 ≥ 100. If 𝓁 ≥ 6 or 𝓁′ ≥ 8 are even, then
|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| > 18.

Proof. Let us first assume that 𝓁′ ≥ 8. Then there are two cases to consider.
Case 1: 𝓁 ≥ 𝓁′. By Proposition 2.1

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| = |(2 + 2𝓁)(1 + 𝛿1) − (1 + 2𝓁′−1)(1 + 𝛿)|

= (2 + 2𝓁)
||||||||
(1 + 𝛿1) −

(1 + 2𝓁′−1)
2(1 + 2𝓁−1)

(1 + 𝛿)
||||||||

> (2 + 2𝓁)(1 − 0.11294 − 0.5(1 + 0.21763))

> (2 + 28) ⋅ 0.27825
> 71.

Case 2: 𝓁 < 𝓁′. Note that (2 + 2𝓁)∕(1 + 2𝓁′−1)maximizes at 𝓁 = 6 and 𝓁′ = 8.
Thus

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| = |(2 + 2𝓁)(1 + 𝛿1) − (1 + 2𝓁′−1)(1 + 𝛿)|

= (1 + 2𝓁′−1)
||||||||

2 + 2𝓁

1 + 2𝓁′−1
(1 + 𝛿1) − (1 + 𝛿)

||||||||

> (1 + 2𝓁′−1) (1 − |𝛿| − 2 + 26

1 + 27
(1 + |𝛿1|))

> (1 + 2𝓁′−1) ⋅ (1 − 0.21763 − 66
129(1 + 0.11294))

> 27.

Now, assume that 𝓁 ≥ 6. Similarly, when 𝓁 ≥ 𝓁′, we have
|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| > (2 + 2𝓁)(1 − 0.11294 − 0.5(1 + 0.21763))

> (2 + 26) ⋅ 0.27825
> 18.

When 𝓁 < 𝓁′, then 𝓁′ ≥ 8 and we have

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| > (1 + 2𝓁′−1) ⋅ (1 − 0.21763 − 66
129(1 + 0.11294))

> 27.

The proof is now complete. □

Remark 2.3. If neither condition of Lemma 2.2 is met, for instance if 𝓁′ = 6 and
𝓁 = 4, then

|2 + 24 − 1 − 25| = 15 < 16,
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which does not contradict the upper bound obtained in Proposition 2.6. There-
fore, it seems that Lemma 2.2 is optimal.

Next, we shall establish some estimates on the values 𝐿(𝑔, 𝐾−1) and 𝐿(𝑔, 𝐾−
2) for each Hecke eigenform 𝑔 ∈ℋ𝐾 and for 𝐾 ≥ 100.
By Deligne’s bound |𝑎𝑛(𝑔)| ≤ 𝑑(𝑛)𝑛(𝐾−1)∕2 with 𝑑(𝑛) being the number of

divisor function and the fact that
∑∞

𝑛=1
𝑑(𝑛)
𝑛𝑠

= 𝜁(𝑠)2, we get

|||||||
𝐿(𝑔, 𝐾 − 1) − 1 −

𝑎2(𝑔)
2𝐾−1

|||||||
≤
∑

𝑛=3

𝑑(𝑛)
𝑛(𝐾−1)∕2

= 𝜁 (𝐾 − 1
2 )

2
− 1 − 21−(𝐾−1)∕2.

Noting that

𝜁 (𝐾 − 1
2 ) = 1 + 2−(𝐾−1)∕2 + 3−(𝐾−1)∕2 +

∞∑

𝑛=4
𝑛−(𝐾−1)∕2

≤ 1 + 2−(𝐾−1)∕2 + 3−(𝐾−1)∕2 + ∫
∞

3
𝑡−(𝐾−1)∕2 𝑑𝑡

= 1 + 2−(𝐾−1)∕2 + 3−(𝐾−1)∕2 + 6
𝐾 − 3 ⋅ 3

−(𝐾−1)∕2

= 1 + 2−(𝐾−1)∕2 + 𝐾 + 3
𝐾 − 33

−(𝐾−1)∕2.

This means that

𝜁 (𝐾 − 1
2 )

2
− 1 − 21−(𝐾−1)∕2

=2 ⋅ 3−(𝐾−1)∕2𝐾 + 3
𝐾 − 3 + 2−(𝐾−1) + 21−(𝐾−1)∕23−(𝐾−1)∕2𝐾 + 3

𝐾 − 3

+ (𝐾 + 3
𝐾 − 3)

2
3−(𝐾−1).

Thus, for 𝐾 ≥ 100, we may write

𝐿(𝑔, 𝐾 − 1) = 1 +
𝑎2(𝑔)
2𝐾−1

+ 𝛿𝐾−1 ⋅ 3−(𝐾−1)∕2, (9)

where

|𝛿𝐾−1| (10)

≤2𝐾 + 3
𝐾 − 3 + (34)

(𝐾−1)∕2
+ 21−(𝐾−1)∕2𝐾 + 3

𝐾 − 3 + (𝐾 + 3
𝐾 − 3)

2
3−(𝐾−1)∕2

<2.12372.

Similarly, for 𝐿(𝑔, 𝐾 − 2) we have
|||||||
𝐿(𝑔, 𝐾 − 2) − 1 −

𝑎2(𝑔)
2𝐾−2

|||||||
≤
∑

𝑛=3

𝑑(𝑛)
𝑛(𝐾−3)∕2

= 𝜁 (𝐾 − 3
2 )

2
− 1 − 21−(𝐾−3)∕2,
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and for 𝐾 ≥ 100 we obtain

𝐿(𝑔, 𝐾 − 2) = 1 +
𝑎2(𝑔)
2𝐾−2

+ 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2, (11)

where

|𝛿𝐾−2| (12)

≤2𝐾 + 1
𝐾 − 5 + (34)

(𝐾−3)∕2
+ 21−(𝐾−3)∕2𝐾 + 1

𝐾 − 5 + (𝐾 + 1
𝐾 − 5)

2
3−(𝐾−3)∕2

<2.12632.

Fromnow on, let us assume on the contrary that the odd period 𝑟𝓁′−1 and the
even period 𝑟𝓁 are linearly dependent. By (1) and the Eichler-Shimura relations
𝑟𝓁+ 𝑟𝐾−2−𝓁 = 0 and 𝑟𝓁′−1− 𝑟𝐾−1−𝓁′ = 0, this means that there is some constant
𝑐 such that for all 𝑔 ∈ℋ𝐾 , where 𝐾 = 𝑘 + 𝓁 + 2 = 𝑘′ + 𝓁′, such that

𝐿(𝑔, 𝑘′) = 𝑐 ⋅ 𝐿(𝑔, 𝑘 + 1). (13)

Our strategy is to derive a contradiction from (13) on the value

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)|.

A lower bound of it has been established in Lemma 2.2. Our next task is to find
anupper bound. We shall first derive some information from the𝑎1-coefficients.
By Proposition 1.3 and (11), we obtain

1 = 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝐾 − 2)𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

= 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 + 𝑎2(𝑔)22−𝐾 + 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2)
⟨𝑔, 𝑔⟩

.

As |𝑎2(𝑔)22−𝐾| ≤ 2 ⋅ 2(3−𝐾)∕2, by (12), for 𝐾 ≥ 100

|𝑎2(𝑔)22−𝐾| + |𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2| < 2.0001 ⋅ 2(3−𝐾)∕2.

Since 𝐿(𝑔, 𝑘 + 1) is positive for all 𝑔 (Remark 1.4), for 𝐾 ≥ 100

1 =
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 + 𝑎2(𝑔)22−𝐾 + 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2)
⟨𝑔, 𝑔⟩

||||||||||

≥|𝐴1
𝑘,𝓁|

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 − |𝑎2(𝑔)22−𝐾| − |𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2|)
⟨𝑔, 𝑔⟩

≥
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

||||||||||
⋅ (1 − 2.0001 ⋅ 2(3−𝐾)∕2)
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and

1 =
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 + 𝑎2(𝑔)22−𝐾 + 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2)
⟨𝑔, 𝑔⟩

||||||||||

≤|𝐴1
𝑘,𝓁|

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 + |𝑎2(𝑔)22−𝐾| + |𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2|)
⟨𝑔, 𝑔⟩

≤
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

||||||||||
⋅ (1 + 2.0001 ⋅ 2(3−𝐾)∕2).

Thus, for 𝐾 ≥ 100

𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

= 1 + 𝜖1𝐾(1), (14)

for some |𝜖1𝐾(1)| < 2.001 ⋅ 2(3−𝐾)∕2.
Similarly, by Proposition 1.3, (11) and taking (13) into account, we get

1 = 𝐴𝑘′,𝓁′
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝐾 − 1)𝐿(𝑔, 𝑘′)
⟨𝑔, 𝑔⟩

= 𝑐𝐴𝑘′,𝓁′
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)(1 + 𝑎2(𝑔)21−𝐾 + 𝛿𝐾−1 ⋅ 3−(𝐾−1)∕2)
⟨𝑔, 𝑔⟩

.

For 𝐾 ≥ 100, as
|𝑎2(𝑔)21−𝐾| ≤ 2 ⋅ 2(1−𝐾)∕2

and
|𝑎2(𝑔)21−𝐾 + 𝛿𝐾−1 ⋅ 3−(𝐾−1)∕2| < 2.0001 ⋅ 2(1−𝐾)∕2,

we obtain analogously

𝑐𝐴𝑘′,𝓁′
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

= 1 + 𝜖𝐾(1) (15)

for some |𝜖𝐾(1)| ≤ 2.001 ⋅ 2(1−𝐾)∕2.
We next investigate and compare the 𝑎2-coefficients of ∆1𝑘,𝓁 and ∆𝑘,𝓁. Again,

by Proposition 1.3 and (11)

𝑎2(∆1𝑘,𝓁) = 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝐾 − 2)𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔)

= 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔) + 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
2−𝐾

+ 𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

⋅ 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2𝑎2(𝑔). (16)
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We denote the last term of (16) by 𝜖1𝐾(2). Then, for 𝐾 ≥ 100, by (12)

|𝜖1𝐾(2)| =
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

⋅ 𝛿𝐾−2 ⋅ 3−(𝐾−3)∕2𝑎2(𝑔)
||||||||||

≤
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

||||||||||
⋅ |𝛿𝐾−2| ⋅ 2 ⋅ (

2
3)

(𝐾−3)∕2

<0.0001.

Here we have again used the fact that 𝐿(𝑔, 𝑘 + 1) is positive, see Remark 1.4.
Analogously, for 𝐾 ≥ 100 we have

𝑎2(∆𝑘′,𝓁′) (17)

=𝑐𝐴𝑘′,𝓁′
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔) + 𝑐𝐴𝑘′,𝓁′
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾

+ 𝜖𝐾(2),

where

|𝜖𝐾(2)| < 0.0001. (18)

Lemma 2.4. Let 𝑘 > 𝓁 ≥ 2 and 𝑘′ ≥ 𝓁′ ≥ 2 be even integers such that 𝐾 ∶=
𝑘 + 𝓁 + 2 = 𝑘′ + 𝓁′. Assume that (13): 𝐿(𝑔, 𝑘′)) = 𝑐𝐿(𝑔, 𝑘 + 1) holds for all
𝑔 ∈ℋ𝐾 . Then for 𝐾 ≥ 100

||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾

||||||||||
≤ 4(1 + |𝜖1𝐾(1)|).

Proof. This is due to the Deligne’s bound |𝑎2(𝑔)| ≤ 2 ⋅ 2(𝐾−1)∕2, (14) and posi-
tivity of 𝐿(𝑔, 𝑘 + 1). □

Lemma 2.5. Retain the assumptions of Lemma 2.4. Then for 𝐾 ≥ 100
|||||||||||
(𝐴1

𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′)
⎛
⎜
⎝

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔)
⎞
⎟
⎠

|||||||||||
< 12.006,

and
|||||𝐴

1
𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′

|||||
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾 ≤ 4(|𝜖1𝐾(1)| + |𝜖𝐾(1)|).

Proof. By (14) and (15), we get
||||||||||
(𝐴1

𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′)
∑

𝑔∈𝒦

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

||||||||||
≤ |𝜖1𝐾(1)| + |𝜖𝐾(1)|.
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Remembering that |𝑎2(𝑔)| ≤ 2 ⋅ 2(𝐾−1)∕2, |𝜖1𝐾(1)| ≤ 4.002 ⋅ 2(1−𝐾)∕2, |𝜖𝐾(1)| ≤
2.001 ⋅ 2(1−𝐾)∕2, and that 𝐿(𝑔, 𝑘 + 1) > 0, thus

|||||||||||
(𝐴1

𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′)
⎛
⎜
⎝

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔)
⎞
⎟
⎠

|||||||||||

≤2 ⋅ 2(𝐾−1)∕2
||||||||||
(𝐴1

𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′)
∑

𝑔∈𝒦

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

||||||||||
≤2 ⋅ 2(𝐾−1)∕2 ⋅ (|𝜖1𝐾(1)| + |𝜖𝐾(1)|)
≤12.006,

giving the first inequality. The second inequality follows exactly the same way
by noticing that |𝑎2(𝑔)221−𝐾| ≤ 4. □

We are now ready to establish an upper bound for |∆1𝑘,𝓁 − ∆𝑘′,𝓁′|. Note that
this result does not require that 𝓁 or 𝓁′ satisfy the conditions in Lemma 2.2.

Proposition 2.6. Let 𝑘 > 𝓁 ≥ 2 and 𝑘′ ≥ 𝓁′ ≥ 2 be even integers such that
𝐾 ∶= 𝑘 + 𝓁 + 2 = 𝑘′ + 𝓁′. Assume that (13): 𝐿(𝑔, 𝑘′)) = 𝑐𝐿(𝑔, 𝑘 + 1) holds for
all 𝑔 ∈ℋ𝐾 . Then, for 𝐾 ≥ 100

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)| < 16.007.

Proof. By (16) and (17)

|𝑎2(∆1𝑘,𝓁) − 𝑎2(∆𝑘′,𝓁′)|

≤
|||||𝐴

1
𝑘,𝓁 − 𝑐𝐴𝑘,𝓁

|||||

||||||||||

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔)
||||||||||
+
|||||𝐴

1
𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′

|||||
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
2𝐾−1⟨𝑔, 𝑔⟩

𝑎22(𝑔)

+
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾

||||||||||
+ |𝜖1𝐾(2)| + |𝜖𝐾(2)|.

Now, by Lemma 2.4
||||||||||
𝐴1
𝑘,𝓁

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾

||||||||||
≤ 4(1 + |𝜖1𝐾(1)|).

By Lemma 2.5
|||||||||||
(𝐴1

𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′)
⎛
⎜
⎝

∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎2(𝑔)
⎞
⎟
⎠

|||||||||||
< 12.006,

and hence
|||||𝐴

1
𝑘,𝓁 − 𝑐𝐴𝑘′,𝓁′

|||||
∑

𝑔∈ℋ𝐾

𝐿(𝑔, 𝑘 + 1)
⟨𝑔, 𝑔⟩

𝑎22(𝑔)2
1−𝐾 ≤ 4(|𝜖1𝐾(1)| + |𝜖𝐾(1)|).
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Thedesiredupper bound then follows by taking into consideration of the bounds
|𝜖1𝐾(1)| < 2.001⋅2(3−𝐾)∕2, |𝜖𝐾(1)| < 2.001⋅2(1−𝐾)∕2, |𝜖1𝐾(2)|, |𝜖𝐾(2)| < 0.0001. □

As having been explained in the introduction, the lower bound Lemma 2.2
and the upper bound Proposition 2.6 imply that Theorem 1.1 holds true for
𝐾 ≥ 100. The remaining finitely many cases have been numerically verified by
Daozhou Zhu ([10]).
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