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Abstract. Our purpose in this paper is to study solitons of the spacelike
mean curvature �ow in a generalized Robertson-Walker (GRW) spacetime
−I ×f Mn. Under suitable constraints on the warping function f and on the
curvatures of the Riemannian �berMn, we apply suitable maximum princi-
ples in order to obtain nonexistence and uniqueness results concerning these
solitons. Applications to standard models of GRW spacetimes, namely, the
Einstein-de Sitter spacetime, steady state type spacetimes, de Sitter and anti-
de Sitter spaces, are given. Furthermore, we establish new Calabi-Bernstein
type results related to entire spacelikemean curvature�owgraphs constructed
over the Riemannian �ber of the ambient spacetime.
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1. Introduction
Letℝn+1

1 be the (n+1)-dimensionalMinkowski space (ℝn+1
1 , ḡ)with its stan-

dard Lorentzian metric

ḡ = −dx21 +
n+1∑

i=2
dx2i .

Let  ∶ Σn → ℝn+1
1 be a spacelike immersion (which means that it has a Rie-

mannian induced metric) in the Minkowski space. The spacelike mean cur-
vature �ow associated to  is a family of smooth spacelike immersions Ψt =
Ψ(t, ⋅) ∶ Σn → ℝn+1

1 with corresponding images Σnt = Ψt(Σn) satisfying the
following evolution equation

⎧

⎨
⎩

)Ψ
)t = H⃗
Ψ(0, x) =  (x)

on some time interval, where H⃗ stands for the (non-normalized) mean curva-
ture vector of the spacelike submanifold Σnt in ℝ

n+1
1 .

Mean curvature�ow in theMinkowski space and,more generally, in a Lorent-
zianmanifold has been extensively studied by several authors (see, for instance,
[1, 18, 19, 20, 21, 22, 23, 28, 29, 31, 32, 34, 40]) and, according to [19], an impor-
tant justi�cation for this interest is the fact that spacelike translating solitons
can be regarded as a natural way of foliating spacetimes by almost null like hy-
persurfaces. Particular examples may give insight into the structure of certain
spacetimes at null in�nity and have possible applications in General Relativity
(for more details, see [19]).

More recently, Lambert and Lotay [33] proved long-time existence and con-
vergence results for spacelike solutions tomean curvature �ow in the n-dimen-
sional pseudo-Euclidean space ℝn

m of index m, which are entire or de�ned on
bounded domains and satisfying Neumann or Dirichlet boundary conditions.
In [24], Guilfoyle and Klingenberg proved the longtime existence for mean cur-
vature �ow of a smooth n-dimensional spacelike submanifold of an (n + m)-
dimensional manifold whose metric satis�es the so-called timelike curvature
condition. Meanwhile, Alías, de Lira andRigoli [10] introduced the general def-

inition of self-similar mean curvature �ow in a RiemannianmanifoldM
n+1

en-
dowed with a vector �eldK and establishing the corresponding notion of mean

curvature �ow soliton. In particular, whenM
n+1

is a Riemannianwarped prod-
uct of the type I×fMn andK = f(t))t, they applied weakmaximum principles
to guarantee that a complete n-dimensional mean curvature �ow soliton is a

slice ofM
n+1

. In [17], Colombo,Mari andRigoli also studied some properties of
mean curvature �ow solitons in general Riemannian manifolds and in warped
products, focusing on splitting and rigidity results under various geometric con-
ditions, ranging from the stability of the soliton to the fact that the image of its
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Gauss map be contained in suitable regions of the sphere. Moreover, they also
investigated the case of entire mean curvature �ow graphs. When the ambi-
ent space is a Lorentzian product space, the �rst and third authors [14] estab-
lished nonexistence results for complete spacelike translating solitons under
suitable curvature constraints on the curvatures of the Riemannian base of the
ambient space. In particular, they obtained Calabi-Bernstein type results for
entire translating graphs constructed over this Riemannian base. For this, they
proved a version of the Omori-Yau’s maximum principle for complete space-
like translating solitons. Besides, they also constructed new examples of rota-
tionally symmetric spacelike translating solitons embedded in such an ambient
space.

Proceeding with this picture, here we extend the techniques developed in [6,
10, 13, 14, 17] to study complete spacelike mean curvature �ow solitons im-
mersed in a generalized Robertson-Walker (GRW) spacetime, that is, a Lorent-
zian warped product −I ×f Mn with 1-dimensional negative de�nite base I
and n-dimensional Riemannian �ber Mn. Under suitable constraints on the
warping function f and on the curvatures ofMn, we apply suitable maximum
principles in order to obtain nonexistence and uniqueness results concerning
these solitons. Applications to standard GRW spacetimes as, for instance, the
Einstein-de Sitter and steady state type spacetimes, are given. Furthermore,
we establish new Calabi-Bernstein type results related to entire spacelike mean
curvature �ow graphs constructed over the Riemannian �ber of the ambient
spacetime.

2. Spacelike hypersurfaces
Let (Mn, gM) be a connected, n-dimensional, orientedRiemannianmanifold,

I ⊂ ℝ an open interval and f ∶ I → ℝ a positive smooth function. Also, in the
productmanifoldM

n+1
= I×Mn let�I and�M denote the canonical projections

onto the factors I andMn, respectively.
The class of Lorentzian manifolds which will be of our concern here is the

one obtained by furnishingM
n+1

with the Lorentzian metric g given by

g(u, v)p = −gI((�I)∗v, (�I)∗v)�I(p) + (f◦(�I))2(p)gM((�M)∗v, (�M)∗v)�M(p),

for all p ∈ M
n+1

and u, v ∈ TpM, where gI stands for the standard metric of
I ⊂ ℝ. Along this work, we will simply write

M
n+1

= −I ×f Mn. (1)

According to the nomenclature established in [12], we say thatM
n+1

is a gen-
eralized Robertson Walker (GRW) spacetime with warping function f and Rie-
mannian �ber Mn. When Mn has constant sectional curvature, (1) has been
known in the mathematical literature as a Robertson-Walker (RW) spacetime,
an allusion to the fact that, for n = 3, it is an exact solution of Einsteim’s �eld
equations (see, for instance, [37, Chapter 12]).
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In this setting, we will consider the timelike conformal closed vector �eld
K = f(�I))t globally de�ned on M, where )t =

)
)t
stands for the coordinate

timelike vector �eld tangent to I. From the relationship between the Levi-Civita
connections of M and those ones of I and Mn (see [37, Proposition 7.35]), it
follows that

∇VK = f′(�I)V, (2)
for all V ∈ X(M), where ∇ is the Levi-Civita connection of g.

Let Σn be an n-dimensional connected manifold. A smooth immersion  ∶
Σn → M

n+1
is said to be a spacelike hypersurface ifΣn, furnishedwith themetric

g induced from g via  , is a Riemannian manifold. We will denote by ∇ the
Levi-Civita connection of g. Since M is time-orientable, it follows from the
connectedness of Σn that one can uniquely choose a globally de�ned timelike
unit vector �eld N ∈ X⟂(Σ), having the same time-orientation of )t, that is,
such that g(N, )t) < 0. In this case, one says thatN is the future-pointing Gauss
map of Σn and will always assume such a timelike orientation for Σn. From the
inverse Cauchy-Schwarz inequality (see [37, Proposition 5.30]), we have that
g(N, )t) ≤ −1, with the equality holding at a point p ∈ Σn if, and only if,
N = )t at p.

We will denote by A and H = −trace(A) the shape operator and the (non-
normalized) mean curvature function of the spacelike hypersurface  ∶ Σn →
M

n+1
with respect to its future-pointing Gauss mapN. Throughout this paper,

the mean curvatureH taken with respect to such a choice of orientationN will
be called the future mean curvature of Σn. In particular, for a �xed t∗ ∈ I,
from [7, Example 5.6] we have that the slice {t∗}×Mn has constant future mean
curvatureH = n f

′(t∗)
f(t∗)

with respect to N = )t.
Now, we consider two particular functions naturally attached to a spacelike

hypersurface Σn immersed into a GRW spacetimeM
n+1

= −I ×f Mn, namely,
the height function ℎ = (�I)|Σ and the hyperbolic angle function Θ = g(N, )t),
where we recall that N denotes the future-pointing Gauss map of Σn and, con-
sequently, Θ ≤ −1. A simple computation shows that

∇�I = −g(∇�I , )t))t = −)t. (3)

So, from (3) we have

∇ℎ = (∇�I)⊤ = −)⊤t = −)t − ΘN. (4)

Thus, (4) gives the following relation

|∇ℎ|2 = Θ2 − 1, (5)

where | . | stands for the norm of a tangent vector �eld on Σn in the metric g.
On the other hand, from (2) we have that

∇V)t =
f′(�I)
f(�I)

{V + ḡ(V, )t))t}, (6)
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for any tangent vector V onM
n+1

.
Hence, from (4) and (6) we deduce that, for any X ∈ X(Σ), the Hessian of ℎ

in the metric g is given by

∇2ℎ(X,X) = g(∇X∇ℎ, X) (7)

= −f
′(ℎ)
f(ℎ)

{|X|2 + g(X,∇ℎ)2} + g(AX,X)Θ.

Hence, from (7) we obtain that the Laplacian of ℎ in the metric g is

∆ℎ = −f
′(ℎ)
f(ℎ)

{n + |∇ℎ|2} −HΘ. (8)

3. Spacelike mean curvature �ow solitons

We recall that the spacelike mean curvature �ow Ψ ∶ [0, T) × Σn → M
n+1

of
a spacelike hypersurface  ∶ Σn → M

n+1
in a (n + 1)-dimensional Lorentzian

manifoldM
n+1

, satisfying Ψ(0, ⋅) =  (⋅), looks for solutions of the equation
)Ψ
)t = H⃗,

where H⃗(t, ⋅) is the (non-normalized) mean curvature vector of Σnt = Ψ(t,Σn)
(see, for instance, [33]). In our context, according to [10, De�nition 1.1] and [17,
De�nition 1.1], a spacelike hypersurface  ∶ Σn → M

n+1
immersed in a GRW

spacetimeM
n+1

= −I×fMn is said a spacelikemean curvature �ow solitonwith
respect to K = f(t))t and with soliton constant c ∈ ℝ if its (non-normalized)
future mean curvature function satis�es

H = cf(ℎ)Θ. (9)

In fact, considering thatΨ is a self-similar mean curvature �ow with respect
to some vector �eld X, we can reason as in [10, Proposition 2.1] to deduce that
the corresponding mean curvature vector satis�es

H⃗ = cX⟂,
for some constant c ∈ ℝ. In our setting, X is equal to K = f(t))t and, hence,
assuming that  ∶ Σn → M

n+1
satis�es equation (9) means that it is a solution

of the mean curvature �ow evolution equation.
Adopting the terminology introduced in [10] and [17], we will also consider

the soliton function
�c(t) = nf′(t) + cf2(t). (10)

So, each sliceMt∗ = {t∗} ×Mn is a spacelike mean curvature �ow soliton with
respect toK = f(t))t and with soliton constant c given by

c = −n f
′(t∗)

f(t∗)2
. (11)
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Moreover, t∗ is implicitly given by the condition �c(t∗) = 0.
We close this section quoting important examples which will be addressed

along the next sections.

Example 3.1. The 4-dimensional Einstein-de Sitter spacetime is modeled by
the GRW spacetime −ℝ+ ×

t
2
3
ℝ3, where ℝ3 stands for the 3-dimensional Eu-

clidean space endowed with its canonical metric. This spacetime is a classi-
cal exact solution to the Einstein �eld equation without cosmological constant.
It is an open Friedmann-Robertson-Walker model, which incorporates homo-
geneity and isotropy (the cosmological principle) and permitted expansion (for
more details, see [37, Chapter 12]). Here, we consider the (n + 1)-dimensional
Einstein-de Sitter spacetime−ℝ+ ×

t
2
3
ℝn. From (11) we conclude that the slice

{(−2n3c )
3
5 } ×ℝn

is the only one that is a spacelike mean curvature �ow soliton with respect to

K = t
2
3 )t and with soliton constant c < 0.

Example 3.2. According to the terminology introduced byAlbujer andAlías [4],
a GRW spacetime−ℝ×et Mn is called a steady state type spacetime. This termi-
nology is due to the fact that the steady statemodel of the universeℋ4, proposed
by Bondi-Gold [16] and Hoyle [26] when looking for a model of the universe
which looks the same not only at all points and in all directions (that is, spa-
tially isotropic and homogeneous) but also at all times, is isometric to the RW
spacetime −ℝ ×et ℝ3 (for more details, see [25]). From (11) we conclude that
the slice

{log(−nc )} ×M
n

is the only one that is a spacelike mean curvature �ow soliton with respect to
K = et)t and with soliton constant c < 0.
Example 3.3. From [35, Example 4.2], the (n+1)-dimensional de Sitter space
Sn+11 is isometric to the RW spacetime −ℝ ×cosh t Sn, where Sn denotes the n-
dimensional unit Euclidean sphere endowed with its standard metric. Taking
into account the terminology introduced in [5], the open half-spaceℝ+ ×Sn ⊂
Sn+11 (respect. ℝ−×Sn ⊂ Sn+11 ) is called the chronological future (respect. past)
of Sn+11 with respect to the totally geodesic equator {0} × Sn. From (11) we
see that the equator is a spacelike mean curvature �ow soliton with respect to
K = cosh t )t and constant soliton c = 0 and the slices

{sinh−1(−n ±
√
n2 − 4c2
2c )} × Sn

are spacelike mean curvature �ow soliton with respect to K = cosh t )t and
with soliton constant 0 < |c| ≤ n

2
.

Example 3.4. Taking into account once more [35, Example 4.2], we consider
the open region of Sn+11 which is isometric to the RW spacetime −ℝ+ ×sinh t
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ℍn, where ℍn denotes the n-dimensional hyperbolic space endowed with its
standard metric. From (11) we have that the slices

{cosh−1(−n −
√
n2 + 4c2
2c )} × ℍn

are spacelike mean curvature �ow soliton with respect to K = sinh t )t and
with soliton constant c < 0.

Example 3.5. Motivated by [35, Example 4.3], wewill consider the open subset
of the (n+1)-dimensional anti-de Sitter spaceℍn+1

1 which is isometric to theRW
spacetime−(−�

2
, �
2
)×cos tℍn. In analogy with the nomenclature of the de Sitter

space, the open half-space (0, �
2
) × ℍn ⊂ ℍn+1

1 (respect. (−�
2
, 0) × ℍn ⊂ ℍn+1

1 )
will be called the chronological future (respect. past) ofℍn+1

1 with respect to the
totally geodesic equator {0}×ℍn. From (11)we see that the equator is a spacelike
mean curvature �ow soliton with respect to K = cos t )t and constant soliton
c = 0 and the slices

{sin−1(−n ±
√
n2 + 4c2
2c )} × ℍn

are spacelike mean curvature �ow soliton with respect toK = cos t )t and with
soliton constant c ≠ 0.

4. Nonexistence of spacelike mean curvature �ow solitons
We initiate quoting the generalized maximum principle of Omori [36] and

Yau [41] (see also [11] for a modern and accessible reference to the generalized
maximum principle of Omori-Yau).

Lemma 4.1. Let Σn be an n-dimensional complete Riemannianmanifold whose
Ricci curvature is bounded from below and let u ∈ C∞(Σ) be a smooth function
which is bounded from above onΣn. Then there exists a sequence of points {pk}k≥1
in Σn such that

lim
k
u(pk) = sup

Σ
u, lim

k
|∇u(pk)| = 0 and lim sup

k
∆u(pk) ≤ 0.

It is not di�cult to see that Lemma 4.1 is equivalent to the following one.

Lemma 4.2. Let Σn be an n-dimensional complete Riemannianmanifold whose
Ricci curvature is bounded from below and let u ∈ C∞(Σ) be a smooth function
which is bounded from below onΣn. Then there exists a sequence of points {pk}k≥1
in Σn such that

lim
k
u(pk) = inf

Σ
u, lim

k
|∇u(pk)| = 0 and lim inf

k
∆u(pk) ≥ 0.

In the results of this subsection, we will suppose that the GRW spacetime
M

n+1
= −I ×f Mn obeys the strong null convergence condition (SNCC) which
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was introduced by Alías and Colares [8] and corresponds to the following suit-
able constraints on the sectional curvature KM of the Riemannian �berMn of
the GRW spacetime −I ×f Mn

KM ≥ sup
I
(ff′′ − f′2). (12)

We observe that the SNCC is a suitable change on the so-called null convergence

condition (NCC), which means that the Ricci curvature of M
n+1

being non-
negative on null or lightlike directions (for more details concerning the NCC,
see [35]).

Considering an immersed spacelike hypersurface in a GRW spacetime obey-
ing (12), the next lemma gives su�cient conditions to its Ricci curvature with
respect to a suitable conformal metric be bounded from below. For this, we will
suppose that such a spacelike hypersurface lies in a timelike bounded region

ℬt1,t2 ∶= {(t, p) ∈ −I ×f Mn ∶ t1 ≤ t ≤ t2 and p ∈ Mn}.

Lemma 4.3. LetM
n+1

= −I ×f Mn be a GRW spacetime which obeys (12) and

let  ∶ Σn → M
n+1

be a spacelike hypersurface contained in a timelike bounded

region ℬt1,t2 ⊂ M
n+1

. If the second fundamental form and the hyperbolic angle
function Θ are bounded, then the Ricci curvature R̂ic of Σn with respect to the

conformal metric ĝ ∶= 1
f2(ℎ)

g is bounded from below.

Proof. We recall that the curvature tensor R of Σn can be described in terms
of itsWeingarten operatorA and the curvature tensorR of the ambient−I×fMn

by the so-called Gauss’ equation given by

g(R(X,Y)Z,W) = ḡ(R(X,Y)Z,W) − g(AX, Z)g(AY,W) (13)
+ g(AX,W)g(AY, Z),

for every tangent vector �elds X,Y, Z ∈ X(Σ). Here, as in [37], the curvature
tensor R is given by

R(X,Y)Z = ∇[X,Y]Z − [∇X ,∇Y]Z,

where [ , ] denotes the Lie blanket and X,Y, Z ∈ X(Σ).
Let us consider a smooth vector �eld X ∈ X(Σ) and take a (local) orthonor-

mal frame {E1,⋯ , En}. It follows from Gauss equation (13) that the Ricci cur-
vature Ric of Σn with respect to the induced metric g satis�es

Ric(X,X) ≥
∑

i
ḡ(R(X, Ei)X, Ei) −

H2

4 |X|2. (14)

To estimate the �rst summand on the right-hand side of (14), let us consider
X∗ = (�M)∗(X) and E∗i = (�M)∗(Ei). So, from [37, Proposition 7.42] and (4) we
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have
∑

i
ḡ(R(X, Ei)X, Ei) =

∑

i
g(RM(X∗, E∗i )X

∗, E∗i )M

+(n − 1)((logf)′(ℎ))2|X|2

−(n − 2)(logf)′′(ℎ)g(X,∇ℎ)2 (15)
−(logf)′′(ℎ)|∇ℎ|2|X|2,

where RM denotes the curvature tensor ofMn. But, writing

X∗ = X + ḡ(X, )t))t,

we can estimate the �rst summand on the right-hand side of (15) to get
∑

i
g(RM(X∗, E∗i )X

∗, E∗i )M = f2(ℎ)(|X∗|2M|E∗|2M

−g(X∗, E∗)2M)KM(X∗, E∗)

≥ 1
f2(ℎ)

((n − 1)|X|2 + |∇ℎ2||X|2 (16)

+(n − 2)g(X,∇ℎ)2)min
i
KM(X∗, E∗i ).

Consequently, since our ambient space obeys (12), from (16) we have that
∑

i
g(RM(X∗, E∗i )X

∗, E∗i ) ≥ ((n − 1)|X|2 + |∇ℎ|2

+(n − 2)g(X,∇ℎ)2)(logf)′′(ℎ). (17)

Substituting (17) into (15), we get
∑

i
ḡ(R(X, Ei)X, Ei) ≥ ((n − 1)|X|2 + |∇ℎ|2

+(n − 2)g(X,∇ℎ)2)(logf)′′(ℎ)
+(n − 1)((logf)′(ℎ))2|X|2

−(n − 2)(logf)′′(ℎ)g(X,∇ℎ)2 (18)
−(logf)′′(ℎ)|∇ℎ|2|X|2

= (n − 1)f
′′(ℎ)
f(ℎ)

|X|2.

Then, taking into account that |A|2 ≥ H2

n , from (14) and (18) we arrive at
the following lower estimate

Ric(X,X) ≥ − ((n − 1) |f
′′(ℎ)|
f(ℎ)

+ n|A|2
4 ) |X|2. (19)
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On the other hand, we have the following equation (see, for instance, [15,
Section 1J], [30, Section A] or [39, page 168])

R̂ic(X,X) = Ric(X,X) + 1
f2(ℎ)

{
(n − 2)f(ℎ)∇2f(ℎ)(X,X) (20)

+(f(ℎ)∆f(ℎ) − (n − 1)|∇f(ℎ)|2)|X|2
}
.

Consequently, from equation (20) we get

R̂ic(X,X) = Ric(X,X) + 1
f2(ℎ)

{
(n − 2)f(ℎ)(f′′(ℎ)g(∇ℎ, X)2

+f′(ℎ)∇2ℎ(X,X)) + (f(ℎ)(f′′(ℎ)|∇ℎ|2 + f′(ℎ)∆ℎ) (21)
−(n − 1)(f′(ℎ))2|∇ℎ|2)|X|2

}
.

Hence, considering (5), (7), (8) and (19) into (21), we obtain after a straight-
forward computation the following lower estimate

R̂ic(X,X) ≥
{
(n − 1)(f

′(ℎ))2
f(ℎ)

− (n − 1)
(|f′′(ℎ)|
f(ℎ)

+ (n + 1)(f
′(ℎ))2
f2(ℎ)

)
Θ2 − (n −

√
n − 2) |f

′(ℎ)|
f(ℎ)

|A||Θ| (22)

−n|A|2
4

}
|X|2.

Therefore, taking into account that |A| and |Θ| are bounded and that Σn lies
in a timelike bounded region of the ambient space, from (22) we conclude that
R̂ic is bounded from below. �

Aiming to simplify the notation, along our main results we will consider the
modi�ed soliton function as being the function

�̄c(t) ∶= f′(t)�c(t), (23)

where �c is the soliton function de�ned in (10). So, we are in a position to state
and prove our �rst nonexistence result concerning spacelike mean curvature
�ow solitons immersed in a GRW spacetime.

Theorem 4.4. LetM
n+1

= −I ×fMn be a GRW spacetime satisfying (12). There

does not exist a complete spacelike mean curvature �ow soliton  ∶ Σn → M
n+1

with respect to K = f(t))t with soliton constant c, whose second fundamental
form and hyperbolic angle function are bounded, and lying in a timelike bounded

regionℬt1,t2 ⊂ M
n+1

such that �̄c(t) has strict sign for all t ∈ [t1, t2].

Proof. By contradiction, let us assume the existence of a complete spacelike
mean curvature �ow soliton  satisfying the assumptions of Theorem 4.4. As

before, consider onΣn themetric ĝ = 1
f2(ℎ)

g, which is conformal to its induced



564 M. BATISTA, G. BISCI, H. LIMA ANDW. GOMES

metric g. Denoting by ∆̂ the Laplacian with respect to the metric ĝ, from (5)
and (8) we have

∆̂ℎ = −f(ℎ)f′(ℎ){n + (n − 1)|∇ℎ|2} −Hf2(ℎ)Θ. (24)

Thus, from (24) we get

∆̂f(ℎ) = −nf(ℎ)(f′(ℎ))2 −Hf′(ℎ)f2(ℎ)Θ
+f3(ℎ){(logf)′′(ℎ) − (n − 2)((logf)′(ℎ))2}|∇ℎ|2. (25)

For any positive real number�, with a straightforward computation from (25)
we get

∆̂f−�(ℎ) = −�f−�−1(ℎ)
{
− nf(ℎ)(f′(ℎ))2 −Hf′(ℎ)f2(ℎ)Θ

+f3(ℎ)
(
(logf)′′(ℎ) − (n + � − 3)((logf)′(ℎ))2

)
|∇ℎ|2

}

= −�f−�−1(ℎ)
{
− nf(ℎ)(f′(ℎ))2Θ2 −Hf′(ℎ)f2(ℎ)Θ (26)

+f3(ℎ)
(
(logf)′′(ℎ) − (� − 3)((logf)′(ℎ))2

)
|∇ℎ|2

}
.

Hence, from (9), (23) and (26) we obtain

∆̂f−�(ℎ) = �f−�(ℎ)Θ2�̄c(ℎ) − �f2−�(ℎ)
{
(logf)′′(ℎ)

−(� − 3)((logf)′(ℎ))2
}
|∇ℎ|2. (27)

At this point, let us assume that �̄c(t) > 0 for all t1 ≤ t ≤ t2. Since we are
assuming that |A| and Θ are bounded, we can apply Lemmas 4.1 and 4.3 to
guarantee the existence of a sequence of points {pk}k≥1 in Σn such that

lim
k
f−�(ℎ)(pk) = sup

Σ
f−�(ℎ), lim

k
|∇̂f−�(ℎ)(pk)|ĝ = 0,

and lim sup
k

∆̂f−�(ℎ)(pk) ≤ 0, (28)

where | ⋅ |ĝ and ∇̂ denote, respectively, the norm and gradient with respect to
the metric ĝ.

But, it is not di�cult to verify that

|∇̂f−�(ℎ)|ĝ = �f−�(ℎ)|f′(ℎ)||∇ℎ|. (29)

So, since Σn ⊂ ℬt1,t2 , with |f′(t)| > 0 for all t1 ≤ t ≤ t2, from (28) and (29) we
get that

lim
k

|∇ℎ(pk)| = 0. (30)

Consequently, from (5) and (30) we have that

lim
k
Θ2(pk) = 1. (31)
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Moreover, from (27), (30) and (31) we obtain

0≥ lim sup
k

∆̂f−�(ℎ)(pk)≥� lim sup
k

{
f−�(ℎ)Θ2�̄c(ℎ)

}
(pk)

−� lim sup
k

{
f2−�(ℎ)|||||(logf)

′′(ℎ)

−(� − 3)((logf)′(ℎ))2||||||∇ℎ|
2
}
(pk) (32)

=� sup
Σ
f−�(ℎ) lim sup

k
�̄c(pk) ≥ 0.

Hence, since supΣ f−�(ℎ) > 0 and �̄c(t) > 0 for all t1 ≤ t ≤ t2, (32) gives us a
contradiction.

Finally, in the case �̄c(t) < 0 for all t1 ≤ t ≤ t2, using Lemma 4.2 instead of
Lemma 4.1 we get

0 ≤ lim inf
k

∆̂f−�(ℎ)(pk) ≤ � lim inf
k

{
f−�(ℎ)Θ2�̄c(ℎ)

}
(pk)

+� lim inf
k

{
f2−�(ℎ)|||||(logf)

′′(ℎ)

−(� − 3)((logf)′(ℎ))2||||||∇ℎ|
2
}
(pk) (33)

= � inf
Σ
f−�(ℎ) lim inf

k
�̄c(pk) ≤ 0.

Therefore, since infΣ f−�(ℎ) > 0 and �̄c(t) < 0 for all t1 ≤ t ≤ t2, (33) also leads
us to a contradiction. �

Taking into account that the (n+1)-dimensional Einstein-de Sitter spacetime
−ℝ+ ×

t
2
3
ℝn (see Example 3.1) satis�es (12), from Theorem 4.4 we obtain the

following consequence.

Corollary 4.5. LetM
n+1

= −ℝ+ ×
t
2
3
ℝn be the (n+ 1)-dimensional Einstein-de

Sitter spacetime. There does not exist a complete spacelike mean curvature �ow

soliton  ∶ Σn → M
n+1

with respect to K = t
2
3 )t with soliton constant c ≥ 0,

whose second fundamental form and hyperbolic angle function are bounded, and

lying in a timelike bounded region ofM
n+1

.

Since a steady state type spacetime (see Example 3.2) whose Riemannian
�ber has nonnegative sectional curvature satis�es (12), from Theorem 4.4 we
obtain the following application.

Corollary 4.6. LetM
n+1

= −ℝ ×et Mn be a steady state type spacetime whose
Riemannian �berMn has nonnegative sectional curvature. There does not exist

a complete spacelike mean curvature �ow soliton  ∶ Σn → M
n+1

with respect
to K = et)t with soliton constant c ≥ 0, whose second fundamental form and
hyperbolic angle function are bounded, and lying in a timelike bounded region of

M
n+1

.
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Considering the context of Example 3.3, from Theorem 4.4 we also get.

Corollary 4.7. There does not exist a complete spacelike mean curvature �ow
soliton  ∶ Σn → Sn+11 with respect to K = cosh t )t having soliton constant
c ≥ 0 (respect. c ≤ 0), whose second fundamental form and hyperbolic angle
function are bounded, and lying in a timelike bounded region contained in the
chronological future (respect. past) of Sn+11 with respect to the equator {0} × Sn.

From Example 3.4 and Theorem 4.4 we obtain.

Corollary 4.8. There does not exist a complete spacelike mean curvature �ow
soliton  ∶ Σn → −ℝ+ ×sinh t ℍn ⊂ Sn+11 with respect to K = sinh t )t having
soliton constant c ≥ 0, whose second fundamental form and hyperbolic angle
function are bounded, and lying in a timelike bounded region of−ℝ+×sinh tℍn ⊂
Sn+11 .

Finally, in the setting of Example 3.5, Theorem 4.4 reads as follows.

Corollary 4.9. There does not exist a complete spacelike mean curvature �ow
soliton  ∶ Σn → −(−�

2
, �
2
) ×cos t ℍn ⊂ ℍn+1

1 with respect toK = cos t )t having
soliton constant c ≤ 0 (respect. c ≥ 0), whose second fundamental form and
hyperbolic angle function are bounded, and lying in a timelike bounded region
contained in the chronological future (respect. past) of ℍn+1

1 with respect to the
equator {0} × ℍn.

5. Uniqueness and further nonexistence results
We will also adopt the following notation

ℒp
g (Σ) ∶= {u ∶ Σn → ℝ ∶ ∫

Σ
|u|pdΣ < +∞},

where dΣ stands for themeasure related to themetric g. With this, we quote an
extension of Hopf’s theorem on a complete Riemannian manifold (Σn, g) due
to Yau in [42].

Lemma 5.1. Letu be a smooth function de�ned on a complete Riemannianman-
ifold (Σn, g), such that ∆u does not change sign on Σn. If |∇u| ∈ ℒ1

g(Σ), then ∆u
vanishes identically on Σn.

In what follows, we will assume that the warping function f of the ambient

GRW spacetimeM
n+1

= −I ×f Mn satis�es the following inequality

(logf)′′ ≤ ((logf)′)2, (34)
for some nonnegative constant . As it was observed in [6], the inequality (34)

is a mild hypothesis due to the fact that, for instance, when M
n+1

obeys the
SNCC (respect. NCC) and its Riemannian �berMn is �at (respect. Ricci-�at),
we have that (34) is automatically satis�ed.

Returning to the study of spacelike mean curvature �ow solitons, we get the
following result.
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Theorem 5.2. Let M
n+1

= −I ×f Mn be a GRW spacetime satisfying (34), oc-
curring the equality only at isolated points of I, and whose Riemannian �berMn

is complete. Let  ∶ Σn → M
n+1

be a complete spacelike mean curvature �ow
soliton with respect toK = f(t))t and with soliton constant c, lying in a timelike

bounded regionℬt1,t2 ⊂ M
n+1

such that �̄c(t) ≥ 0 for all t1 ≤ t ≤ t2. If the height
function ℎ is such that |∇ℎ| ∈ ℒ1

g(Σ), then Σn is a sliceMt∗ for some t∗ ∈ [t1, t2]
which is implicitly given by the condition �c(t∗) = 0.

Proof. We will consider again the conformal metric ĝ ∶= 1
f2(ℎ)

g and we

will take � = +3. Since we are assuming that Σn lies inℬt1,t2 and that |∇ℎ| ∈
ℒ1
g(Σ), from (29) we get that |∇̂f−�(ℎ)|ĝ ∈ ℒ1

ĝ(Σ).
Moreover, since �̄c(t) ≥ 0 for all t1 ≤ t ≤ t2, from (27) and (34) we obtain that

∆̂f−�(ℎ) ≥ 0. Consequently, we can apply Lemma 5.1 to infer that ∆̂f−�(ℎ) = 0
on Σn.

Therefore, since we are assuming that the equality occurs in (34) just only
at isolated points of I, returning to (27) we conclude that |∇ℎ| must vanishes
identically on Σn. Therefore, Σn must be a sliceMt∗ for some t∗ ∈ [t1, t2]which
is implicitly given by the condition �c(t∗) = 0. �

Applying Theorem 5.2 to the Einstein-de Sitter spacetime, we obtain the fol-
lowing result.

Corollary 5.3. LetM
n+1

= −ℝ+ ×
t
2
3
ℝn be the (n+ 1)-dimensional Einstein-de

Sitter spacetime. The only complete spacelike mean curvature �ow soliton  ∶
Σn → M

n+1
with respect to K = t

2
3 )t with soliton constant c < 0, lying in a

timelike bounded regionℬt1,t2 ⊂ M
n+1

with t2 = (− 2n
3c
)
3
5 , and such that its height

function ℎ satis�es |∇ℎ| ∈ ℒ1
g(Σ), is the slice {(−

2n
3c
)
3
5 } ×ℝn.

When the ambient space is a steady state type spacetime, Theorem 5.2 gives
us the following consequence.

Corollary 5.4. LetM
n+1

= −ℝ ×et Mn be a steady state type spacetime whose
Riemannian �ber Mn is complete. The only complete spacelike mean curvature

�ow soliton  ∶ Σn → M
n+1

with respect toK = et)t with soliton constant c < 0,
lying in a timelike bounded region ℬt1,t2 ⊂ M

n+1
with t2 = log(−n

c
), and such

that its height function ℎ satis�es |∇ℎ| ∈ ℒ1
g(Σ), is the slice {log(−

n
c
)} ×Mn.

From Theorem 5.2 we also get the following nonexistence result.

Corollary 5.5. LetM
n+1

= −I ×f Mn be a GRW spacetime satisfying (34), oc-
curring the equality only at isolated points of I, and whose Riemannian �berMn
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is complete. There does not exist a complete spacelike mean curvature �ow soliton

 ∶ Σn → M
n+1

with respect toK = f(t))t and with soliton constant c, lying in
a timelike bounded region ℬt1,t2 ⊂ M

n+1
with �̄c(t) > 0 for all t1 ≤ t ≤ t2, and

such that its height function ℎ satis�es |∇ℎ| ∈ ℒ1
g(Σ).

When the ambient spacetime is the Einstein-de Sitter spacetime and a steady
state type spacetime, respectively, Corollary 5.5 reads as follows.

Corollary 5.6. LetM
n+1

= −ℝ+ ×
t
2
3
ℝn be the (n+ 1)-dimensional Einstein-de

Sitter spacetime. There does not exist a complete spacelike mean curvature �ow

soliton  ∶ Σn → M
n+1

with respect to K = t
2
3 )t with soliton constant c ≥ 0,

lying in a timelike bounded region of M
n+1

and such that its height function ℎ
satis�es |∇ℎ| ∈ ℒ1

g(Σ).

Corollary 5.7. LetM
n+1

= −ℝ ×et Mn be a steady state type spacetime whose
Riemannian �berMn is complete. There does not exist a complete spacelike mean

curvature �ow soliton  ∶ Σn → M
n+1

with respect to K = et)t with soliton

constant c ≥ 0, lying in a timelike bounded region of M
n+1

and such that its
height function ℎ satis�es |∇ℎ| ∈ ℒ1

g(Σ).
We are also able to present a slight di�erent version of Theorem 5.2.

Theorem 5.8. LetM
n+1

= −I ×fMn be a GRW spacetime satisfying (34) whose

Riemannian �berMn is complete. Let  ∶ Σn → M
n+1

be a complete spacelike
mean curvature �ow soliton with respect to K = f(t))t with soliton constant

c, lying in a timelike bounded region ℬt1,t2 ⊂ M
n+1

with �̄c(t) ≥ 0 and f′(t)
vanishing only in isolated points of [t1, t2]. If |∇ℎ| ∈ ℒ1

g(Σ), then Σn is a sliceMt∗
for some t∗ ∈ [t1, t2] which is implicitly given by the condition �c(t∗) = 0.
Proof. As in the proof of Theorem 5.2, we get that ∆̂f−�(ℎ) = 0 on Σn, for

� = +3. Moreover, sinceΣn lies inℬt1,t2 , we can also verify that |∇̂f
−2�(ℎ)|ĝ ∈

ℒ1
ĝ(Σ). But, we note that

∆̂f−2�(ℎ) = 2f−�(ℎ)∆̂f−�(ℎ) + 2|∇̂f−�(ℎ)|2ĝ = 2|∇̂f−�(ℎ)|2ĝ ≥ 0. (35)

Thus, we can apply again Lemma 5.1 to obtain that ∆̂f−2�(ℎ) = 0 onΣn. Hence,
since we are assuming that f′(t) > 0 for t1 ≤ t ≤ t2, from (29) and (35) we
obtain that |∇ℎ| = 0 on Σn. Therefore, Σn must be a slice Mt∗ for some t∗ ∈
[t1, t2] which is implicitly given by the condition �c(t∗) = 0. �

At this point, we need quoting two other auxiliary results also due to Yau
in [42].

Lemma5.9. Ifu is a nonnegative smooth subharmonic functionde�ned on (Σn, g),
with u ∈ ℒp

g (Σ) for some p > 1, then umust be constant.
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Lemma 5.10. All complete noncompact Riemannian manifolds with nonnega-
tive Ricci curvature have at least linear volume growth.

These previous lemmas enable us to prove the following nonexistence result.

Theorem 5.11. Let M
n+1

= −I ×f Mn be a GRW spacetime satisfying (34),
occurring the equality only at isolated points of I, and whose Riemannian �ber
Mn is complete noncompact with nonnegative Ricci curvature. There does not

exist a complete spacelike mean curvature �ow soliton  ∶ Σn → M
n+1

with re-
spect to K = f(t))t and soliton constant c, lying in a timelike bounded region

ℬt1,t2 ⊂ M
n+1

, with �̄c(t) ≥ 0 for all t1 ≤ t ≤ t2, and whose height function ℎ is
such that (f(ℎ))−1 ∈ ℒq

g(Σ) for some q with q >  + 3.

Proof. Supposing by contradiction the existence of such a spacelike mean

curvature �ow soliton  ∶ Σn → M
n+1

and taking once more � =  + 3, from
(27) we obtain that ∆̂f−�(ℎ) ≥ 0 on Σn. Moreover, since Σn is contained in a
timelike bounded region and (f(ℎ))−1 ∈ ℒq

g(Σ) for some q with q > �, it is
not di�cult to verify that f−�(ℎ) ∈ ℒp

ĝ (Σ) for p = q
�
> 1. Thus, we can apply

Lemma 5.9 to get that f(ℎ) is constant on Σn. Hence, since we are also suppos-
ing that the equality occurs in (34) just only at isolated points of I, returning
to (27) we conclude that |∇ℎ|must vanish identically on Σn. Consequently, Σn
is isometric (up to scaling) toMn. So, since f(ℎ) is a positive constant, our as-
sumption that f(ℎ) ∈ ℒq

g(Σ) also implies thatMn has �nite volume. But, since
Mn is a complete non-compact with nonnegative Ricci curvature, Lemma 5.10
leads us to a contradiction. �

From Theorem 5.11 we obtain the following consequences.

Corollary 5.12. LetM
n+1

= −ℝ+×
t
2
3
ℝn be the (n+1)-dimensional Einstein-de

Sitter spacetime. There does not exist a complete spacelike mean curvature �ow

soliton  ∶ Σn → M
n+1

with respect to K = t
2
3 )t with soliton constant c ≥ 0,

lying in a timelike bounded region of M
n+1

and such that its height function ℎ
satis�es ℎ−

2
3 ∈ ℒq

g(Σ) for some q with q > 3.

Corollary 5.13. LetM
n+1

= −ℝ ×et Mn be a steady state type spacetime whose
Riemannian �berMn is complete noncompact with nonnegative Ricci curvature.
There does not exist a complete spacelike mean curvature �ow soliton  ∶ Σn →
M

n+1
with respect to K = et)t with soliton constant c ≥ 0, lying in a timelike

bounded region ofM
n+1

and such that its height function ℎ satis�es e−ℎ ∈ ℒq
g(Σ)

for some q with q > 3.
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According to [38], a GRW spacetimeM
n+1

= I ×f Mn is said to be spatially
parabolicwhen its Riemannian �berMn is parabolic, that is, (Mn, gM) is a non-
compact complete Riemannian manifold such that the only superharmonic
functions on it that are bounded from below are the constants. Analogously,

M
n+1

is said to be spatially parabolic coveredwhen its universal Lorentzian cov-
ering is spatially parabolic. For our next uniqueness result, we need of the fol-
lowing parabolicity criterion due to Aledo, Rubio and Salamanca (see [6, The-
orem 2.2])

Lemma 5.14. Let  ∶ Σn → M
n+1

be a complete spacelike hypersurface im-

mersed in a spatially parabolic covered GRW spacetime M
n+1

= I ×f Mn. If
supΣ f(ℎ) < +∞ and the hyperbolic angle function Θ is bounded, then (Σn, ĝ),
endowed with the conformal metric ĝ = 1

f2(ℎ)
g, is parabolic.

Using Lemma 5.14 we obtain the following result.

Theorem 5.15. Let M
n+1

= I ×f Mn be a spatially parabolic covered GRW
spacetime satisfying (34), holding the equality only at isolated points of I. Let

 ∶ Σn → M
n+1

be a complete spacelike mean curvature �ow soliton with re-
spect to K = f(t))t with soliton constant c, lying in a timelike bounded region

ℬt1,t2 ⊂ M
n+1

, with �̄c(t) ≥ 0 for all t1 ≤ t ≤ t2. If the hyperbolic angle function
Θ is bounded, then Σn is a sliceMt∗ for some t∗ ∈ [t1, t2] which is implicitly given
by the condition �c(t∗) = 0.
Proof. First, we note that Lemma 5.14 guarantees that (Σn, ĝ) is parabolic.

Moreover, it follows from (27) that f(ℎ)−� (where � =  + 3) is subharmonic
on Σn. Thus, since the hypothesis that Σn ⊂ ℬt1,t2 implies in particular that
f(ℎ)−� is bounded from above, it follows from the parabolicity of (Σn, ĝ) that
f(ℎ) is constant on Σn. Consequently, since we are assuming that the equality
holds in (34) only at isolated points of I, returning to (27) we conclude that
|∇ℎ| = 0 on Σn, which means that Σn is a slice. �

We close this section quoting the following applications of Theorem 5.15.

Corollary 5.16. LetM
3
= −ℝ+ ×

t
2
3
ℝ2 be the 3-dimensional Einstein-de Sitter

spacetime. The only complete spacelikemean curvature �ow soliton ∶ Σ2 → M
3

with respect toK = t
2
3 )t with soliton constant c < 0, lying in a timelike bounded

region ℬt1,t2 ⊂ M
3
with t2 = (− 4

3c
)
3
5 , and such that its hyperbolic angle function

Θ is bounded, is the slice {(− 4
3c
)
3
5 } ×ℝn.

Corollary 5.17. LetM
n+1

= −ℝ ×et Mn be a spatially parabolic covered steady
state type spacetime. The only complete spacelike mean curvature �ow soliton
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 ∶ Σn → M
n+1

with respect to K = et)t with soliton constant c < 0, lying in
a timelike bounded region ℬt1,t2 ⊂ M

n+1
with t2 = log(−n

c
), and such that its

hyperbolic angle function Θ is bounded, is the slice {log(−n
c
)} ×Mn.

Remark 5.18. Related to Corollary 5.17 in the case n = 2, when the Riemann-
ian �ber M2 is a complete Riemannian surface having nonnegative Gaussian
curvature, a classical result due to Ahlfors [2] and Blanc-Fiala-Huber [27] guar-
antees thatM2 has parabolic universal covering.

6. Entire spacelike mean curvature �ow graphs
In this last section, we will use the theorems of the previous section in or-

der to establish new Calabi-Bernstein type results concerning entire spacelike
graphs constructed over the Riemannian �ber of a GRW spacetime. Before, we
need to recall some basic facts related to these spacelike graphs.

Let Ω ⊆ Mn be a connected domain and let u ∈ C∞(Ω) be a smooth func-
tion such that u(Ω) ⊆ I, then Σ(u) will denote the (vertical) graph over Ω de-
termined by u, that is,

Σ(u) = {(u(x), x) ∶ x ∈ Ω} ⊂ M
n+1

= −I ×f Mn.
The graph is said to be entire ifΩ = Mn. Observe that ℎ(u(x), x) = u(x), for all
x ∈ Ω. Hence, ℎ and u can be identi�ed in a natural way. The metric induced
on Ω from the Lorentzian metric of the ambient GRW spacetime via Σ(u) is

gu = −du2 + f2(u)gM . (36)

It can be easily seen from (36) that such a graph Σ(u) is a spacelike hypersur-
face if and only if |Du|M < f(u), whereDu stands for the gradient of u inM and
|Du|M its norm, both with respect to the metric gM . On the other hand, in the
case whereMn is a simply connected manifold, from [12, Lemma 3.1] we have
that every complete spacelike hypersurface  ∶ Σn → −I ×f Mn such that the
warping function f is bounded on Σn is an entire spacelike graph overMn. In
particular, this happens for complete spacelike hypersurfaces lying in a timelike
bounded region of −I ×f Mn. It is also interesting to point out that, in contrast
to the case of graphs in a Riemannian space, an entire spacelike graph Σ(u) in a
GRW spacetime is not necessarily complete, in the sense that the induced Rie-
mannian metric (36) is not necessarily complete onMn. For instance, Albujer
constructed explicit examples of noncomplete entire maximal spacelike graphs
(that is, whose mean curvature is identically zero) in the Lorentzian product
space −ℝ × ℍ2 (see [3, Section 3]).

The future-pointing Gauss map of a spacelike graph Σ(u) over Ω is given by
the vector �eld

N = f(u)
√
f2(u) − |Du|2M

()t +
Du
f2(u))

. (37)
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The shape operator related to the future-pointing Gauss map (37) is given by

AX = − 1

f(u)
√
f2(u) − |Du|2M

DXDu −
f′(u)

√
f2(u) − |Du|2M

X

+
⎛
⎜
⎝

−gM(DXDu,Du)

f(u)
(
f2(u) − |Du|2M

)3∕2 +
f′(u)gM(Du,X)

(
f2(u) − |Du|2M

)3∕2
⎞
⎟
⎠
Du,

(38)

for any vector �eldX tangent toΩ, whereD denotes the Levi-Civita connection
of (Mn, gM). Consequently, if Σ(u) is a spacelike graph de�ned over a domain
Ω ⊆ Mn, it is not di�cult to verify from (38) that the future mean curvature
functionH(u) of Σ(u) is given by the following nonlinear di�erential equation:

H(u) = divM
⎛
⎜
⎜
⎝

Du

f(u)
√
f2(u) − |Du|2M

⎞
⎟
⎟
⎠

+ f′(u)
√
f2(u) − |Du|2M

(n +
|Du|2M
f2(u) )

, (39)

where divM stands for the divergence operator computed in the metric gM .
Hence, from (9) and (39) we have that Σ(u) is a spacelike mean curvature

�ow soliton with respect to K = f(t))t with soliton constant c if, and only
if, |Du|M < f(u) and u is a solution of the following nonlinear di�erential
equation:

divM
⎛
⎜
⎜
⎝

Du

f(u)
√
f(u)2 − |Du|2M

⎞
⎟
⎟
⎠

= − 1
√
f(u)2 − |Du|2M

{
cf(u)2

+f′(u)
(
n +

|Du|2M
f(u)2

)}
. (40)

We say that u ∈ C∞(M) has �nite C2 norm when

||u||C2(M) ∶= sup
|k|≤2

|Dku|L∞(M) < +∞.

In this setting, we obtain a nonparametric version of Theorem 4.4.

Theorem 6.1. LetM
n+1

= −I ×f Mn be a GRW spacetime satisfying (12) and
whose Riemannian �berMn is complete. Suppose that c is a constant such that the
modi�ed soliton function �̄c(t) has strict sign in I. There does not exist a smooth
function u ∶ Mn → I with �nite C2 norm which is solution of the spacelike mean
curvature �ow soliton equation (40) and such that |Du|M ≤ �f(u), for some
constant 0 < � < 1.
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Proof. Let us assume the existence of such a smooth function u ∶ Mn → I.
It follows from (38) that the shape operator A of an entire spacelike graph Σ(u)
is bounded provided that u has �nite C2 norm. Note also that the �niteness
of the C2 norm of u implies, in particular, that u is bounded, which, in turn,
guarantees that Σ(u) is contained in a bounded timelike region ofM

n+1
.

On the other hand, under the assumptions of the theorem, Σ(u) is a complete
spacelike hypersurface. Indeed, proceeding as in [9, Corollary 5.1], from (36)
and the Cauchy-Schwarz inequality we get

gu(X,X) = −gM(Du,X∗)2 + f2(u)gM(X∗, X∗)
≥ (f2(u) − |Du|2M)gM(X∗, X∗), (41)

for every tangent vector �eld X on Σ(u), where (as before) X∗ denotes the pro-
jection of X onto the Riemannian �ber Mn. Thus, since |Du|M ≤ �f(u), for
some constant 0 < � < 1, from (41) we get that

gu(X,X) ≥ �gM(X∗, X∗), (42)

where � = (1 − �2) infM f2(u). So, (42) implies that L =
√
�LM , where L and

LM denote the length of a curve on Σ(u)with respect to the Riemannianmetrics
gu and gM , respectively. As a consequence, since we are always assuming that
Mn is complete, the induced metric gu must be also complete.

Moreover, from (37) we obtain that the hyperbolic angle function Θ of Σ(u)
is given by

Θ = − f(u)
√
f2(u) − |Du|2M

. (43)

Hence, using oncemore that hypothesis that |Du|M ≤ �f(u), for some constant
0 < � < 1, from (43) we get that Θ is bounded. But, by applying Theorem 4.4
we have that Σ(u) cannot exist. �

From Theorem 6.1 we obtain the following applications.

Corollary 6.2. For any constants c ≥ 0 and 0 < � < 1, there does not exist a
smooth function u ∶ ℝn → ℝ+ with �nite C2 norm which is a solution of the
following system

⎧
⎪
⎪
⎨
⎪
⎪
⎩

divℝn
⎛
⎜
⎝

Du

u
2
3

√
u
4
3−|Du|2ℝn

⎞
⎟
⎠
= − 1

√
u
4
3−|Du|2ℝn

(cu
4
3 + 2n

3u
1
3
+ 2|Du|2ℝn

3u
5
3

)

|Du|ℝn ≤ �u
2
3

(44)

Corollary 6.3. Let Mn be a complete Riemannian manifold with nonnegative
sectional curvature. For any constants c ≥ 0 and 0 < � < 1, there does not exist
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a smooth function u ∶ Mn → I with �nite C2 norm which is a solution of the
following system

⎧
⎪
⎨
⎪
⎩

divM ( Du

eu
√
e2u−|Du|2M

) = − 1√
e2u−|Du|2M

(ce2u + neu + |Du|2M
eu

)

|Du|M ≤ �eu
(45)

Remark 6.4. From Examples 3.3, 3.4 and 3.5, it is not di�cult to see that we
can also obtain applications of Theorem 6.1 to the de Sitter and anti-de Sitter
spaces similar to Corollaries 6.2 and 6.3.

Proceeding, fromTheorem5.2we obtain the followingCalabi-Bernstein type
result.

Theorem 6.5. LetM
n+1

= −I×fMn be a GRW spacetime satisfying (34), occur-
ring the equality only at isolated points of I, and whose Riemannian �ber Mn

is complete. Suppose that c is a constant such that �̄c(t) ≥ 0 for all t ∈ I.
If Σ(u) ⊂ M

n+1
is an entire spacelike graph determined by a bounded func-

tion u ∈ C∞(M) which is solution of the spacelike mean curvature �ow soli-
ton equation (40) with |Du|M ≤ �f(u), for some constant 0 < � < 1, and
|Du|M ∈ ℒ1

gM (M), then u ≡ t∗ for some t∗ ∈ I which is implicitly given by the
condition �c(t∗) = 0.
Proof. Since we are supposing that |Du|M ≤ �f(u), for some constant 0 <

� < 1, it follows from the proof of Theorem 6.1 that Σ(u) is a complete spacelike
hypersurface.

On the other hand, reasoning once more as in [9, Corollary 5.1], we deduce
from the induced metric (36) that dΣ =

√
|G|dM, where dM and dΣ stand for

the Riemannian volume elements of (Mn, gM) and (Σ(u), gu), respectively, and
G = det(gij) with

gij = gu(Ei, Ej) = f2(u)�ij − Ei(u)Ej(u). (46)

Here, {E1,… , En} denotes a local orthonormal frame with respect to the metric
gM . So, it is not di�cult to verify that

|G| = f2(n−1)(u)(f2(u) − |Du|2M). (47)
Hence, from (46) and (47) we obtain

dΣ = fn−1(u)
√
f2(u) − |Du|2MdM. (48)

Moreover, since we have that N = N∗ − Θ)t, from (4) we get
|∇ℎ|2 = f2(u)|N∗|2M . (49)

Thus, from (37) and (49) we obtain

|∇ℎ|2 =
|Du|2M

f2(u) − |Du|2M
. (50)
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Consequently, from (50) and (48) we get

|∇ℎ|dΣ = fn−1(u)|Du|MdM. (51)

Hence, since we are assuming that u is bounded with |Du|M ∈ ℒ1
gM (M), re-

lation (51) guarantees that |∇ℎ| ∈ ℒ1
g(Σ(u)). Therefore, the result follows by

applying Theorem 5.2. �

From Theorem 6.5 we obtain the following applications.

Corollary 6.6. For any constants c < 0 and 0 < � < 1, the only bounded smooth

function u ∶ ℝn → ℝ+, with u(x) ≤ (− 2n
3c
)
3
5 for all x ∈ ℝn, |Du|ℝn ∈ ℒ1

gℝn (ℝ
n)

and which is solution of the system (44), is the constant u = (− 2n
3c
)
3
5 .

Corollary 6.7. LetMn be a complete Riemannian manifold. For any constants
c < 0 and 0 < � < 1, the only bounded smooth function u ∶ Mn → ℝ, with
u(x) ≤ log(−n

c
) for all x ∈ Mn, |Du|M ∈ ℒ1

gM (M) and which is solution of the

system (45), is the constant u = log(−n
c
).

Taking into account oncemore relation (48), it is not di�cult to see that from
Theorem 5.11 we obtain the following nonexistence result.

Theorem 6.8. LetM
n+1

= −I×fMn be a GRW spacetime satisfying (34), occur-
ring the equality only at isolated points of I, and whose Riemannian �berMn is
complete noncompact with nonnegative Ricci curvature. Suppose that c is a con-
stant such that �̄c(t) ≥ 0 for all t ∈ I. There does not exist a bounded entire solu-
tion u ∈ C∞(M) of the spacelike mean curvature �ow soliton equation (39), with
|Du|M ≤ �f(u), for some constant 0 < � < 1, and such that (f(u))−1 ∈ ℒq

gM (M)
for some q with q >  + 3.

We have the following applications of Theorem 6.8.

Corollary 6.9. For any constants c ≥ 0 and 0 < � < 1, there does not exist a
bounded smooth function u ∶ ℝn → ℝ+ such that u−

2
3 ∈ ℒq

gℝn (ℝ
n), for some

q > 3, and which is a solution of the system (44).

Corollary 6.10. LetMn be a complete noncompact Riemannian manifold with
nonnegative Ricci curvature. For any constants c ≥ 0 and 0 < � < 1, there does
not exist a bounded smooth function u ∶ Mn → I such that e−u ∈ ℒq

gM (M), for
some q > 3, and which is a solution of the system (45).

Observing once more that the assumption |Du|M ≤ �f(u), for some con-
stant 0 < � < 1, implies that the hyperbolic angle function Θ given by (43) is
bounded, Theorem 5.15 allows us to obtain the following result.

Theorem 6.11. Let M
n+1

= −I ×f Mn be a spatially parabolic covered GRW
spacetime satisfying (34), holding the equality only at isolated points of I. Suppose
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that c is a constant such that �̄c(t) ≥ 0 for all t ∈ I. If Σ(u) ⊂ M
n+1

is an entire
spacelike graph determined by a bounded function u ∈ C∞(M) which is solution
of the spacelike mean curvature �ow soliton equation (40) with |Du|M ≤ �f(u),
for some constant 0 < � < 1, then u ≡ t∗ for some t∗ ∈ I which is implicitly given
by the condition �c(t∗) = 0.

We �nish this manuscript with the following applications of Theorem 6.11.

Corollary 6.12. For any constants c < 0 and 0 < � < 1, the only bounded
smooth function u ∶ ℝ2 → ℝ+, with u(x) ≤ (− 4

3c
)
3
5 for all x ∈ ℝ2, and which is

solution of the system (44) for n = 2, is the constant u = (− 4
3c
)
3
5 .

Corollary 6.13. LetMn be a complete Riemannianmanifold with parabolic uni-
versal covering. For any constants c < 0 and 0 < � < 1, the only bounded smooth
functionu ∶ Mn → ℝ, withu(x) ≤ log(−n

c
) for all x ∈ Mn, andwhich is solution

of the system (45), is the constant u = log(−n
c
).
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