New York Journal of Mathematics

Strongly continuous composition semigroups on analytic Morrey spaces

Fangmei Sun and Hasi Wulan

Abstract

For a semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ consisting of analytic self-maps from the unit disk \mathbb{D} to itself, a strongly continuous composition semi-group $\left(C_{t}\right)_{t \geq 0}$ induced by $\left(\varphi_{t}\right)_{t \geq 0}$ on analytic Morrey spaces $H^{2, \lambda}, 0<\lambda<1$, is investigated. By the weak compactness of resolvent operator, we give a complete characterization of $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$ for $0<\lambda<1$ in terms of the infinitesimal generator if the Denjoy-Wolff point of $\left(\varphi_{t}\right)_{t \geq 0}$ is in \mathbb{D}.

Contents

1. Introduction 1419
2. Lemmas 1422
3. The proof of Theorem 1.1 1426
References 1429

1. Introduction

Recall that a family $\left(\varphi_{t}\right)_{t \geq 0}$ of analytic self-maps of the unit disk \mathbb{D} in the complex plane \mathbb{C} is said to be a semigroup if:
(i) φ_{0} is the identity $\operatorname{map} I$, i.e. $\varphi_{0}(z)=z, z \in \mathbb{D}$;
(ii) $\varphi_{t+s}=\varphi_{t} \circ \varphi_{s}$ for all $t, s \geq 0$;
(iii) for each $z \in \mathbb{D}, \varphi_{t}(z) \rightarrow z$ as $t \rightarrow 0^{+}$.

A semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ is said to be trivial if each φ_{t} is the identity of \mathbb{D}. By [12], every non-trivial semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ has a unique common fixed point $b \in \overline{\mathbb{D}}$ with $\left|\varphi_{t}^{\prime}(b)\right| \leq 1$ for all $t \geq 0$, called the Denjoy-Wolff point (DW point) of $\left(\varphi_{t}\right)_{t \geq 0}$. The infinitesimal generator of $\left(\varphi_{t}\right)_{t \geq 0}$ is the function

$$
G(z)=\lim _{t \rightarrow 0^{+}} \frac{\varphi_{t}(z)-z}{t}=\left.\frac{\partial \varphi_{t}(z)}{\partial t}\right|_{t=0}, \quad z \in \mathbb{D}
$$

[^0]This convergence holds uniformly on compact subsets of \mathbb{D}, so $G \in \mathcal{H}(\mathbb{D})$, the set of all analytic functions on \mathbb{D}. Moreover, G has a unique representation

$$
\begin{equation*}
G(z)=(\bar{b} z-1)(z-b) P(z), \quad z \in \mathbb{D}, \tag{1}
\end{equation*}
$$

where b is the DW point of $\left(\varphi_{t}\right)_{t \geq 0}$ and $P \in \mathcal{H}(\mathbb{D})$ with $\operatorname{Re}(P(z)) \geq 0$ for $z \in$ \mathbb{D}. For every non-trivial semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ with the infinitesimal generator G, there exists a unique univalent function h, the Koenigs function of $\left(\varphi_{t}\right)_{t \geq 0}$ on \mathbb{D}, correspending to $\left(\varphi_{t}\right)_{t \geq 0}$. If the DW point $b \in \mathbb{D}$, then $h(b)=0, h^{\prime}(b)=1$ and

$$
h\left(\varphi_{t}(z)\right)=e^{G^{\prime}(b) t} h(z), \quad z \in \mathbb{D}, t \geq 0 .
$$

If the $\mathbb{D W}$ point $b \in \partial \mathbb{D}=\{z:|z|=1\}$, then $h(0)=0$ and

$$
h\left(\varphi_{t}(z)\right)=h(z)+i t, \quad z \in \mathbb{D}, t \geq 0
$$

Without loss of generality, the $\mathbb{D W}$ point $b \in \mathbb{D}$ or $b \in \partial \mathbb{D}$ can be written as $b=0$ or $b=1$. See [5] and [12] for more results about the composition semigroups.

For a given semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ and a Banach space X consisting of analytic functions on \mathbb{D}, we say that $\left(\varphi_{t}\right)_{t \geq 0}$ generates a strongly continuous composition semigroup $\left(C_{t}\right)_{t \geq 0}$ on X if C_{t} is bounded on X for $t \geq 0$ and

$$
\lim _{t \rightarrow 0^{+}}\left\|C_{t}(f)-f\right\|_{X}=0 \quad \text { for all } f \in X,
$$

where $C_{t}(f)=f \circ \varphi_{t}$ for $f \in \mathcal{H}(\mathbb{D})$. Here C_{0} is the identity operator and $C_{t+s}=C_{t} \circ C_{s}$ for $t, s \geq 0$. Denote by $\left[\varphi_{t}, X\right]$ the maximal subspace of X on which $\left(\varphi_{t}\right)_{t \geq 0}$ generates a strongly continuous composition semigroup $\left(C_{t}\right)_{t \geq 0}$. Note that $\left[\varphi_{t}, X\right] \subset X$ is obvious. By $[2,10,11]$, we know that every semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ generates a strongly continuous composition semigroup $\left(C_{t}\right)_{t \geq 0}$ on the Hardy space $H^{p}, 1 \leq p<\infty$, the Bergman space $A^{p}, 1 \leq p<\infty$, and the Dirichlet space \mathcal{D}, respectively. In our notation, $\left[\varphi_{t}, H^{p}\right]=H^{p},\left[\varphi_{t}, A^{p}\right]=A^{p}$ for $1 \leq p<\infty$ and $\left[\varphi_{t}, \mathcal{D}\right]=\mathcal{D}$. However, not all analytic function spaces admit the property that the corresponding composition semigroups are strongly continuous on them. For this situation, we choose $X=H^{\infty}$, the Bloch space \mathcal{B}, the spaces Q_{p} and Q_{K}, for examples. See [3, 9, 15] for the details.

The authors of [6] considered the same problems for the analytic Morrey spaces $H^{2, \lambda}, 0 \leq \lambda \leq 1$. Let H^{2} be the Hardy space of all analytic functions f on \mathbb{D} for which

$$
\sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} \frac{\mathrm{~d} \theta}{2 \pi}<\infty .
$$

Note that for $f \in H^{2}$, the function $f(z)$ converges nontangentially to an L^{2} function $f(t)$ almost everywhere on $\partial \mathbb{D}$. For $0 \leq \lambda \leq 1$, the analytic Morrey space $H^{2, \lambda}$ consisting of those functions $f \in H^{2}$ such that

$$
\|f\|_{H^{2}, \lambda}:=\sup _{I \subset \partial \mathbb{D}}\left(\frac{1}{|I|^{\lambda}} \int_{I}\left|f(t)-f_{I}\right|^{2} \frac{|\mathrm{~d} t|}{2 \pi}\right)^{1 / 2}<\infty
$$

where f_{I} denotes the average of f over the $\operatorname{arc} I \subset \partial \mathbb{D}$ and $|I|$ denotes the arc length of $I \subset \partial \mathbb{D}$. It is clear that for $\lambda=0$ or $\lambda=1, H^{2, \lambda}$ reduces to H^{2} or $B M O A$, the set of analytic functions in \mathbb{D} with boundary values of bounded mean oscillation. It is known (cf.[14]), that $\|f\|_{H^{2, \lambda}}^{2}$ is equivalent to

$$
\begin{equation*}
\sup _{I \subset \partial \mathbb{D}} \frac{1}{|I|^{\lambda}} \int_{S(I)}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) \mathrm{d} m(z) \tag{2}
\end{equation*}
$$

where $S(I)$ is the Carleson box and $\mathrm{d} m(z)$ is the normalized Lebesgue area measure on \mathbb{D}.

It was shown in [6] that for every non-trivial semigroup $\left(\varphi_{t}\right)_{t \geq 0}$,

$$
\begin{equation*}
B M O A \varsubsetneqq H_{0}^{2, \lambda} \subset\left[\varphi_{t}, H^{2, \lambda}\right] \varsubsetneqq H^{2, \lambda}, \quad 0<\lambda<1 . \tag{3}
\end{equation*}
$$

Here, $H_{0}^{2, \lambda}$ is the closure of all polynomials in $H^{2, \lambda}$. [6, Theorem 3.1], the analogue of Sarason's characterization of a function in $V M O A$, showed that $H_{0}^{2, \lambda}=$ [$\left.\varphi_{t}, H^{2, \lambda}\right]$ for $\varphi_{t}(z)=e^{-t} z$ with the DW point $b=0$. However, by choosing

$$
\varphi_{t}(z)=\frac{\left(e^{-t}\left(\left(\frac{1+z}{1-z}\right)^{\frac{1-\lambda}{2}}-1\right)+1\right)^{\frac{2}{1-\lambda}}-1}{\left(e^{-t}\left(\left(\frac{1+z}{1-z}\right)^{\frac{1-\lambda}{2}}-1\right)+1\right)^{\frac{2}{1-\lambda}}+1}, \quad 0<\lambda<1
$$

with the DW point $b=0$, we find that the function

$$
f_{\lambda}(z)=\left(\frac{1+z}{1-z}\right)^{\frac{1-\lambda}{2}}-1 \in H^{2, \lambda} \backslash H_{0}^{2, \lambda}, \quad 0<\lambda<1 .
$$

Since

$$
\left\|f_{\lambda} \circ \varphi_{t}-f_{\lambda}\right\|_{H^{2, \lambda}}=\left(1-e^{-t}\right)\left\|f_{\lambda}\right\|_{H^{2, \lambda}} \rightarrow 0
$$

as $t \rightarrow 0, f_{\lambda} \in\left[\varphi_{t}, H^{2, \lambda}\right]$. It means that $H_{0}^{2, \lambda} \neq\left[\varphi_{t}, H^{2, \lambda}\right]$ holds for the semi$\operatorname{group}\left(\varphi_{t}\right)_{t \geq 0}$. In addition, we are able to find a semigroup $\left(\varphi_{t}\right)_{t \geq 0}=\left(e^{-t} z+1-\right.$ $\left.e^{-t}\right)_{t \geq 0}$ with the DW point $b=1$, for example, such that $H_{0}^{2, \lambda} \neq\left[\varphi_{t}, H^{2, \lambda}\right]$.

A natural problem is to characterize the semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ such that $H_{0}^{2, \lambda}=$ [$\varphi_{t}, H^{2, \lambda}$] holds. The authors of [6] obtained a sufficient condition for $H_{0}^{2, \lambda}=$ [$\left.\varphi_{t}, H^{2, \lambda}\right]$ in terms of the infinitesimal generator of $\left(\varphi_{t}\right)_{t \geq 0}$ as follows.

Theorem A ([6]). Let $\left(\varphi_{t}\right)_{t \geq 0}$ be a semigroup of analytic self-maps of \mathbb{D} with the infinitesimal generator G and $0<\lambda<1$. If

$$
\begin{equation*}
\lim _{|I| \rightarrow 0} \frac{1}{|I|} \int_{S(I)} \frac{1-|z|}{|G(z)|^{2}} \mathrm{~d} m(z)=0, \tag{4}
\end{equation*}
$$

then $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$.
They also gave a neccessary condition on the infinitesimal generator of a semigroup with the DW point $b \in \mathbb{D}$ such that $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$.

Theorem B ([6]). Let $\left(\varphi_{t}\right)_{t \geq 0}$ be a semigroup of analytic self-maps of \mathbb{D} with the $D W$ point $b \in \mathbb{D}$ and the infinitesimal generator G. If for some $\lambda \in(0,1)$ we have $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$, then

$$
\lim _{|z| \rightarrow 1} \frac{(1-|z|)^{\frac{3-\lambda}{2}}}{G(z)}=0 .
$$

The following result, Theorem1.1, is our main result in this paper which gives a sufficient and necessary condition for $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$ in terms of the weakly compactness of the resolvent operator when the semigroup $\left(\varphi_{t}\right)_{t \geq 0}$ has a DW point in \mathbb{D}. Moreover, this shows that when (5) holds, condition (4) in Theorem A is also necessary for $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$.

Theorem 1.1. Suppose $0<\lambda<1$ and $\left(\varphi_{t}\right)_{t \geq 0}$ is a non-trivial semigroup of analytic self-maps of \mathbb{D} with the $D W$ point $b=0$ and the infinitesimal generator G. Denote by Γ the infinitesimal generator of the corresponding composition semigroup $\left(S_{t}\right)_{t \geq 0}$ on $H_{0}^{2, \lambda}$ and denote by $R(\sigma, \Gamma)=(\sigma-\Gamma)^{-1}$ the resolvent operator for $\sigma \in \rho(\Gamma)$, the resolvent set of Γ. Then $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$ if and only if the resolvent operator $R(\sigma, \Gamma)$ is weakly compact on $H_{0}^{2, \lambda}$. Moreover, if

$$
\begin{equation*}
\sup _{I \subset \partial \mathbb{D}} \frac{1}{|I|} \int_{S(I)} \frac{1-|z|}{|G(z)|^{2}} \mathrm{~d} m(z)<\infty, \tag{5}
\end{equation*}
$$

then $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$ if and only if

$$
\begin{equation*}
\lim _{|I| \rightarrow 0} \frac{1}{|I|} \int_{S(I)} \frac{1-|z|}{|G(z)|^{2}} \mathrm{~d} m(z)=0 . \tag{6}
\end{equation*}
$$

Throughout the paper, the symbol $A \approx B$ means that $A \lesssim B \lesssim A$. We say that $A \lesssim B$ if there exists a constant $C>0$ such that $A \leq C B$.

2. Lemmas

For $g \in \mathcal{H}(\mathbb{D})$, the Volterra type operator V_{g} on $H^{2, \lambda}$ is defined by

$$
V_{g}(f)(z)=\int_{0}^{z} f(\xi) g^{\prime}(\xi) \mathrm{d} \xi, \quad f \in H^{2, \lambda}
$$

The following Lemma 2.1 and Lemma 2.2 are extensions of the related results in [3].

Lemma 2.1. Let $0<\lambda<1$ and $g \in \mathcal{H}(\mathbb{D})$. Then the following are equivalent:
(i) V_{g} is bounded on $H^{2, \lambda}$.
(ii) V_{g} is bounded on $H_{0}^{2, \lambda}$.

Proof. (i) \Rightarrow (ii). Suppose V_{g} is bounded on $H^{2, \lambda}$. By [8], $g \in H_{0}^{2, \lambda}$ since $B M O A \subset H_{0}^{2, \lambda}$ for $0<\lambda<1$. A simple computation shows that

$$
V_{g}\left(z^{n}\right)=\int_{0}^{z} \xi^{n} g^{\prime}(\xi) \mathrm{d} \xi
$$

belong to $H_{0}^{2, \lambda}$ for all integers $n \geq 1$, and then $V_{g}(P) \in H_{0}^{2, \lambda}$ for all polynomials P. Thus, for $f \in H_{0}^{2, \lambda}, V_{g}(f)$ can be approximated by $H_{0}^{2, \lambda}$ functions since $H_{0}^{2, \lambda}$ is the closure of all polynomials in $H^{2, \lambda}$. Bearing in mind that $H_{0}^{2, \lambda}$ is closed and the assertion follows.
(ii) \Rightarrow (i). Suppose V_{g} is bounded on $H_{0}^{2, \lambda}$. From [13], we know that the second dual of $H_{0}^{2, \lambda}$ is isomorphic to $H^{2, \lambda}$ under the pairing:

$$
\begin{equation*}
\langle f, h\rangle=\frac{1}{2 \pi} \int_{\partial \mathbb{D}} f(\zeta) \overline{h(\zeta)}|\mathrm{d} \zeta| \tag{7}
\end{equation*}
$$

for $f \in H_{0}^{2, \lambda}$ and $h \in\left(H_{0}^{2, \lambda}\right)^{*}$. Let V_{g}^{*} be the adjoint of V_{g} acting on the dual space $\left(H_{0}^{2, \lambda}\right)^{*}$ under (2.1), and let $V_{g}^{* *}$ be the adjoint of V_{g}^{*} acting on $H^{2, \lambda}$. Thus, by the definition of the adjoint operator,

$$
\left\langle V_{g}(f), h\right\rangle=\left\langle f, V_{g}^{*}(h)\right\rangle=\overline{\left\langle V_{g}^{*}(h), f\right\rangle}=\overline{\left\langle h, V_{g}^{* *}(f)\right\rangle}=\left\langle V_{g}^{* *}(f), h\right\rangle
$$

hold for all $f \in H_{0}^{2, \lambda}$ and $h \in\left(H_{0}^{2, \lambda}\right)^{*}$. Owing to $H_{0}^{2, \lambda}$ is weak ${ }^{*}$ dense in $H^{2, \lambda}$, we say that $V_{g}^{* *}=V_{g}$ as operators on $H^{2, \lambda}$. Hence, V_{g} is bounded on $H^{2, \lambda}$.

Lemma 2.2. Suppose $0<\lambda<1$ and $g \in \mathcal{H}(\mathbb{D})$. If V_{g} is bounded on $H^{2, \lambda}$, then the following statements are equivalent.
(i) V_{g} is weakly compact on $H^{2, \lambda}$.
(ii) V_{g} is weakly compact on $H_{0}^{2, \lambda}$.
(iii) V_{g} is compact on $H^{2, \lambda}$.
(iv) V_{g} is compact on $H_{0}^{2, \lambda}$.
(v) $V_{g}\left(H^{2, \lambda}\right) \subset H_{0}^{2, \lambda}$.

Proof. By the proof of Lemma 2.1, we conclude that $V_{g}^{* *}=V_{g}$. According to [4], the equivalence of (i), (ii) and (v) can be easily obtained.

Next, we show that (iii) and (iv) are equivalent. Because $H_{0}^{2, \lambda}$ is a subspace of $H^{2, \lambda}$ and they share the same norm, (iii) implies (iv). Conversely, let V_{g} be compact on $H_{0}^{2, \lambda}$. Using $V_{g}^{* *}=V_{g}$ again, and together with [4, Theorem VI.5.2], we get that (iv) and (iii) are equivalent.

Finally, we verify that (i) and (iii) are equivalent. (iii) \Rightarrow (i) is obvious. To finish the proof, for a given subarc $I \subset \partial \mathbb{D}$, we consider the functions

$$
f_{w}(z)=\frac{1}{(1-\bar{w} z)^{\frac{1-\lambda}{2}}}, \quad z \in \mathbb{D},
$$

where $w=(1-|I|) \zeta$ and ζ is the center of I. Note that $f_{w} \in H^{2, \lambda}$ and

$$
\sup _{w \in \mathbb{D}}\left\|f_{w}\right\|_{H^{2, \lambda}}<\infty .
$$

If (i) is true, then the equivalence of (i) and (v) gives that $V_{g}\left(H^{2, \lambda}\right) \subset H_{0}^{2, \lambda}$. It follows that

$$
V_{g}\left(f_{w}\right)(z)=\int_{0}^{z} f_{w}(\xi) g^{\prime}(\xi) \mathrm{d} \xi, \quad w \in \mathbb{D}
$$

belong to $H_{0}^{2, \lambda}$. Similar to (2), we have

$$
\lim _{|I| \rightarrow 0} \frac{1}{|I|^{\lambda}} \int_{S(I)}\left|f_{w}(z)\right|^{2}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) \mathrm{d} m(z)=0
$$

Hence,

$$
\lim _{|I| \rightarrow 0} \frac{1}{|I|} \int_{S(I)}\left|g^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right) \mathrm{d} m(z)=0
$$

which means that $g \in V M O A$ by [7]. Combining this with [8] implies that V_{g} is compact on $H^{2, \lambda}$.

Suppose now that $\left(\varphi_{t}\right)_{t \geq 0}$ is a semigroup of self-maps of \mathbb{D} and $\left(C_{t}\right)_{t \geq 0}$ is the corresponding composition semigroup on $H^{2, \lambda}$. Since each φ_{t} is univalent, we know that C_{t} is bounded on $H^{2, \lambda}\left(\left[16\right.\right.$, Corollary 1]), and $\sup _{t \in[0,1]}\left\|C_{t}\right\|<\infty$. If $f \in H_{0}^{2, \lambda}$ and $\epsilon>0$, then there exists a polynomial P such that $\|f-P\|_{H^{2, \lambda}}<\epsilon$ ([13, Lemma 2.8]). Hence,

$$
\left\|C_{t}(f)-C_{t}(P)\right\|_{H^{2, \lambda}}<\epsilon\left(\frac{1+\left|\varphi_{t}(0)\right|}{1-\left|\varphi_{t}(0)\right|}\right)^{\frac{1-\lambda}{2}}
$$

Since $C_{t}(P) \in H_{0}^{2, \lambda}$, it follows that $C_{t}(f) \in H_{0}^{2, \lambda}$. Therefore $C_{t}: H_{0}^{2, \lambda} \rightarrow H_{0}^{2, \lambda}$ exists as a bounded operator with $\left\|C_{t}\right\| \leq\left(\frac{1+\left|\varphi_{t}(0)\right|}{1-\left|\varphi_{t}(0)\right|}\right)^{\frac{1-\lambda}{2}}$. Thus, we can define the composition operator $S_{t}=\left.C_{t}\right|_{H_{0}^{2, \lambda}}$ on $H_{0}^{2, \lambda}$. It is clear that $\left(S_{t}\right)_{t \geq 0}$ is strongly continuous on $H_{0}^{2, \lambda}, 0<\lambda<1$, by [1, Corollary 1.3].
Lemma 2.3. Let $\left(\varphi_{t}\right)_{t \geq 0}$ be a semigroup of self-maps of \mathbb{D}, $\left(C_{t}\right)_{t \geq 0}$ be the corresponding composition semigroup on $H^{2, \lambda}$, and $S_{t}=\left.C_{t}\right|_{H_{0}^{2, \lambda}}$ for $0<\lambda<1$. Then $S_{t}^{* *}=C_{t}$ for all $t \geq 0$, where $S_{t}^{* *}$ means the second adjoint operator of S_{t} under the pairing (7).
Proof. For $f \in H_{0}^{2, \lambda}$ and $h \in\left(H_{0}^{2, \lambda}\right)^{*}$, we have

$$
\left\langle S_{t}(f), h\right\rangle=\left\langle f, S_{t}^{*}(h)\right\rangle=\overline{\left\langle S_{t}^{*}(h), f\right\rangle}=\overline{\left\langle h, S_{t}^{* *}(f)\right\rangle}=\left\langle S_{t}^{* *}(f), h\right\rangle,
$$

which gives

$$
S_{t}^{* *}(f)=S_{t}(f) \text { for all } f \in H_{0}^{2, \lambda}
$$

Therefore,

$$
\left.C_{t}\right|_{H_{0}^{2, \lambda}}=S_{t}=\left.S_{t}^{* *}\right|_{H_{0}^{2, \lambda}} .
$$

Since $H_{0}^{2, \lambda}$ is weak* dense in $H^{2, \lambda}$, the conclusion follows.
Lemma C ([5]). Let $\left(T_{t}\right)_{t \geq 0}$ be a strongly continuous composition semigroup on a Banach space X with the infinitesimal generator A and let ω_{0} be the growth bound of $\left(T_{t}\right)_{t \geq 0}$, i.e.

$$
\omega_{0}=\lim _{t \rightarrow \infty} \frac{\log \left\|T_{t}\right\|}{t} .
$$

(i) If $\delta>\omega_{0}$, then there is a constant M_{δ} such that $\left\|T_{t}\right\| \leq M_{\delta} e^{\delta t}, t \geq 0$;
(ii) If $\operatorname{Re}(\sigma)>\omega_{0}$, then $\sigma \in \rho(A)$ and

$$
R(\sigma, A)(f)=\int_{0}^{\infty} e^{-\sigma t} T_{t}(f) \mathrm{d} t, \quad f \in X .
$$

Lemma 2.4. Let $\left(\varphi_{t}\right)_{t \geq 0}$ be a non-trivial semigroup of self-maps of \mathbb{D} with the $D W$ point $b=0$, the infinitesimal generator G and Koenigs function h. Suppose S_{t} is the corresponding composition semigroup on $H_{0}^{2, \lambda}, 0<\lambda<1$, with the infinitesimal generator Γ. Then for $\sigma \in \rho(\Gamma)$, the resolvent operator of Γ has the following representation:

$$
\begin{equation*}
R(\sigma, \Gamma) f(z)=-\frac{1}{G^{\prime}(0)} \frac{1}{(h(z))^{-\frac{\sigma}{G^{\prime}(0)}}} \int_{0}^{z} f(\zeta)(h(\zeta))^{-\frac{\sigma}{G^{\prime}(0)}-1} h^{\prime}(\zeta) \mathrm{d} \zeta . \tag{8}
\end{equation*}
$$

In particular, $-G^{\prime}(0)$ belongs to $\rho(\Gamma)$ and hence

$$
\begin{equation*}
R\left(-G^{\prime}(0), \Gamma\right) f(z)=-\frac{1}{G^{\prime}(0) h(z)} \int_{0}^{z} f(\zeta) h^{\prime}(\zeta) \mathrm{d} \zeta \tag{9}
\end{equation*}
$$

Proof. Write

$$
R:=-\frac{1}{G^{\prime}(0)} \frac{1}{(h(z))^{-\frac{\sigma}{G^{\prime}(0)}}} \int_{0}^{z} f(\zeta)(h(\zeta))^{-\frac{\sigma}{G^{\prime}(0)}-1} h^{\prime}(\zeta) \mathrm{d} \zeta .
$$

It is easy to check that

$$
(\sigma I-\Gamma) R=R(\sigma I-\Gamma)=I,
$$

which shows that R is the resolvent operator of Γ and (8) holds. Since each φ_{t} is univalent, we immediately get that each S_{t} maps $H_{0}^{2, \lambda}$ into itself and so

$$
\omega_{0}:=\lim _{t \rightarrow \infty} \frac{\log \left\|S_{t}\right\|}{t}=0 .
$$

By (1), we have

$$
G(z)=-z P(z), \quad \operatorname{Re}(P(z)) \geq 0, z \in \mathbb{D},
$$

and

$$
\operatorname{Re}\left(-G^{\prime}(0)\right)=\operatorname{Re}(P(0)) \geq 0
$$

If $\operatorname{Re}\left(-G^{\prime}(0)\right)>0$, by (ii) of Lemma $\mathrm{C},-G^{\prime}(0) \in \rho(\Gamma)$. If $\operatorname{Re}\left(-G^{\prime}(0)\right)=0$, write $G(z)=-i \alpha z$, where $\alpha \in \mathbb{R} \backslash\{0\}$. By [3, Theorem 2],

$$
\Gamma(f)(z)=G(z) f^{\prime}(z)=-i \alpha z f^{\prime}(z) .
$$

Thus, $(i \alpha I-\Gamma)(f)=g$ has the unique analytic solution

$$
f(z)=\frac{1}{i \alpha z} \int_{0}^{z} g(\zeta) \mathrm{d} \zeta
$$

It is not difficult to see that the operator

$$
g \rightarrow \frac{1}{i \alpha z} \int_{0}^{z} g(\zeta) \mathrm{d} \zeta
$$

is bounded on $H^{2, \lambda}$. Hence, it is bounded on $H_{0}^{2, \lambda}$. Therefore, $-G^{\prime}(0) \in \rho(\Gamma)$. Choosing $\sigma=-G^{\prime}(0)$ in (8), we obtain (9).

3. The proof of Theorem 1.1

Now we are going to prove Theorem 1.1. Suppose $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$. By (i) of Lemma C, there are two positive constants δ and M_{δ} such that $\left\|S_{u}\right\| \leq M_{\delta} e^{\delta u}$ for $u \geq 0$. By (ii) of Lemma C, we choose a large enough real number $\sigma>\delta$ such that $\sigma \in \rho(\Gamma)$ and we have

$$
R(\sigma, \Gamma)(f)=\int_{0}^{\infty} e^{-\sigma u} S_{u}(f) \mathrm{d} u, \quad f \in H_{0}^{2, \lambda}
$$

Thus,

$$
S_{t} \circ R(\sigma, \Gamma)(f)=\int_{0}^{\infty} e^{-\sigma u} S_{t+u}(f) \mathrm{d} u=e^{\sigma t} \int_{t}^{\infty} e^{-\sigma u} S_{u}(f) \mathrm{d} u
$$

Accordingly,

$$
S_{t} \circ R(\sigma, \Gamma)(f)-R(\sigma, \Gamma)(f)=\left(e^{\sigma t}-1\right) \int_{t}^{\infty} e^{-\sigma u} S_{u}(f) \mathrm{d} u-\int_{0}^{t} e^{-\sigma u} S_{u}(f) \mathrm{d} u
$$

Therefore,

$$
\begin{aligned}
\| S_{t} \circ R(\sigma, \Gamma)(f)- & R(\sigma, \Gamma)(f) \|_{H^{2, \lambda}} \\
& \leq\left(\left|e^{\sigma t}-1\right| \int_{t}^{\infty} e^{-\sigma u}\left\|S_{u}\right\| \mathrm{d} u+\int_{0}^{t} e^{-\sigma u}\left\|S_{u}\right\| \mathrm{d} u\right)\|f\|_{H^{2, \lambda}}
\end{aligned}
$$

Thus,

$$
\left\|S_{t} \circ R(\sigma, \Gamma)-R(\sigma, \Gamma)\right\| \leq M_{\delta}\left(\left|e^{\sigma t}-1\right| \int_{t}^{\infty} e^{-(\sigma-\delta) u} \mathrm{~d} u+\int_{0}^{t} e^{-(\sigma-\delta) u} \mathrm{~d} u\right)
$$

and so

$$
\lim _{t \rightarrow 0}\left\|S_{t} \circ R(\sigma, \Gamma)-R(\sigma, \Gamma)\right\|=0
$$

By Lemma 2.3, $S_{t}^{* *}=C_{t}$. Recalling that S_{t} commutes with $R(\sigma, \Gamma)$, we have

$$
\lim _{t \rightarrow 0}\left\|C_{t} \circ R(\sigma, \Gamma)^{* *}-R(\sigma, \Gamma)^{* *}\right\|=0 .
$$

This implies

$$
\lim _{t \rightarrow 0}\left\|C_{t} \circ R(\sigma, \Gamma)^{* *}(f)-R(\sigma, \Gamma)^{* *}(f)\right\|_{H^{2}, \lambda}=0, \quad f \in H^{2, \lambda}
$$

which yeilds that $R(\sigma, \Gamma)^{* *}\left(H^{2, \lambda}\right) \subset\left[\varphi_{t}, H^{2, \lambda}\right]=H_{0}^{2, \lambda}$. According to [4, Theorem VI.4.2], we know that $R(\sigma, \Gamma)$ is weakly compact on $H_{0}^{2, \lambda}$ for a large enough real number σ. For a general $\sigma \in \rho(\Gamma)$, using the resolvent equation

$$
R(\sigma, \Gamma)-R(\mu, \Gamma)=(\mu-\sigma) R(\sigma, \Gamma) R(\mu, \Gamma), \quad \sigma, \mu \in \rho(\Gamma),
$$

we obtain that $R(\sigma, \Gamma)$ is weakly compact for some $\sigma \in \rho(\Gamma)$ if and only if it is weakly compact for every $\sigma \in \rho(\Gamma)$.

Conversely, write $Y=\left[\varphi_{t}, H^{2, \lambda}\right]$ and then $H_{0}^{2, \lambda} \subset Y \varsubsetneqq H^{2, \lambda}$ by [6]. By [3, Theorem 2], the restriction of $\left(C_{t}\right)_{t \geq 0}$ on Y is a strongly continuous semigroup with the infinitesimal generator $\Delta(f)=G f^{\prime}$. It is clear that the domain of Γ

$$
D(\Gamma)=\left\{f \in H_{0}^{2, \lambda}: G f^{\prime} \in H_{0}^{2, \lambda}\right\} \subset D(\Delta)=\left\{f \in Y: G f^{\prime} \in Y\right\},
$$

and that Δ is an extension of Γ. Let σ be a large enough real number such that $\sigma \in \rho(\Gamma) \cap \rho(\Delta)$. An argument similar to that in the proof of Lemma 2.3 shows that

$$
\left.R(\sigma, \Gamma)^{* *}\right|_{H_{0}^{2, \lambda}}=R(\sigma, \Gamma),\left.\quad R(\sigma, \Gamma)^{* *}\right|_{Y}=R(\sigma, \Delta) .
$$

On the other hand,

$$
\begin{aligned}
D(\Delta) & =\left\{f \in Y: G f^{\prime} \in Y\right\} \\
& =\left\{f \in Y: g=G f^{\prime}-\sigma f \in Y\right\} \\
& =\{f \in Y: f=R(\sigma, \Delta)(g), g \in Y\} \\
& =R(\sigma, \Delta)(Y) .
\end{aligned}
$$

Thus,

$$
D(\Delta)=\left.R(\sigma, \Gamma)^{* *}\right|_{Y}(Y) \subset R(\sigma, \Gamma)^{* *}\left(H^{2, \lambda}\right) \subset H_{0}^{2, \lambda} .
$$

By [3, Theorem 1], we have

$$
Y=\left[\varphi_{t}, H^{2, \lambda}\right]=\overline{D(\Delta)} \subset H_{0}^{2, \lambda}
$$

which means that

$$
H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right] .
$$

Next, we are going to prove the second part of Theorem 1.1. By Lemma 2.4, we know that $-G^{\prime}(0) \in \rho(\Gamma)$ and

$$
R_{h}(f):=R\left(-G^{\prime}(0), \Gamma\right) f(z)=-\frac{1}{G^{\prime}(0) h(z)} \int_{0}^{z} f(\zeta) h^{\prime}(\zeta) \mathrm{d} \zeta
$$

By using the techniques mentioned in [12], the operator R_{h} and the multiplier operator

$$
M_{I}(f)(z)=I(z) f(z)=z f(z)
$$

satisfy the following identities:

$$
\begin{equation*}
M_{I} P_{h}=-G^{\prime}(0) R_{h} M_{I}, \quad Q_{h}=P_{h}+Q_{h} P_{h} \tag{10}
\end{equation*}
$$

where

$$
P_{h} f(z)=\frac{1}{z h(z)} \int_{0}^{z} f(\zeta) \zeta h^{\prime}(\zeta) \mathrm{d} \zeta
$$

and

$$
Q_{h} f(z)=\frac{1}{z} \int_{0}^{z} f(\zeta) \frac{\zeta h^{\prime}(\zeta)}{h(\zeta)} \mathrm{d} \zeta
$$

To finish our proof, by the first part of the theorem, it suffices to show that R_{h} is weakly compact on $H_{0}^{2, \lambda}$ if and only if (6) holds. A simple computation shows that

$$
Q_{h}(f)(z)=J(f)(z)+L_{h} M_{I}(f)(z)
$$

where

$$
J(f)(z)=\frac{1}{z} \int_{0}^{z} f(\zeta) \mathrm{d} \zeta
$$

and

$$
L_{h} f(z)=\frac{1}{z} \int_{0}^{z} f(\zeta)\left(\log \frac{h(\zeta)}{\zeta}\right)^{\prime} \mathrm{d} \zeta
$$

Since the DW point $b=0$, we have

$$
h^{\prime}(z) G(z)=G^{\prime}(0) h(z), \quad z \in \mathbb{D}
$$

Thus, (5) gives

$$
\sup _{I \subset \partial \mathbb{D}} \frac{1}{I I \mid} \int_{S(I)}\left|\frac{z h^{\prime}(z)}{h(z)}\right|^{2}(1-|z|) \mathrm{d} m(z)<\infty
$$

which shows that $\log \frac{h(z)}{z} \in B M O A$. By [8] and Lemma 2.1, L_{h} is bounded on $H_{0}^{2, \lambda}$, and so Q_{h} is bounded on $H_{0}^{2, \lambda}$. By (10), R_{h} is bounded on $H_{0}^{2, \lambda}$ and therefore, P_{h} is bounded on $H_{0}^{2, \lambda}$. Meanwhile, (6) is equivalent to

$$
\lim _{|I| \rightarrow 0} \frac{1}{|I|} \int_{S(I)}\left|\frac{z h^{\prime}(z)}{h(z)}\right|^{2}\left(1-|z|^{2}\right) \mathrm{d} m(z)=0
$$

which shows that $\log \frac{h(z)}{z} \in V M O A$. Similarly, we obtain that (6) is equivalent to that R_{h} is weakly compact on $H_{0}^{2, \lambda}$ see [4, Theorem VI.4.5]. The proof is complete.

The following corollary is closely related to Theorem B.
Corollary 3.1. Suppose $0<\lambda<1$ and $\left(\varphi_{t}\right)_{t \geq 0}$ is a non-trivial semigroup of analytic self-maps of \mathbb{D} with the DW point in \mathbb{D} and infinitesimal generator G. If condition (5) holds, then $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$ implies that

$$
\lim _{|z| \rightarrow 1} \frac{1-|z|}{G(z)}=0 .
$$

Proof. Suppose $H_{0}^{2, \lambda}=\left[\varphi_{t}, H^{2, \lambda}\right]$. By Theorem 1.1, we have that (6) holds. A standard argument (cf. [7]) gives

$$
\begin{equation*}
\lim _{|a| \rightarrow 1} \int_{\mathbb{D}} \frac{1}{|G(z)|^{2}}\left(1-\left|\sigma_{a}(z)\right|^{2}\right) \mathrm{d} m(z)=0, \tag{11}
\end{equation*}
$$

where $\sigma_{a}(z)=\frac{a-z}{1-\bar{a} z}, a \in \mathbb{D}$, is the Möbius transformation of \mathbb{D}. For $0<r<1$, let $\mathbb{D}(a, r)=\left\{a \in \mathbb{D}:\left|\sigma_{a}(z)\right|<r\right\}$ be the pseudohyperbolic disk with center $a \in \mathbb{D}$ and radius r. By [17], we see that

$$
|1-\bar{a} z|^{2} \approx\left(1-|z|^{2}\right)^{2} \approx\left(1-|a|^{2}\right)^{2} \approx m(\mathbb{D}(a, r)), \quad z \in \mathbb{D}(a, r) .
$$

Choose an $r_{0} \in(0,1)$. By the subharmonicity, we obtain

$$
\begin{aligned}
& \int_{\mathbb{D}} \frac{1}{|G(z)|^{2}}\left(1-\left|\sigma_{a}(z)\right|^{2}\right) \mathrm{d} m(z) \\
& \geq\left(1-r_{0}^{2}\right) \int_{\mathbb{D}\left(a, r_{0}\right)} \frac{1}{|G(z)|^{2}} \mathrm{~d} m(z) \geq\left(1-r_{0}^{2}\right) \frac{\left(1-|a|^{2}\right)^{2}}{|G(a)|^{2}} .
\end{aligned}
$$

Letting $|a| \rightarrow 1$, by (11) we obtain

$$
\lim _{|a| \rightarrow 1} \frac{1-|a|}{G(a)}=0 .
$$

Thus, Corollary 3.1 is proved.

References

[1] ANDERSON, AUSTIN; Jovovic, MirJanA; Smith, Wayne. Composition semigroups on BMOA and H^{∞}. J. Math. Anal. Appl. 449 (2017), no. 1, 843-852. MR3595236, Zbl 1369.47025, doi: 10.1016/j.jmaa.2016.12.032. 1424
[2] Berkson, Earl; Porta, Horacio. Semigroups of analytic functions and composition operators. Michigan Math. J. 25 (1978), no. 1, 101-115. MR0480965, Zbl 0382.47017, doi: $10.1307 / \mathrm{mmj} / 1029002009.1420$
[3] BLASCO, OScAR; CONTRERAS, MANUEL D.; DÍAZ-MADRIGAL, SANTIAGO; MARTÍNEZ, JOSEP; PAPADIMITRAKIS, MICHAEL; SISKAKIS, ARISTOMENIS G. Semigroups of composition operators and integral operators in spaces of analytic functions. Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 1, 67-89. MR3076799, Zbl 1273.30046, doi: 10.5186/aasfm.2013.3806. 1420, 1422, 1425, 1427
[4] Dunford, NELSON; Schwartz, Jacob T. Linear operators. Part I: General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1988. xiv+858 pp. ISBN: 0-471-60848-3. MR1009162, Zbl 0635.47001. 1423, 1427, 1428
[5] Engel, Klaus-Jochen; NAGEL, RAINER. A short course on operator semigroups. Universitext. Springer, New York, 2006. x+247 pp. ISBN: 978-0387-31341-2; 0-387-31341-9. MR2229872, Zbl 1106.47001, doi: 10.1007/0-387-36619-9. 1420, 1425
[6] Galanopoulos, Petros; Merchán, Noel; Siskakis, Aristomenis G. Semigroups of composition operators in analytic Morrey spaces. Integral Equations Operator Theory 92 (2020), no. 2, Paper No. 12, 15 pp. MR4070764, Zbl 07181798, arXiv:1909.11035, doi: 10.1007/s00020-020-2568-5. 1420, 1421, 1422, 1427
[7] GARNETT, JOHN B. Bounded analytic functions. Pure and Applied Mathematics, 96. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. xvi+467 pp. ISBN: 0-12-276150-2. MR0628971, Zbl 0469.30024. 1424, 1429
[8] Li, Pengtao; LiU, JUnming; LOU, ZENGJIAN. Integral operators on analytic Morrey spaces. Sci. China Math. 57 (2014), no. 9, 1961-1974. MR3249403, Zbl 1308.45009, arXiv:1304.2575, doi: 10.1007/s11425-014-4811-5. 1423, 1424, 1428
[9] LOTZ, HEINRICH P. Uniform convergence of operators on L^{∞} and similar spaces. Math. Z. 190 (1985), no. 2, 207-220. MR0797538, Zbl 0623.47033, doi: 10.1007/BF01160459. 1420
[10] SISKAKIS, ARISTOMENIS G. Semigroups of composition operators in Bergman spaces. Bull. Austral. Math. Soc. 35 (1987), no. 3, 397-406. MR0888899, Zbl 0611.47033, doi: 10.1017/S0004972700013381. 1420
[11] Siskakis, Aristomenis G. Semigroups of composition operators on the Dirichlet space. Results Math. 30 (1996), no. 1-2, 165-173. MR1402434, Zbl 0865.47030, doi: 10.1007/BF03322189. 1420
[12] SISKAKIS, ARISTOMENIS G. Semigroups of composition operators on spaces of analytic functions, a review. Studies on composition operators (Laramie, WY, 1996), 229-252. Contemp. Math., 213. Amer. Math. Soc., Providence, RI, 1998. MR1601120, Zbl 0904.47030. 1419, 1420, 1427
[13] WANG, JiANFEI; XiAO, Jie. Analytic Campanato spaces by functionals and operators. J. Geom. Anal. 26 (2016), no. 4, 2996-3018. MR3544950, Zbl 1361.30101, doi: 10.1007/s12220-015-9658-7. 1423, 1424
[14] Wu, Zhisian. A new characterization for Carleson measures and some applications. Integral Equations Operator Theory 71 (2011), no. 2, 161-180. MR2838140, Zbl 1248.47036, doi: 10.1007/s00020-011-1892-1. 1421
[15] WU, FANGLEI; WULAN, HASI. Semigroups of composition operators on Q_{p} spaces. J. Math. Anal. Appl. 496 (2021), no. 2, Paper No. 124845, 14 pp. MR4189039, Zbl 1480.47064, doi: 10.1016/j.jmaa.2020.124845. 1420
[16] Xiao, Jie; Xu, Wen. Composition operators between analytic Campanato spaces. J. Geom. Anal. 24 (2014), no. 2, 649-666. MR3192291, Zbl 1301.30056, arXiv:1207.5784, doi: 10.1007/s12220-012-9349-6. 1424
[17] ZHU, KEHE. Operator theory in function spaces. Second edition. Mathematical Surveys and Monographs, 138. American Mathematical Society, Providence, RI, 2007. xvi+348 pp. ISBN: 978-0-8218-3965-2. MR2311536, Zbl 1123.47001 doi: 10.1090/surv/138. 1429
(Fangmei Sun) Department of Mathematics, Shantou University, Shantou 515063, GUANGDONG Province, CHINA
18fmsun@stu.edu.cn
(Hasi Wulan) DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, SHANTOU 515063, GUANGdong Province, China.
wulan@stu.edu.cn
This paper is available via http://nyjm.albany.edu/j/2022/28-60.html.

[^0]: Received May 31, 2022.
 2010 Mathematics Subject Classification. 30D45, 30D99, 30H25, 47B38.
 Key words and phrases. composition operator semigroup; strongly continuous; maximal closed subspace; analytic Morrey space; Denjoy-Wolff point.

 This research is supported by NNSF of China (No.11720101003, 12271328) and Guangdong Basic and Applied-basic Research Foundation (No. 2022A1515012117).

