New York Journal of Mathematics

New York J. Math. 28 (2022) 1365-1371.

Random nilpotent groups of maximal step

Phillip Harris

ABSTRACT. Let G be a random torsion-free nilpotent group generated by two random words of length ℓ in $U_n(\mathbb{Z})$. Letting ℓ grow as a function of *n*, we analyze the step of G, which is bounded by the step of $U_n(\mathbb{Z})$. We prove a conjecture of Delp, Dymarz, and Schaffer-Cohen, that the threshold function for full step is $\ell = n^2$.

CONTENTS

1.	Introduction	1365
2.	Nested commutators	1366
3.	Asymptotics	1369
Acknowledgement		1371
References		1371

1. Introduction

A group G is nilpotent if its lower central series,

$$G = G_0 \ge G_1 \ge \dots \ge G_r = \{1\}$$

defined by $G_{i+1} = [G, G_i]$, eventually terminates. The first index r for which $G_r = \{1\}$ is called the *step* of G. One may ask what a generic nilpotent group looks like, including its step. Questions about generic properties of groups can be answered with random groups, first introduced by Gromov [5]. Since Gromov's original few relators and density models are nilpotent with probability 0, they cannot tell us about generic properties of nilpotent groups. Thus, there is a need for new random group models that are nilpotent by construction.

Delp, et al. (2019) [3] introduced a model for random nilpotent groups, motivated by the observation that any finitely generated torsion-free nilpotent group can be embedded in the group $U_n(\mathbb{Z})$ of $n \times n$ upper triangular integer matrices with ones on the diagonal [4]. Note that, since any finitely generated nilpotent group contains a torsion-free subgroup of finite index, we are not losing much by restricting our attention to torsion-free groups. (Another model is considered in [2]).

Received February 8, 2022.

²⁰¹⁰ Mathematics Subject Classification. 20D15, 20P05, 60B15.

Key words and phrases. random groups, nilpotent groups, lower central series. This research was supported by NSF grants DMS-2037851 and DMS-1902173.

PHILLIP HARRIS

We construct a random subgroup of $U_n(\mathbb{Z})$ as follows. Let $E_{i,j}$ be the elementary matrix with 1's on the diagonal, a 1 at position (i, j) and 0's elsewhere. Then $S = \{E_{i,i+1}^{\pm 1} : 1 \le i < n\}$ forms the standard generating set for $U_n(\mathbb{Z})$. We call the entries at positions (i, i+1) the *superdiagonal* entries. Define a *random* walk of length ℓ to be a product

$$V = V_1 V_2 \dots V_{\ell}$$

where each V_i is chosen independently and uniformly from *S*. Let *V* and *W* be two independent random walks of length ℓ . Then $G = \langle V, W \rangle$ is a random subgroup of $U_n(\mathbb{Z})$. We have step $(G) \leq \text{step}(U_n(\mathbb{Z}))$, and it is not hard to check that step $(U_n(\mathbb{Z})) = n - 1$. If step(G) = n - 1, we say *G* has *full step*.

Now let $n \to \infty$ and $\ell = \ell(n)$ grow as a function of n. We say a proposition P holds *asymptotically almost surely* (a.a.s.) if $\mathbb{P}[P] \to 1$ as $n \to \infty$. Delp et al. (2019) gave results on the step of G, depending on the growth rate of ℓ with respect to n. Recall that f = o(g(n)) means $f(n)/g(n) \to 0$ as $n \to \infty$ and $f = \omega(g(n))$ means $f(n)/g(n) \to \infty$ as $n \to \infty$.

Theorem 1.1 (Delp-Dymarz-Schaffer-Cohen). Let n, $\ell(n) \to \infty$ and $G = \langle V, W \rangle$ where V, W are independent random walks of length ℓ . Then:

- (1) If $\ell(n) = o(\sqrt{n})$ then a.a.s. step(G) = 1, i.e. G is abelian.
- (2) If $\ell(n) = o(n^2)$ then a.a.s. step(G) < n 1.
- (3) If $\ell(n) = \omega(n^3)$ then a.a.s. step(G) = n 1, i.e. G has full step.

In this paper we close the gap between cases 2 and 3.

Theorem 1.2. Let $n, \ell(n) \to \infty$ and $G = \langle V, W \rangle$. If $\ell(n) = \omega(n^2)$ then a.a.s. *G* has full step.

To prove this requires a careful analysis of the nested commutators that generate G_{n-1} . In Section 1, we give a combinatorial criterion for a nested commutator of *V*'s and *W*'s to be nontrivial. In Section 2, we show this criterion is satisfied asymptotically almost surely when *V*, *W* are random walks.

2. Nested commutators

Let $G = G_0 \ge G_1 \ge ...$ be the lower central series of *G*. We have

$$G_i = [G, G_{i-1}] = [G, [G, \dots, [G, G] \dots]]$$

In particular, G_i includes all i + 1-fold nested commutators of elements of G. We restrict our attention to commutators where each factor is V or W.

Let $\{0, 1\}^d$ be the *d*-dimensional cube, or the set of all length *d* binary vectors. For $x \in \{0, 1\}^d$, $y \in \{0, 1\}^e$ we define the norm $N(x) = \sum_{1 \le i \le d} x_i$ and the concatenation $xy \in \{0, 1\}^{d+e}$. For example if x = (1, 0, 0) and y = (0, 1) then $xy = (1, 0, 0, 0, 1) = 10^3 1$.

1366

We define a family of maps C_d : $\{0, 1\}^d \to G_d$ as follows.

$$C_{1}(1) = V$$

$$C_{1}(0) = W$$

$$C_{d}(1x) = [V, C_{d-1}(x)]$$

$$C_{d}(0x) = [W, C_{d-1}(x)]$$

Thus for example, $C_5(10^31) = C_5(10001) = [V, [W, [W, [W, V]]]]$. We omit the subscript *d* when it is obvious. To prove *G* has full step, it suffices to find an $x \in \{0, 1\}^{n-1}$ such that C(x) is nontrivial. We begin with Lemma 2.3 from [3], which gives a recursive formula for the entries of a nested commutator.

Lemma 2.1. Let $a \in \{0, 1\}, x \in \{0, 1\}^{d-1}$. Then $C(ax) \in G_d$ and we have

$$C(ax)_{i,i+d} = C(a)_{i,i+1}C(x)_{i+1,i+d} - C(a)_{i+d-1,i+d}C(x)_{i,i+d-1}$$

and furthermore $C(ax)_{i,j} = 0$ for j < i + d.

In particular, for d = n - 1 only the upper rightmost entry $C(ax)_{1,n}$ can be nonzero.

From the formula, it is clear that $C(ax)_{i,i+d}$ is a degree-*d* polynomial in the superdiagonal entries of *V* and *W*. Let us state this more precisely and analyze the coefficients of the polynomial.

Lemma 2.2. Let $d \ge 1$. There exists a function $K_d : \{0,1\}^d \times \{0,1\}^d \to \mathbb{Z}$ such that for $1 \le i \le n - d$ we have

$$C(x)_{i,i+d} = \sum_{\substack{y \in \{0,1\}^d \\ N(y) = N(x)}} K_d(x, y) \prod_{i \le j < i+d} V_{j,j+1}^{y_j} W_{j,j+1}^{1-y_j}$$
(1)

Furthermore, setting $K_d(x, y) = 0$ for $N(x) \neq N(y)$ we have a recursion

$$K_d(ax, byc) = K_1(a, b)K_{d-1}(x, yc) - K_1(a, c)K_{d-1}(x, by)$$

with base cases

$$K_1(0,0) = K_1(1,1) = 1$$

 $K_1(0,1) = K_1(1,0) = 0$

Note that $K_d(x, y)$ does not depend on *i*. We also drop the subscript *d* since it can be inferred from *x* and *y*.

Proof. Abbreviate

$$U(i,d,y) := \prod_{i \le j < i+d} V_{j,j+1}^{y_j} W_{j,j+1}^{1-y_j}$$

We first prove inductively that there exist coefficients K_d : $\{0, 1\}^d \times \{0, 1\}^d \to \mathbb{Z}$ such that

$$C(x)_{i,i+d} = \sum_{y \in \{0,1\}^d} K_d(x,y) U(i,d,y)$$

The case d = 1 is trivial. Assume it holds for d - 1. Let $a \in \{0, 1\}$ and $x \in \{0, 1\}^{d-1}$, then we have

$$C(ax)_{i,i+d} = C(a)_{i,i+1}C(x)_{i+1,i+d} - C(a)_{i+d-1,i+d}C(x)_{i,i+d-1}$$

Expanding $C(a)_{i,i+1}$ and $C(x)_{i+1,i+d}$, the first term is

$$= \left[K_1(a,1)V_{i,i+1} + K_1(a,0)W_{i,i+1} \right] \left[\sum_{y \in \{0,1\}^{d-1}} K_{d-1}(x,y)U(i+1,d-1,y) \right]$$

=
$$\sum_{y \in \{0,1\}^{d-1}} K_1(a,1)K_{d-1}(x,y)U(i,d,1y) + K_1(a,0)K_{d-1}(x,y)U(i,d,0y)$$

=
$$\sum_{\substack{b,c \in \{0,1\}\\y' \in \{0,1\}^{d-2}}} K_1(a,b)K_{d-1}(x,y'c)U(i,d,by'c)$$

Similarly, the second term is

$$= \sum_{\substack{b,c \in \{0,1\}\\y' \in \{0,1\}^{d-2}}} K_1(a,c) K_{d-1}(x,by') U(i,d,by'c)$$

Combining, we get

$$C(ax)_{i,i+d} = \sum_{\substack{b,c \in \{0,1\}\\ y \in \{0,1\}^{d-2}}} [K_1(a,b)K_{d-1}(x,yc) - K_1(a,c)K_{d-1}(x,by)] U(i,d,byc)$$

and setting $K_d(ax, byc) = K_1(a, b)K_{d-1}(x, yc) - K_1(a, c)K_{d-1}(x, by)$, the lemma is proved for *d*. It is also easy to see inductively that $K_d(x, y) = 0$ for $N(x) \neq N(y)$, so we may add the condition N(x) = N(y) under the sum.

We now have a strategy for choosing $x \in \{0, 1\}^{n-1}$ such that C(x) is nontrivial. In the random model, it may happen that $V_{i,i+1} = 0$ for some *i*. Define the vector $v \in \{0, 1\}^{n-1}$ by $v_i = 1$ if $V_{i,i+1} \neq 0$ and $v_i = 0$ otherwise. For now assume 0 < N(v) < n - 1. If we choose *x* such that N(x) = N(v), then Equation 1 simplifies to

$$C_{n-1}(x)_{1,n} = K_d(x,v) \prod_{1 \le i < n} V_{i,i+1}^{v_i} W_{i,i+1}^{1-v_i}.$$

If we assume there is no *i* such that $V_{i,i+1} = W_{i,i+1} = 0$, the product of matrix entries is nonzero. So, we just need to choose *x* such that $K_d(x, v) \neq 0$. We can do this with some additional assumptions on *v*.

Lemma 2.3. Let $v \in \{0, 1\}^{n-1}$ with 0 < N(v) < n-1. Write $v = 1^{a_1}01^{a_2} \dots 1^{a_k-1}01^{a_k}$. Assume that $a_i \ge 1$ for all *i*, i.e., there are no adjacent 0's, and that $a_1 \ne a_k$. Then there exists $x \in \{0, 1\}^{n-1}$ such that $K(x, v) \ne 0$.

We will prove in section 2 that all assumptions used hold asymptotically almost surely.

1368

Proof. Using the recursion from Lemma 2.2, the following identities are easily verified by induction:

(1) If $a, b \ge 0$, then

$$K(1^{a+b}0, 1^a01^b) = \binom{a+b}{a}(-1)^b$$

(2) If $a, b \ge 1, c \ge 0$ with $c < \min(a, b)$, then

$$K(1^c 0x, 1^a y 1^b) = 0$$

(3) Let $a, b \ge 0$. If a < b then

$$K(1^a 0x, 1^a 0y1^b) = K(x, y1^b)$$

If b < a then

$$K(1^{b}0x, 1^{a}y01^{b}) = K(x, 1^{a}y)(-1)^{b+1}$$

(4) If $a, b \ge 0$ then

$$K(1^{a+b}0^{2}x, 1^{a}01y101^{b}) = 2\binom{a+b}{a}(-1)^{b}K(x, 1y1)$$

Let $v = 1^{a_1} 0 1^{a_2} \dots 0 1^{a_k}$. First assume $k = 2\ell$ is even. We set

$$x = 1^{a_1 + a_{2\ell}} 0^2 1^{a_2 + a_{2\ell-1}} 0^2 \dots 1^{a_\ell + a_{\ell+1}} 0$$

Then applying identity 4 repeatedly followed by identity 1, we obtain

$$K(x,v) = 2^{\ell} (-1)^{a_{2\ell} + a_{2\ell-1} + \dots + a_{\ell+1}} {a_1 + a_{2\ell+1} \choose a_2} {a_2 + a_{2\ell} \choose a_\ell} \dots {a_\ell + a_{\ell+1} \choose a_\ell}$$

f k is odd, we apply identity 3 once and proceed as before.

If *k* is odd, we apply identity 3 once and proceed as before.

3. Asymptotics

In Section 1, we derived a combinatorial condition on the superdiagonal entries of V and W sufficient for G to have full step. Define

$$\mathcal{V} = \{i : 1 \le i < n, V_{i,i+1} = 0\}$$
$$\mathcal{W} = \{i : 1 \le i < n, W_{i,i+1} = 0\}$$

Then, to apply Lemma 2.3, we need that

- (1) \mathcal{V} and \mathcal{W} are nonempty.
- (2) $\mathcal{V} \cap \mathcal{W} = \emptyset$.
- (3) \mathcal{V} has no adjacent elements.
- (4) min $\mathcal{V} \neq n \max \mathcal{V}$.

If condition (1) does not hold, then Theorem 1.2 follows by a modification of Lemma 5.4 in [3].

We now show that in the random model, if $\ell = \omega(n^2)$, then the superdiagonal entries satisfy conditions (2)-(4) asymptotically almost surely. Recall that V and W are random walks

$$V = V_1 V_2 \dots V_{\ell}$$
$$W = W_1 W_2 \dots W_{\ell}$$

where each V_i , W_i is chosen independently and uniformly from the generating set $S = \{E_{i,i+1}^{\pm 1} : 1 \le i < n\}$.

Define

$$\sigma_{j}(Z) = \begin{cases} 1 & \text{if } Z = E_{j,j+1} \\ -1 & \text{if } Z = E_{j,j+1}^{-1} \\ 0 & \text{otherwise} \end{cases}$$

Then we have

$$V_{i,i+1} = \sum_{j=1}^{\ell} \sigma_i(V_j).$$

When $\ell \gg n$, the superdiagonal entries $V_{i,i+1}$ behave roughly like independent random walks on \mathbb{Z} . We restate Corollary 3.2 from [3].

Lemma 3.1. Suppose $\ell = \omega(n)$. Then uniformly for $1 \le k_1 < k_2 < \cdots < k_d < n$ we have

$$\mathbb{P}[k_i \in \mathcal{V} \cap \mathcal{W} \text{ for all } i] \sim \left(\frac{n}{2\pi\ell}\right)^d$$

By the union bound, we have $\mathbb{P}[\mathcal{V} \cap \mathcal{W} \neq \emptyset] \ll n^2/\ell \to 0$. Thus, condition (2) holds a.a.s. For conditions (3) and (4), we will need a bound on the size of \mathcal{V} .

Lemma 3.2. Fix $\epsilon > 0$. Then $\mathbb{P}[|\mathcal{V}| > \epsilon \sqrt{n}] \to 0$ as $n \to \infty$.

Proof. Define random variables

$$X_i = \begin{cases} 1 & V(i, i+1) = 0 \\ 0 & V(i, i+1) \neq 0 \end{cases}$$

So $|\mathcal{V}| = \sum_i X_i$. From Lemma 3.1 we have $\mathbb{E}[X_i] \ll \sqrt{n/\ell}$ and $\mathbb{E}[X_iX_j] \ll n/\ell$ for $1 \le i < j < n$. Hence $\mathbb{E}[|\mathcal{V}|] \ll \sqrt{n^3/\ell}$ and $\operatorname{Var}[|\mathcal{V}|] \ll n^3/\ell$. By Chebyshev's inequality,

$$\begin{split} \mathbb{P}[|\mathcal{V}| \geq \epsilon \sqrt{n}] \leq \mathbb{P}\left[|\mathcal{V}| - \sqrt{n^3/\ell} \geq \sqrt{n}(\epsilon - \sqrt{n^2/\ell})\right] \\ \leq \frac{1}{(\epsilon - \sqrt{n^2/\ell})^2 (\ell/n^2)} \to 0 \end{split}$$

Observe that the distribution of \mathcal{V} is invariant under permutation. In other words, for a fixed set $S \subset \{1, ..., n-1\}$ and a permutation π on $\{1, ..., n-1\}$ we have

$$\mathbb{P}[\mathcal{V} = \mathcal{S}] = \mathbb{P}[\mathcal{V} = \pi \mathcal{S}]$$

1370

and hence,

$$\mathbb{P}[\mathcal{V} = \mathcal{S}] = \frac{1}{\binom{n-1}{|\mathcal{S}|}} \mathbb{P}[|V| = |\mathcal{S}|]$$

Let A(k) be the number of sets $S \subset \{1, ..., n-1\}$ of size k with at least one pair of adjacent elements. We have

$$A(k) \le (n-2)\binom{n-3}{k-2}.$$

Let B(k) be the number of sets S for which min $S = n - \max S$. Summing over the possible values of min S we have

$$B(k) \leq \sum_{1 \leq a \leq n/2} {n-1-2a \choose k-2}.$$

One easily checks

$$\frac{A(k)+B(k)}{\binom{n-1}{k}} \le \frac{2k^2}{n}.$$

For $k \leq \epsilon \sqrt{n}$, this is $\leq 2\epsilon^2$. On the other hand, $\mathbb{P}[|V| > \epsilon \sqrt{n}] \to 0$, so we are done.

Acknowledgement

We thank Tullia Dymarz for suggesting this problem and for many helpful discussions. This research was supported by NSF grants DMS-2037851 and DMS-1902173.

References

- BAUMSLAG, GILBERT. Lectures on nilpotent groups. Regional Conference Series in Mathematics, No. 2. American Mathematical Society, Providence, R.I., 1971. vii+73 pp. MR0283082, Zbl 0241.20001.
- [2] CORDES, MATTHEW; DUCHIN, MOON; DUONG, YEN; HO, MENG-CHE; SÁNCHEZ, ANDREW
 P. Random nilpotent groups I. *Int. Math. Res. Not. IMRN* 2018, no. 7, 1921-1953. MR3800056, Zbl 1469.20062, arXiv:1506.01426, doi: 10.1093/imrn/rnv370. 1365
- [3] DELP, KELLY; DYMARZ, TULLIA; SCHAFFER–COHEN, ANSCHEL. A matrix model for random nilpotent groups. *Int. Math. Res. Not. IMRN* 2019, no. 1, 201–230. MR3897428, Zbl 07102081, arXiv:1602.01454, doi: 10.1093/imrn/rnx128. 1365, 1367, 1369, 1370
- [4] HALL, PHILIP. The Edmonton notes on nilpotent groups. Queen Mary College Mathematics Notes. Queen Mary College, Mathematics Department, London, 1969. iii+76 pp. MRMR0283083, Zbl 0211.34201. 1365
- [5] OLLIVIER, YANN. A January 2005 invitation to random groups. Ensaios Matemáticos [Mathematical Surveys], 10. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. ii+100 pp. MR2205306, Zbl 1163.20311, doi: 10.21711/217504322005/em101 1365

(Phillip Harris) 101-05 VAN VLECK HALL, UNIVERSITY OF WISCONSIN-MADISON, WI 53706, USA

plharris@wisc.edu

This paper is available via http://nyjm.albany.edu/j/2022/28-57.html.