New York Journal of Mathematics

New York J. Math. 28 (2022) 1099-1111.

Variational inequalities for the differences of averages over lacunary sequences

Sakin Demir

Abstract. Let f be a locally integrable function defined on \mathbb{R}, and let $\left(n_{k}\right)$ be a lacunary sequence. Define the operator $A_{n_{k}}$ by

$$
A_{n_{k}} f(x)=\frac{1}{n_{k}} \int_{0}^{n_{k}} f(x-t) d t
$$

We prove various types of new inequalities for the variation operator

$$
\mathcal{V}_{s} f(x)=\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s}
$$

when $2 \leq s<\infty$.

An increasing sequence $\left(n_{k}\right)$ of real numbers is called lacunary if there exists a constant $\beta>1$ such that $n_{k+1} / n_{k} \geq \beta$ for all $k=0,1,2, \ldots$.

Let f be a locally integrable function defined on \mathbb{R}. Let $\left(n_{k}\right)$ be a lacunary sequence and define the operator $A_{n_{k}}$ by

$$
A_{n_{k}} f(x)=\frac{1}{n_{k}} \int_{0}^{n_{k}} f(x-t) d t
$$

It is clear that

$$
A_{n_{k}} f(x)=\frac{1}{n_{k}} \chi_{\left(0, n_{k}\right)} * f(x)
$$

where $*$ stands for convolution. Consider the variation operator

$$
\mathcal{V}_{s} f(x)=\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s}
$$

for $2 \leq s<\infty$. The boundedness of the variation operator $\mathcal{V}_{s} f$ provides an estimate on the speed (or rate) of convergence of the sequence $\left\{A_{n_{k}} f\right\}$.

Various types of inequalities for the two-sided variation operator

$$
\nu_{s}^{\prime} f(x)=\left(\sum_{-\infty}^{\infty}\left|\frac{1}{2^{n}} \int_{x}^{x+2^{n}} f(t) d t-\frac{1}{2^{n-1}} \int_{x}^{x+2^{n-1}} f(t) d t\right|^{s}\right)^{1 / s}
$$

[^0]when $2 \leq s<\infty$ have been proven by the author in Demir, S. [1]. In this research we prove that same types of inequalities are also true for any lacunary sequence $\left(n_{k}\right)$ for the one-sided variation operator $\mathcal{V}_{s} f(x)$ for $2 \leq s<\infty$.

Lemma 1. Let $\left(n_{k}\right)$ be a lacunary sequence with the lacunarity constant β, i.e., $n_{k+1} / n_{k} \geq \beta>1$ for all $k=0,1,2, \ldots$. If $1 \leq s<\infty$, then there exists a sequence $\left(m_{j}\right)$ such that

$$
\beta^{2} \geq \frac{m_{j+1}}{m_{j}} \geq \beta>1
$$

for all j and

$$
\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s} \leq\left(\sum_{j=1}^{\infty}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right|^{s}\right)^{1 / s}
$$

Proof. Let us start our construction by first choosing $m_{0}=n_{0}$. If

$$
\beta^{2} \geq \frac{n_{1}}{n_{0}} \geq \beta
$$

define $m_{1}=n_{1}$. If $n_{1} / n_{0}>\beta^{2}$, let $m_{1}=\beta n_{0}$. Then we have

$$
\beta^{2} \geq \frac{m_{1}}{m_{0}}=\frac{\beta n_{0}}{n_{0}}=\beta \geq \beta
$$

Also,

$$
\frac{n_{1}}{m_{1}} \geq \frac{\beta^{2} n_{0}}{\beta n_{0}}=\beta
$$

Again, if $n_{1} / m_{1} \leq \beta^{2}$, then choose $m_{2}=n_{1}$. If this is not the case, choose $m_{2}=\beta^{2} n_{0} \leq n_{1}$. By the same calculation as before, m_{0}, m_{1}, m_{2} are part of a lacunary sequence satisfying

$$
\beta^{2} \geq \frac{m_{k+1}}{m_{k}} \geq \beta>1
$$

To continue the sequence, either $m_{3}=n_{1}$ if $n_{1} / m_{2} \leq \beta^{2}$ or $m_{3}=\beta^{3} n_{0}$ if $n_{1} / m_{2}>\beta^{2}$.

Since $\beta>1$, this process will end at some k_{0} such that $m_{k_{0}}=n_{1}$. The remaining elements m_{k} are constructed in the same manner as the original n_{k}, with necessary terms added between two consecutive n_{k} to obtain the inequality

$$
\beta^{2} \geq \frac{m_{k+1}}{m_{k}} \geq \beta>1
$$

Let now

$$
J(k)=\left\{j: n_{k-1}<m_{j} \leq n_{k}\right\}
$$

Then we have

$$
A_{n_{k}} f(x)-A_{n_{k-1}} f(x)=\sum_{j \in J(k)}\left(A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right)
$$

and thus we get

$$
\begin{aligned}
\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right| & =\left|\sum_{j \in J(k)}\left(A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right)\right| \\
& \leq \sum_{j \in J(k)}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right|
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right| & \leq \sum_{k=1}^{\infty} \sum_{j \in J(k)}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right| . \\
& =\sum_{j=1}^{\infty}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right| .
\end{aligned}
$$

Thus, we have

$$
\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s} \leq\left(\sum_{j=1}^{\infty}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right|^{s}\right)^{1 / s} .
$$

and this completes the proof.
Remark 2. We know from Lemma 1 that

$$
\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s} \leq\left(\sum_{j=1}^{\infty}\left|A_{m_{j}} f(x)-A_{m_{j-1}} f(x)\right|^{s}\right)^{1 / s} .
$$

and the new sequence $\left(m_{j}\right)$ satisfies

$$
\beta^{2} \geq \frac{m_{j+1}}{m_{j}} \geq \beta>1
$$

for all $j \in \mathbb{Z}^{+}$. Therefore, we can assume without loss of generality that

$$
\beta^{2} \geq \frac{n_{k+1}}{n_{k}} \geq \beta>1
$$

for all $k \in \mathbb{Z}^{+}$when we are proving any result for $\mathcal{V}_{s}(x)$.
Since

$$
\frac{1}{n_{k}}=\frac{n_{1}}{n_{2}} \cdot \frac{n_{2}}{n_{3}} \cdot \frac{n_{3}}{n_{4}} \cdots \cdots \cdot \frac{n_{k-1}}{n_{k}},
$$

we can also assume that

$$
\frac{1}{n_{k}} \leq \frac{1}{\beta^{2(k-1)}}
$$

for all $k=0,1,2, \ldots$.
Lemma 3. Let $\left(n_{k}\right)$ be a lacunary sequence, and let γ denote the smallest positive integer satisfying

$$
\frac{1}{\beta}+\frac{1}{\beta^{\gamma}} \leq 1
$$

If $i \geq j+\gamma, 0<y \leq n_{j}$ and $n_{j}<x<n_{i+1}$, then

$$
\chi_{\left(y, y+n_{k}\right)}(x)-\chi_{\left(0, n_{k}\right)}(x)=0
$$

unless $k=i$ in which case

$$
\chi_{\left(y, y+n_{k}\right)}(x)-\chi_{\left(0, n_{k}\right)}(x)=\chi_{\left(n_{i}, y+n_{i}\right)} .
$$

Proof. Since $\left(n_{k}\right)$ is a lacunary sequence, there exists a constant $\beta>1$ such that $n_{k+1} / n_{k} \geq \beta$ for all k. We can assume that

$$
\begin{equation*}
\beta^{2} \geq \frac{n_{k+1}}{n_{k}} \geq \beta \tag{1}
\end{equation*}
$$

for all k by Remark 2. Since we have

$$
\frac{n_{l}}{n_{k}}=\frac{n_{l}}{n_{l+1}} \cdot \frac{n_{l+1}}{n_{l+2}} \cdots \cdot \frac{n_{k-1}}{n_{k}}
$$

and

$$
\frac{1}{\beta} \leq \frac{n_{k}}{n_{k+1}} \leq \frac{1}{\beta^{k-l}}
$$

for all k, we see that

$$
\begin{equation*}
\frac{1}{\beta^{2(k-l)}} \leq \frac{n_{l}}{n_{k}} \leq \frac{1}{\beta^{k-l}} \tag{2}
\end{equation*}
$$

for all $k>l$. Let γ denote the smallest positive integer satisfying

$$
\frac{1}{\beta}+\frac{1}{\beta^{\gamma}} \leq 1 .
$$

We see from (2) that

$$
\begin{equation*}
n_{j}+n_{k} \leq n_{k+1} \tag{3}
\end{equation*}
$$

for all $k \geq j+\gamma-1$. It is easy to see that for $k>i$,

$$
0<y \leq n_{j} \leq n_{i}<x<n_{i+1} \leq n_{k}<y+n_{k},
$$

and this implies that

$$
\left[\chi_{\left(y, y+n_{k}\right)}(x)-\chi_{\left(0, n_{k}\right)}(x)\right] \cdot \chi_{\left(n_{i}, n_{i+1}\right)}(x)=0 .
$$

For $k \leq i-1$, we see by (3) that

$$
n_{k}<y+n_{k} \leq n_{j}+n_{i-1} \leq n_{i} .
$$

Then we have

$$
\chi_{\left(y, y+n_{k}\right)}(x) \cdot \chi_{\left(n_{i}, n_{i+1}\right)}(x)=\chi_{\left(0, n_{k}\right)}(x) \cdot \chi_{\left(n_{i}, n_{i+1}\right)}=0 .
$$

Suppose now that $k=i$; by (3), we have

$$
y<n_{i}<y+n_{i} \leq n_{j}+n_{i} \leq n_{i+1}
$$

and this implies that

$$
\chi_{\left(y, y+n_{i}\right)}(x)-\chi_{\left(0, n_{i}\right)}(x)=\chi_{\left(y, y+n_{i}\right)} \cdot \chi_{\left(n_{i}, n_{i+1}\right)}(x)=\chi_{\left(n_{i}, y+n_{i}\right)}(x) .
$$

Let

$$
\phi_{k}(x)=\frac{1}{n_{k}} \chi_{\left(0, n_{k}\right)}(x)
$$

and define the kernel operator $K: \mathbb{R} \rightarrow \ell^{s}\left(\mathbb{Z}^{+}\right)$as

$$
K(x)=\left\{\phi_{k}(x)-\phi_{k-1}(x)\right\}_{k \in \mathbb{Z}^{+}} .
$$

It is clear that

$$
\begin{aligned}
\mathcal{V}_{s} f(x) & =\|K * f(x)\|_{e^{s}\left(\mathbb{Z}^{+}\right)} \\
& =\left(\sum_{k=1}^{\infty}\left|\phi_{k} * f(x)-\phi_{k-1} * f(x)\right|^{s}\right)^{1 / s} \\
& =\left(\sum_{k=1}^{\infty}\left|A_{n_{k}} f(x)-A_{n_{k-1}} f(x)\right|^{s}\right)^{1 / s}
\end{aligned}
$$

where $*$ denotes convolution, i.e.,

$$
K * f(x)=\int K(x-y) \cdot f(y) d y
$$

Let B be a Banach space. We say that the B-valued kernel K satisfies the D_{r} condition, for $1 \leq r<\infty$, and write $K \in D_{r}$, if there exists a sequence $\left\{c_{l}\right\}_{l=1}^{\infty}$ of positive numbers such that $\sum_{l} c_{l}<\infty$ and such that

$$
\left(\int_{\left.S_{l}| | y \mid\right)}\|K(x-y)-K(x)\|_{B}^{r} d x\right)^{1 / r} \leq c_{l}\left|S_{l}(|y|)\right|^{-1 / r^{\prime}}
$$

for all $l \geq 1$ and all $y>0$, where $S_{l}(|y|)$ denotes the spherical shell $2^{l}|y|<$ $|x|<2^{l+1} y$ and $\frac{1}{r}+\frac{1}{r^{\prime}}=1$.

When $K \in D_{1}$ we have the Hörmander condition:

$$
\int_{|x|>2|y|}\|K(x-y)-K(x)\|_{B} d x \leq C
$$

where C is a positive constant which does not depend on $y>0$.

Lemma 4. Let γ denote the smallest positive integer satisfying

$$
\frac{1}{\beta}+\frac{1}{\beta^{\gamma}} \leq 1 .
$$

and let $1 \leq r, s<\infty, i \geq j+\gamma$, and $0<y \leq n_{j}$. Then

$$
\left(\int_{n_{i}}^{n_{i+1}}\|K(x-y)-K(x)\|_{e^{s}\left(\mathbb{Z}^{+}\right)}^{r} d x\right)^{1 / r} \leq C_{i} n_{i}^{1 / r-1}
$$

i.e., K satisfies the D_{r} condition for $1 \leq r<\infty$.

Proof. Let

$$
\Phi_{k}(x, y)=\phi_{k}(x-y)-\phi_{k}(x) .
$$

Then it is easy to check that

$$
K(x-y)-K(x)=\left\{\Phi_{k}(x, y)-\Phi_{k-1}(x, y)\right\}_{k \in \mathbb{Z}^{+}} .
$$

On the other hand, because of a property of the norm we have

$$
\begin{aligned}
\|K(x-y)-K(x)\|_{e^{s}\left(\mathbb{Z}^{+}\right)} & =\left\|\Phi_{k}(x, y)-\Phi_{k-1}(x, y)\right\|_{e^{s}\left(\mathbb{Z}^{+}\right)} \\
& \leq\left\|\Phi_{k}(x, y)\right\|_{\ell^{s}\left(\mathbb{Z}^{+}\right.}+\left\|\Phi_{k-1}(x, y)\right\|_{e^{s}\left(\mathbb{Z}^{+}\right)} \\
& \leq 2\left\|\Phi_{k-1}(x, y)\right\|_{e^{s}\left(\mathbb{Z}^{+}\right)},
\end{aligned}
$$

where x and y are fixed and $\left\|\Phi_{k-1}(x, y)\right\|_{e^{s}\left(\mathbb{Z}^{+}\right)}$is the $\ell^{s}\left(\mathbb{Z}^{+}\right)$-norm of the sequence whose $k^{\text {th }}$-entry is $\Phi_{k}(x, y)$.
We now have

$$
\begin{aligned}
& \left(\int_{n_{i}}^{n_{i+1}}\|K(x-y)-K(x)\|_{e^{s}\left(\mathbb{Z}^{+}\right)}^{r} d x\right)^{1 / r} \\
& \quad \leq 2\left(\int_{n_{i}}^{n_{i+1}}\left\|\Phi_{k-1}(x, y)\right\|_{e^{s}\left(\mathbb{Z}^{+}\right)}^{r} d x\right)^{1 / r} \\
& \quad \leq 2\left(\int_{n_{i}}^{n_{i+1}}\left\|\Phi_{k-1}(x, y)\right\|_{\ell^{1}\left(\mathbb{Z}^{+}\right)}^{r} d x\right)^{1 / r} \\
& \quad=2\left(\int_{n_{i}}^{n_{i+1}}\left(\sum_{n_{i}<n_{k-1}} \frac{1}{n_{k-1}} \chi_{\left(n_{i}, y+n_{i}\right)}(x)\right)^{r} d x\right)^{1 / r} \\
& \quad=2\left(\int_{n_{i}}^{n_{i+1}}\left(\sum_{n_{i}<n_{k-1}} \frac{1}{\beta^{2(k-2)}} \chi_{\left(n_{i}, y+n_{i}\right)}(x)\right)^{r} d x\right)^{1 / r} \\
& \quad \leq 2\left(\beta^{2}+\frac{1}{1-\beta^{2}}\right) \cdot \frac{1}{n_{i}} \cdot\left(\int_{n_{i}}^{n_{i+1}} \chi_{\left(n_{i}, y+n_{i}\right)}(x) d x\right)^{1 / r} \\
& \quad=2\left(\beta^{2}+\frac{1}{1-\beta^{2}}\right) \cdot \frac{1}{n_{i}} \cdot y^{1 / r} \\
& \quad \leq 2\left(\beta^{2}+\frac{1}{1-\beta^{2}}\right) \frac{1}{\beta^{(i-j) / r}} n_{i}^{1 / r-1}
\end{aligned}
$$

where in the last inequality we used

$$
y \leq n_{j} \leq \frac{n_{i}}{\beta^{i-j}}
$$

by (2), and this completes our proof with

$$
C_{i}=2\left(\beta^{2}+\frac{1}{1-\beta^{2}}\right) \frac{1}{\beta^{(i-j) / r}} .
$$

Lemma 5. Let $\left\{n_{k}\right\}$ be a lacunary sequence. Then there exists a constant $C>0$ such that

$$
\sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|<C
$$

for all $x \in \mathbb{R}$, where $\phi_{k}(x)=\frac{1}{n_{k}} \chi_{\left(0, n_{k}\right)}(x)$, and $\hat{\phi}_{k}$ is its Fourier transform.
Proof. First, note that we have

$$
I(x)=\sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|=\sum_{k=1}^{\infty}\left|\frac{1-e^{-i x n_{k}}}{x n_{k}}-\frac{1-e^{-i x n_{k-1}}}{x n_{k-1}}\right| .
$$

Let
$I(x)=\sum_{\left\{k:|x| n_{k} \geq 1\right\}}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|+\sum_{\left\{k:|x| n_{k}<1\right\}}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|=I_{1}(x)+I_{2}(x)$.
Let us now fix $x \in \mathbb{R}$ and let k_{0} be the first k such that $|x| n_{k} \geq 1$. Since $\hat{\phi}_{k}(x)$ is an even function, we can assume without the loss of generality that $x \geq 0$. We clearly have

$$
I_{1}(x) \leq \sum_{\left\{k:|x| n_{k} \geq 1\right\}} \frac{4}{|x| n_{k}} .
$$

Since the sequence $\left\{n_{k}\right\}$ is lacunary, there exists a constant $\beta>1$ such that $n_{k+1} / n_{k} \geq \beta$ for all $k \in \mathbb{N}$. Also note that in the sum, I_{1}, the term with index $n_{k_{0}}$ is the term with smallest index, since it is the first term that satisfies condition $|x| n_{k} \geq 1$ and the sequence $\left\{n_{k}\right\}$ is increasing. On the other hand, we have

$$
\frac{n_{k_{0}}}{n_{k}}=\frac{n_{k_{0}}}{n_{k_{0}+1}} \cdot \frac{n_{k_{0}+1}}{n_{k_{0}+2}} \cdot \frac{n_{k_{0}+2}}{n_{k_{0}+3}} \cdots \frac{n_{k-1}}{n_{k}} \leq \frac{1}{\beta^{k}} .
$$

We now have

$$
\begin{aligned}
I_{1}(x) & \leq \sum_{\left\{k:|x| n_{k}\right\}} \frac{4}{|x| n_{k}} \\
& =\sum_{\left\{k:|x| n_{k} \geq 1\right\}} \frac{4 n_{k_{0}}}{|x| n_{k_{0}} n_{k}} \\
& =\frac{4}{|x| n_{k_{0}}} \sum_{\left\{k:|x| n_{k} \geq 1\right\}} \frac{n_{k_{0}}}{n_{k}} \\
& \leq 4 \sum_{\left\{k:|x| n_{k} \geq 1\right\}} \frac{1}{\beta^{k}}
\end{aligned}
$$

since $\frac{1}{|x| n_{k_{0}}} \leq 1$ and $\frac{n_{k_{0}}}{n_{k}}=\frac{1}{\beta^{k}}$. Also, since

$$
\sum_{k=1}^{\infty} \frac{1}{\beta^{k}}=\frac{1}{1-\frac{1}{\beta}}
$$

we clearly see that $I_{1}(x) \leq C_{1}$ for some constant $C_{1}>0$.
To control the summation I_{2} let us first define the function F as

$$
F(r)=\frac{1-e^{-i r}}{r} .
$$

Then we have $\hat{\phi}_{k}(x)=F\left(x n_{k}\right)$. Now by the Mean Value Theorem, there exists a constant $\xi \in\left(x n_{k}, x n_{k+1}\right)$ such that

$$
\left|F\left(x n_{k+1}\right)-F\left(x n_{k}\right)\right|=\left|F^{\prime}(\xi)\right|\left|x n_{k+1}-x n_{k}\right| .
$$

Also, it is easy to verify that

$$
\left|F^{\prime}(x)\right| \leq \frac{x+2}{x^{2}}
$$

for $x>0$.
Now we have

$$
\begin{aligned}
\left|F\left(x n_{k+1}\right)-F\left(x n_{k}\right)\right| & =\left|F^{\prime}(\xi)\right|\left|x n_{k+1}-x n_{k}\right| \\
& \leq \frac{\xi+2}{\xi^{2}}|x|\left(n_{k+1}-n_{k}\right) \\
& \leq \frac{x n_{k+1}+2}{x^{2} n_{k}^{2}}|x|\left(n_{k+1}-n_{k}\right) \\
& =\frac{2 n_{k+1}}{n_{k}^{2}}\left(n_{k+1}-n_{k}\right) .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
I_{2}(x) & =\sum_{\left\{k:|x| n_{k}<1\right\}}\left|F\left(x n_{k+1}\right)-F\left(x n_{k}\right)\right| \\
& \leq \sum_{\left\{k:|x| n_{k}<1\right\}} \frac{2}{|x| n_{k}} \cdot \frac{2 n_{k+1}}{n_{k}^{2}}\left(n_{k+1}-n_{k}\right) \\
& \leq \sum_{\left\{k:|x| n_{k}<1\right\}} \frac{4 n_{k+1}^{2}}{n_{k}^{2}|x|}\left(\frac{1}{n_{k}}-\frac{1}{n_{k+1}}\right) \\
& =\sum_{\left\{k:|x| n_{k}<1\right\}} \frac{16}{|x|}\left(\frac{1}{n_{k}}-\frac{1}{n_{k+1}}\right) \\
& =\frac{16}{|x|}\left(\frac{1}{n_{1}}-\frac{1}{n_{k_{0}+1}}\right) \\
& \leq \frac{16}{|x| n_{k_{0}+1}} \\
& \leq 16 .
\end{aligned}
$$

We thus conclude that

$$
I(x)=I_{1}(x)+I_{2}(x) \leq C_{1}+16:=C
$$

for all $x \in \mathbb{R}$ and this completes our proof.
Lemma 6. Let $s \geq 2$ and $\left(n_{k}\right)$ be a lacunary sequence. Then there exits a constant $C>0$ such that

$$
\left\|\nu_{s} f\right\|_{L^{2}(\mathbb{R})} \leq C\|f\|_{L^{2}(\mathbb{R})}
$$

for all $f \in L^{2}(\mathbb{R})$.
Proof. Since

$$
\sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|^{2} \leq \sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|,
$$

it is clear from Lemma 5 that there exists a constant $C>0$ such that

$$
\sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|^{2}<C
$$

for all $x \in \mathbb{R}$.
We now obtain

$$
\begin{aligned}
\left\|\nu_{s} f\right\|_{L^{2}(\mathbb{R})} & =\int_{\mathbb{R}}\left(\sum_{k=1}^{\infty}\left|\phi_{k} * f(x)-\phi_{k-1} * f(x)\right|^{\rho}\right)^{2 / \rho} d x \\
& \leq \int_{\mathbb{R}} \sum_{k=1}^{\infty}\left|\phi_{k} * f(x)-\phi_{k-1} * f(x)\right|^{2} d x \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left|\phi_{k} * f(x)-\phi_{k-1} * f(x)\right|^{2} d x \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left|\left(\phi_{k}-\phi_{k-1}\right) * f(x)\right|^{2} d x \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left|\Delta_{k} * f(x)\right|^{2} d x \quad\left(\Delta_{k}(x)=\phi_{k}(x)-\phi_{k-1}(x)\right) \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left|\widehat{\Delta_{k} * f}(x)\right|^{2} d x \quad(\text { by Plancherel's theorem }) \\
& =\sum_{k=1}^{\infty} \int_{\mathbb{R}}\left|\widehat{\Delta_{k}}(x)\right|^{2} \cdot|\hat{f}(x)|^{2} d x \\
& =\int_{\mathbb{R}} \sum_{k=1}^{\infty}\left|\widehat{\Delta_{k}}(x)\right|^{2} \cdot|\hat{f}(x)|^{2} d x \\
& =\int_{\mathbb{R}} \sum_{k=1}^{\infty}\left|\hat{\phi}_{k}(x)-\hat{\phi}_{k-1}(x)\right|^{2} \cdot|\hat{f}(x)|^{2} d x \\
& \leq C \int_{\mathbb{R}}|\hat{f}(x)|^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& =C \int_{\mathbb{R}}|f(x)|^{2} d x \quad \text { (by Plancherel's theorem) } \\
& =C\|f\|_{L^{2}(\mathbb{R})}^{2}
\end{aligned}
$$

as desired.
Remark 7. Since for $s \geq 2$, we have proved in Lemma 4 that the kernel operator $K(x)=\left\{\phi_{k}(x)-\phi_{k-1}(x)\right\}_{k \in \mathbb{Z}^{+}}$satisfies the D_{r} condition for $1 \leq r<\infty$, it specifically satisfies D_{1} condition. We also have proved in Lemma 6 that $T f=$ $\left\{\left(\phi_{k}-\phi_{k-1}\right) * f\right\}_{k \in \mathbb{Z}^{+}}$is a bounded operator from $L^{2}(\mathbb{R})$ to $L_{\ell^{s}\left(\mathbb{Z}^{+}\right)}^{2}(\mathbb{R})$ since $\|K * f(x)\|_{l^{s}\left(\mathbb{Z}^{+}\right)}=\mathcal{V}_{s} f(x)$. Therefore, $T f=\left\{\left(\phi_{k}-\phi_{k-1}\right) * f\right\}_{k \in \mathbb{Z}^{+}}$is an ℓ^{s}-valued singular operator of convolution type for $s \geq 2$.

Lemma 8. Let A and B be Banach spaces. A singular integral operator T mapping A-valued functions into B-valued functions can be extended to an operator defined in all $L_{A}^{p}, 1 \leq p<\infty$, and satisfying
(i) $\|T f\|_{L_{B}^{p}} \leq C_{p}\|f\|_{L_{A}^{p}}, \quad 1<p<\infty$,
(ii) $\|T f\|_{W L_{B}^{1}} \leq C_{1}\|f\|_{L_{A}^{1}}$,
(iii) $\|T f\|_{L_{B}^{1}} \leq C_{2}\|f\|_{H_{A}^{1}}$,
(iv) $\|T f\|_{\mathrm{BMO}(B)} \leq C_{3}\|f\|_{L^{\infty}(A)}, \quad f \in L_{c}^{\infty}(A)$,
where $C_{p}, C_{1}, C_{2}, C_{3}>0$, and $L_{c}^{\infty}(A)$ is the space of bounded functions with compact support.

Proof. This is Theorem 1.3 of Part II in Rubio de Francia, J. L. et al [5].
The following theorem is our first result:
Theorem 9. Let $2 \leq s<\infty$, and let $\left(n_{k}\right)$ be a lacunary sequence. Then there exits a constant $C>0$ such that

$$
\left\|\mathcal{V}_{s} f\right\|_{L^{1}(\mathbb{R})} \leq C\|f\|_{H^{1}(\mathbb{R})}
$$

for all $f \in H^{1}(\mathbb{R})$.
Proof. This follows from Remark 7 and Lemma 8 (iii) since $\|K * f(x)\|_{e_{s}\left(\mathbb{Z}^{+}\right)}=$ $\mathcal{V}_{s} f(x)$.

Remark 10. We have proved that $T f=\left\{\left(\phi_{k}-\phi_{k-1}\right) * f\right\}_{k \in \mathbb{Z}^{+}}$is an ℓ^{s}-valued singular operator of convolution type for $s \geq 2$. By applying Lemma 8 to this observation we also provide a different proof for the following known facts for $s \geq 2$ (see [4]) since $\|K * f(x)\|_{e^{s}\left(\mathbb{Z}^{+}\right)}=\mathcal{V}_{s} f(x)$.
(i) $\left\|\mathcal{V}_{s} f\right\|_{L^{p}(\mathbb{R})} \leq C_{p}\|f\|_{L^{p}(\mathbb{R})}, \quad 1<p<\infty$,
(ii) $\left\|\mathcal{V}_{s} f\right\|_{W L^{1}(\mathbb{R})} \leq C_{1}\|f\|_{L^{1}(\mathbb{R})}$,
(iii) $\left\|\mathcal{V}_{s} f\right\|_{\mathrm{BMO}(\mathbb{R})} \leq C_{2}\|f\|_{L^{\infty}(\mathbb{R})}, \quad f \in L_{c}^{\infty}(\mathbb{R})$, where $C_{p}, C_{1}, C_{2}>0$.

Let $w \in L_{\text {loc }}^{1}(\mathbb{R})$ be a positive function. We say that w is an A_{p} weight for some $1<p<\infty$ if the following condition is satisfied:

$$
\sup _{I}\left(\frac{1}{|I|} \int_{I} w(x) d x\right)\left(\frac{1}{|I|} \int_{I} w(x)^{-\frac{1}{p-1}} d x\right)^{p-1}<\infty
$$

where the supremum is taken over all intervals I in \mathbb{R}.
We say that the function w is an A_{∞} weight if there exist $\delta>0$ and $\epsilon>0$ such that given an interval I in \mathbb{R}, for any measurable $E \subset I$,

$$
|E|<\delta \cdot|I| \Longrightarrow w(E)<(1-\epsilon) \cdot w(I) .
$$

Here

$$
w(E)=\int_{E} w .
$$

It is well known and easy to see that $w \in A_{p} \Longrightarrow w \in A_{\infty}$ if $1<p<\infty$. We say that $w \in A_{1}$ if given an interval I in \mathbb{R} there is a positive constant C such that

$$
\frac{1}{|I|} \int_{I} w(y) d y \leq C w(x)
$$

for a.e. $x \in I$.

Lemma 11. Let A and B be Banach spaces, and T be a singular integral operator mapping A-valued functions into B-valued functions with kernel $K \in D_{r}$, where $1<r<\infty$. Then, for all $1<\rho<\infty$, and for all $\left(f_{j}\right) \in L_{A}^{p}(w) \cap L_{A}^{p}\left(\mathbb{R}^{n}\right)$, the weighted inequalities

$$
\left\|\left(\sum_{j}\left\|T f_{j}\right\|_{B}^{\rho}\right)^{1 / \rho}\right\|_{L^{p}(w)} \leq C_{p, \rho}(w)\left\|\left(\sum_{j}\left\|f_{j}\right\|_{A}^{\rho}\right)^{1 / \rho}\right\|_{L^{p}(w)}
$$

hold if $w \in A_{p / r^{\prime}}$ and $r^{\prime} \leq p<\infty$, or if $w \in A_{p}^{r^{\prime}}$ and $1<p \leq r^{\prime}$. Likewise, if $w(x)^{r^{\prime}} \in A_{1}$, then the weak type inequality

$$
w\left(\left\{x:\left(\sum_{j}\left\|T f_{j}(x)\right\|_{B}^{\rho}\right)^{1 / \rho}>\lambda\right\}\right) \leq C_{\rho}(w) \frac{1}{\lambda} \int\left(\sum_{j}\left\|f_{j}(x)\right\|_{A}^{\rho}\right)^{1 / \rho} w(x) d x
$$

holds for all $\left(f_{j}\right) \in L_{A}^{1}(w) \cap L_{A}^{1}\left(\mathbb{R}^{n}\right)$.
Proof. This is Theorem 1.6 of Part II in Rubio de Francia, J. L. et al [5].
Our next result is the following:

Theorem 12. Let $2 \leq s<\infty$. Then, for all $1<\rho<\infty$, and for all $\left(f_{j}\right) \in$ $L^{p}(w) \cap L^{p}(\mathbb{R})$, the weighted inequalities

$$
\left\|\left(\sum_{j}\left(v_{s} f_{j}\right)^{\rho}\right)^{1 / \rho}\right\|_{L^{p}(w)} \leq C_{p, \rho}(w)\left\|\left(\sum_{j}\left|f_{j}\right|^{\rho}\right)^{1 / \rho}\right\|_{L^{p}(w)}
$$

hold if $w \in A_{p / r^{\prime}}$ and $r^{\prime} \leq p<\infty$, or if $w \in A_{p}^{r^{\prime}}$ and $1<p \leq r^{\prime}$. Likewise, if $w(x)^{r^{\prime}} \in A_{1}$, then the weak type inequality

$$
w\left(\left\{x:\left(\sum_{j}\left(\mathcal{V}_{s} f_{j}(x)\right)^{\rho}\right)^{1 / \rho}>\lambda\right\}\right) \leq C_{\rho}(w) \frac{1}{\lambda} \int\left(\sum_{j}\left|f_{j}(x)\right|^{\rho}\right)^{1 / \rho} w(x) d x
$$

holds for all $\left(f_{j}\right) \in L^{1}(w) \cap L^{1}(\mathbb{R})$.
Proof. We have proved for $2 \leq s<\infty$ that $T f=\left\{\left(\phi_{k}-\phi_{k-1}\right) * f\right\}_{k \in \mathbb{Z}^{+}}$is an ℓ^{s}-valued singular integral operator of convolution type and its kernel operator $K(x)=\left\{\phi_{k}(x)-\phi_{k-1}(x)\right\}_{k \in \mathbb{Z}^{+}}$satisfies D_{r} condition for $1 \leq r<\infty$. Thus, the result follows from Lemma 11 and the fact that $\|K * f(x)\|_{\ell^{s}\left(\mathbb{Z}^{+}\right)}=\mathcal{V}_{s} f(x)$.

In particular we have the following corollary:
Corollary 13. Let $2 \leq s<\infty$. Then the weighted inequalities

$$
\left\|\mathcal{V}_{s} f\right\|_{L^{p}(w)} \leq C_{p, \rho}(w)\|f\|_{L^{p}(w)}
$$

hold for all $\left(f_{j}\right) \in L_{A}^{p}(w) \cap L_{A}^{p}\left(\mathbb{R}^{n}\right)$ if $w \in A_{p / r^{\prime}}$ and $r^{\prime} \leq p<\infty$, or if $w \in A_{p}^{r^{\prime}}$ and $1<p \leq r^{\prime}$. Likewise, if $w(x)^{r^{\prime}} \in A_{1}$, then the weak type inequality

$$
w\left(\left\{x: \mathcal{V}_{s} f(x)>\lambda\right\}\right) \leq C_{\rho}(w) \frac{1}{\lambda} \int|f(x)| w(x) d x
$$

holds for all $\left(f_{j}\right) \in L^{1}(w) \cap L^{1}(\mathbb{R})$.

References

[1] DEMIR, SAKIN. Inequalities for the variaiton operator. Bull. of Hellenic Math Soc. 64 (2020), 92-97. MR4140164, Zbl 1451.26019. arXiv:2001.09316. 1100
[2] GARCIA-CUERVA, JOSÉ; RUBIO DE FRANCIA, JOSÉ L. Weighted norm inequalities and related topics. North-Holland Mathematics Studies, 116. Notas de Matemática, 104. NorthHolland Publishing Co., Amsterdam, 1985. x+604 pp. ISBN: 0-444-87804-1. MR0807149, Zbl 0578.46046.
[3] Jones, Roger L.; Kaufman, Robert; Rosenblatt, Joseph M.; Wierdl, Máté. Oscillation in ergodic theory. Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889-935. MR1645330, Zbl 0924.28009, doi: 10.1017/S0143385798108349. 1108
[4] Jones, Roger L.; Seeger, Andreas; Wright, James. Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742. MR2434308, Zbl 1159.42013, doi: 10.1090/S0002-9947-08-04538-8. 1108
[5] RUbio DE Francia, José L.; RUIZ, Francisco J.; Torrea, José L. Calderón-Zygmund theory for operator-valued kernels. Adv. in Math. 62 (1986), no. 1, 7-48. MR0859252, Zbl 0627.42008, doi: 10.1016/0001-8708(86)90086-1. 1108, 1109
[6] Muckenhoupt, Benjamin. Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226. MR0293384, Zbl 0236.26016, doi: 10.1090/S0002-9947-1972-0293384-6.
(Sakin Demir) Department of Basic Education, Faculty of Education, Agri Ibrahim Cecen University, 04100, Agri, TURKEY
sakin.demir@gmail.com
This paper is available via http://nyjm.albany.edu/j/2022/28-46.html.

[^0]: Received September 13, 2021.
 2010 Mathematics Subject Classification. Primary 26D07, 26D15; Secondary 42B20.
 Key words and phrases. A_{p} weight, weak type (1,1), strong type (p, p), H^{1} space, BMO space.

