New York Journal of Mathematics

New York J. Math. 28 (2022) 1099–1111.

Variational inequalities for the differences of averages over lacunary sequences

Sakin Demir

ABSTRACT. Let *f* be a locally integrable function defined on \mathbb{R} , and let (n_k) be a lacunary sequence. Define the operator A_{n_k} by

$$A_{n_k}f(x) = \frac{1}{n_k} \int_0^{n_k} f(x-t) dt$$

We prove various types of new inequalities for the variation operator

$$\mathcal{V}_{s}f(x) = \left(\sum_{k=1}^{\infty} |A_{n_{k}}f(x) - A_{n_{k-1}}f(x)|^{s}\right)^{1/s}$$

when $2 \leq s < \infty$.

An increasing sequence (n_k) of real numbers is called lacunary if there exists a constant $\beta > 1$ such that $n_{k+1}/n_k \ge \beta$ for all k = 0, 1, 2, ...

Let *f* be a locally integrable function defined on \mathbb{R} . Let (n_k) be a lacunary sequence and define the operator A_{n_k} by

$$A_{n_k} f(x) = \frac{1}{n_k} \int_0^{n_k} f(x-t) \, dt.$$

It is clear that

$$A_{n_k} f(x) = \frac{1}{n_k} \chi_{(0,n_k)} * f(x)$$

where * stands for convolution. Consider the variation operator

$$\mathcal{V}_{s}f(x) = \left(\sum_{k=1}^{\infty} |A_{n_{k}}f(x) - A_{n_{k-1}}f(x)|^{s}\right)^{1/s}$$

for $2 \le s < \infty$. The boundedness of the variation operator $\mathcal{V}_s f$ provides an estimate on the speed (or rate) of convergence of the sequence $\{A_{n_k}f\}$.

Various types of inequalities for the two-sided variation operator

$$\mathcal{V}'_{s}f(x) = \left(\sum_{-\infty}^{\infty} \left| \frac{1}{2^{n}} \int_{x}^{x+2^{n}} f(t) \, dt - \frac{1}{2^{n-1}} \int_{x}^{x+2^{n-1}} f(t) \, dt \right|^{s} \right)^{1/s}$$

Received September 13, 2021.

2010 Mathematics Subject Classification. Primary 26D07, 26D15; Secondary 42B20.

ISSN 1076-9803/2022

Key words and phrases. A_p weight, weak type (1, 1), strong type (p, p), H^1 space, BMO space.

when $2 \le s < \infty$ have been proven by the author in Demir, S. [1]. In this research we prove that same types of inequalities are also true for any lacunary sequence (n_k) for the one-sided variation operator $\mathcal{V}_s f(x)$ for $2 \le s < \infty$.

Lemma 1. Let (n_k) be a lacunary sequence with the lacunarity constant β , i.e., $n_{k+1}/n_k \ge \beta > 1$ for all k = 0, 1, 2, ... If $1 \le s < \infty$, then there exists a sequence (m_i) such that

$$\beta^2 \geq \frac{m_{j+1}}{m_j} \geq \beta > 1$$

for all j and

$$\left(\sum_{k=1}^{\infty} |A_{n_k} f(x) - A_{n_{k-1}} f(x)|^s\right)^{1/s} \le \left(\sum_{j=1}^{\infty} |A_{m_j} f(x) - A_{m_{j-1}} f(x)|^s\right)^{1/s}$$

Proof. Let us start our construction by first choosing $m_0 = n_0$. If

$$\beta^2 \ge \frac{n_1}{n_0} \ge \beta,$$

define $m_1 = n_1$. If $n_1/n_0 > \beta^2$, let $m_1 = \beta n_0$. Then we have

$$\beta^2 \ge \frac{m_1}{m_0} = \frac{\beta n_0}{n_0} = \beta \ge \beta.$$

Also,

$$\frac{n_1}{m_1} \ge \frac{\beta^2 n_0}{\beta n_0} = \beta.$$

Again, if $n_1/m_1 \leq \beta^2$, then choose $m_2 = n_1$. If this is not the case, choose $m_2 = \beta^2 n_0 \leq n_1$. By the same calculation as before, m_0, m_1, m_2 are part of a lacunary sequence satisfying

$$\beta^2 \ge \frac{m_{k+1}}{m_k} \ge \beta > 1.$$

To continue the sequence, either $m_3 = n_1$ if $n_1/m_2 \le \beta^2$ or $m_3 = \beta^3 n_0$ if $n_1/m_2 > \beta^2$.

Since $\beta > 1$, this process will end at some k_0 such that $m_{k_0} = n_1$. The remaining elements m_k are constructed in the same manner as the original n_k , with necessary terms added between two consecutive n_k to obtain the inequality

$$\beta^2 \ge \frac{m_{k+1}}{m_k} \ge \beta > 1.$$

Let now

$$J(k) = \{ j : n_{k-1} < m_j \le n_k \}.$$

Then we have

$$A_{n_k}f(x) - A_{n_{k-1}}f(x) = \sum_{j \in J(k)} (A_{m_j}f(x) - A_{m_{j-1}}f(x))$$

and thus we get

$$\begin{aligned} |A_{n_k}f(x) - A_{n_{k-1}}f(x)| &= \bigg| \sum_{j \in J(k)} (A_{m_j}f(x) - A_{m_{j-1}}f(x)) \\ &\leq \sum_{j \in J(k)} |A_{m_j}f(x) - A_{m_{j-1}}f(x)|. \end{aligned}$$

This implies that

$$\sum_{k=1}^{\infty} |A_{n_k} f(x) - A_{n_{k-1}} f(x)| \le \sum_{k=1}^{\infty} \sum_{j \in J(k)} |A_{m_j} f(x) - A_{m_{j-1}} f(x)|.$$
$$= \sum_{j=1}^{\infty} |A_{m_j} f(x) - A_{m_{j-1}} f(x)|.$$

Thus, we have

$$\left(\sum_{k=1}^{\infty} |A_{n_k} f(x) - A_{n_{k-1}} f(x)|^s\right)^{1/s} \le \left(\sum_{j=1}^{\infty} |A_{m_j} f(x) - A_{m_{j-1}} f(x)|^s\right)^{1/s}.$$

his completes the proof.

and this completes the proof.

$$\left(\sum_{k=1}^{\infty} |A_{n_k} f(x) - A_{n_{k-1}} f(x)|^s\right)^{1/s} \le \left(\sum_{j=1}^{\infty} |A_{m_j} f(x) - A_{m_{j-1}} f(x)|^s\right)^{1/s}.$$

.

and the new sequence (m_i) satisfies

$$\beta^2 \geq \frac{m_{j+1}}{m_j} \geq \beta > 1$$

for all $j \in \mathbb{Z}^+$. Therefore, we can assume without loss of generality that

$$\beta^2 \ge \frac{n_{k+1}}{n_k} \ge \beta > 1$$

for all $k \in \mathbb{Z}^+$ when we are proving any result for $\mathcal{V}_s(x)$. Since

$$\frac{1}{n_k} = \frac{n_1}{n_2} \cdot \frac{n_2}{n_3} \cdot \frac{n_3}{n_4} \cdot \dots \cdot \frac{n_{k-1}}{n_k},$$

we can also assume that

$$\frac{1}{n_k} \leq \frac{1}{\beta^{2(k-1)}}$$

for all k = 0, 1, 2, ...

Lemma 3. Let (n_k) be a lacunary sequence, and let γ denote the smallest positive integer satisfying 1 1

$$\frac{1}{\beta} + \frac{1}{\beta^{\gamma}} \le 1.$$

If $i \ge j + \gamma$, $0 < y \le n_j$ and $n_j < x < n_{i+1}$, then

$$\chi_{(y,y+n_k)}(x) - \chi_{(0,n_k)}(x) = 0$$

unless k = i in which case

$$\chi_{(y,y+n_k)}(x) - \chi_{(0,n_k)}(x) = \chi_{(n_i,y+n_i)}.$$

Proof. Since (n_k) is a lacunary sequence, there exists a constant $\beta > 1$ such that $n_{k+1}/n_k \ge \beta$ for all k. We can assume that

$$\beta^2 \ge \frac{n_{k+1}}{n_k} \ge \beta \tag{1}$$

for all *k* by Remark 2. Since we have

$$\frac{n_l}{n_k} = \frac{n_l}{n_{l+1}} \cdot \frac{n_{l+1}}{n_{l+2}} \cdot \dots \cdot \frac{n_{k-1}}{n_k}$$

and

$$\frac{1}{\beta} \leq \frac{n_k}{n_{k+1}} \leq \frac{1}{\beta^{k-l}}$$

for all k, we see that

$$\frac{1}{\beta^{2(k-l)}} \le \frac{n_l}{n_k} \le \frac{1}{\beta^{k-l}} \tag{2}$$

for all k > l. Let γ denote the smallest positive integer satisfying

$$\frac{1}{\beta} + \frac{1}{\beta^{\gamma}} \le 1.$$

We see from (2) that

$$n_j + n_k \le n_{k+1} \tag{3}$$

for all $k \ge j + \gamma - 1$. It is easy to see that for k > i,

$$0 < y \le n_j \le n_i < x < n_{i+1} \le n_k < y + n_k,$$

and this implies that

$$\left[\chi_{(y,y+n_k)}(x) - \chi_{(0,n_k)}(x)\right] \cdot \chi_{(n_i,n_{i+1})}(x) = 0.$$

For $k \leq i - 1$, we see by (3) that

$$n_k < y + n_k \le n_j + n_{i-1} \le n_i.$$

Then we have

$$\chi_{(y,y+n_k)}(x) \cdot \chi_{(n_i,n_{i+1})}(x) = \chi_{(0,n_k)}(x) \cdot \chi_{(n_i,n_{i+1})} = 0.$$

Suppose now that k = i; by (3), we have

$$y < n_i < y + n_i \le n_j + n_i \le n_{i+1}$$

and this implies that

$$\chi_{(y,y+n_i)}(x) - \chi_{(0,n_i)}(x) = \chi_{(y,y+n_i)} \cdot \chi_{(n_i,n_{i+1})}(x) = \chi_{(n_i,y+n_i)}(x). \quad \Box$$

Let

$$\phi_k(x) = \frac{1}{n_k} \chi_{(0,n_k)}(x)$$

and define the kernel operator $K : \mathbb{R} \to \ell^{s}(\mathbb{Z}^{+})$ as

$$K(x) = \{\phi_k(x) - \phi_{k-1}(x)\}_{k \in \mathbb{Z}^+}$$

It is clear that

$$\begin{aligned} \mathcal{V}_{s}f(x) &= \|K * f(x)\|_{\ell^{s}(\mathbb{Z}^{+})} \\ &= \left(\sum_{k=1}^{\infty} |\phi_{k} * f(x) - \phi_{k-1} * f(x)|^{s}\right)^{1/s} \\ &= \left(\sum_{k=1}^{\infty} |A_{n_{k}}f(x) - A_{n_{k-1}}f(x)|^{s}\right)^{1/s} \end{aligned}$$

where * denotes convolution, i.e.,

$$K * f(x) = \int K(x - y) \cdot f(y) \, dy$$

Let *B* be a Banach space. We say that the *B*-valued kernel *K* satisfies the D_r condition, for $1 \le r < \infty$, and write $K \in D_r$, if there exists a sequence $\{c_l\}_{l=1}^{\infty}$ of positive numbers such that $\sum_l c_l < \infty$ and such that

$$\left(\int_{S_l(|y|)} \|K(x-y) - K(x)\|_B^r \, dx\right)^{1/r} \le c_l |S_l(|y|)|^{-1/r'},$$

for all $l \ge 1$ and all y > 0, where $S_l(|y|)$ denotes the spherical shell $2^l |y| < |x| < 2^{l+1}y$ and $\frac{1}{r} + \frac{1}{r'} = 1$. When $K \in D_1$ we have the Hörmander condition:

$$\int_{|x|>2|y|} \|K(x-y) - K(x)\|_B \, dx \le C$$

where *C* is a positive constant which does not depend on y > 0.

Lemma 4. Let γ denote the smallest positive integer satisfying

$$\frac{1}{\beta} + \frac{1}{\beta^{\gamma}} \le 1.$$

and let $1 \le r, s < \infty$, $i \ge j + \gamma$, and $0 < y \le n_j$. Then

$$\left(\int_{n_i}^{n_{i+1}} \|K(x-y) - K(x)\|_{\ell^s(\mathbb{Z}^+)}^r dx\right)^{1/r} \le C_i n_i^{1/r-1},$$

i.e., *K* satisfies the D_r condition for $1 \le r < \infty$.

Proof. Let

$$\Phi_k(x, y) = \phi_k(x - y) - \phi_k(x).$$

Then it is easy to check that

$$K(x - y) - K(x) = \{\Phi_k(x, y) - \Phi_{k-1}(x, y)\}_{k \in \mathbb{Z}^+}.$$

On the other hand, because of a property of the norm we have

$$\begin{aligned} \|K(x-y) - K(x)\|_{\ell^{s}(\mathbb{Z}^{+})} &= \|\Phi_{k}(x,y) - \Phi_{k-1}(x,y)\|_{\ell^{s}(\mathbb{Z}^{+})} \\ &\leq \|\Phi_{k}(x,y)\|_{\ell^{s}(\mathbb{Z}^{+})} + \|\Phi_{k-1}(x,y)\|_{\ell^{s}(\mathbb{Z}^{+})} \\ &\leq 2\|\Phi_{k-1}(x,y)\|_{\ell^{s}(\mathbb{Z}^{+})}, \end{aligned}$$

where x and y are fixed and $\|\Phi_{k-1}(x, y)\|_{\ell^s(\mathbb{Z}^+)}$ is the $\ell^s(\mathbb{Z}^+)$ -norm of the sequence whose k^{th} -entry is $\Phi_k(x, y)$. We now have

$$\begin{split} \left(\int_{n_{i}}^{n_{i+1}} \|K(x-y) - K(x)\|_{\ell^{s}(\mathbb{Z}^{+})}^{r} dx \right)^{1/r} \\ &\leq 2 \left(\int_{n_{i}}^{n_{i+1}} \|\Phi_{k-1}(x,y)\|_{\ell^{s}(\mathbb{Z}^{+})}^{r} dx \right)^{1/r} \\ &\leq 2 \left(\int_{n_{i}}^{n_{i+1}} \|\Phi_{k-1}(x,y)\|_{\ell^{1}(\mathbb{Z}^{+})}^{r} dx \right)^{1/r} \\ &= 2 \left(\int_{n_{i}}^{n_{i+1}} \left(\sum_{n_{i} < n_{k-1}} \frac{1}{n_{k-1}} \chi_{(n_{i},y+n_{i})}(x) \right)^{r} dx \right)^{1/r} \\ &= 2 \left(\int_{n_{i}}^{n_{i+1}} \left(\sum_{n_{i} < n_{k-1}} \frac{1}{\beta^{2(k-2)}} \chi_{(n_{i},y+n_{i})}(x) \right)^{r} dx \right)^{1/r} \\ &\leq 2 \left(\beta^{2} + \frac{1}{1 - \beta^{2}} \right) \cdot \frac{1}{n_{i}} \cdot \left(\int_{n_{i}}^{n_{i+1}} \chi_{(n_{i},y+n_{i})}(x) dx \right)^{1/r} \\ &= 2 \left(\beta^{2} + \frac{1}{1 - \beta^{2}} \right) \cdot \frac{1}{n_{i}} \cdot y^{1/r} \\ &\leq 2 \left(\beta^{2} + \frac{1}{1 - \beta^{2}} \right) \frac{1}{\beta^{(i-j)/r}} n_{i}^{1/r-1} \end{split}$$

where in the last inequality we used

$$y \le n_j \le \frac{n_i}{\beta^{i-j}}$$

by (2), and this completes our proof with

$$C_i = 2\left(\beta^2 + \frac{1}{1-\beta^2}\right)\frac{1}{\beta^{(i-j)/r}}. \quad \Box$$

Lemma 5. Let $\{n_k\}$ be a lacunary sequence. Then there exists a constant C > 0 such that

$$\sum_{k=1}^{\infty} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)| < C$$

for all $x \in \mathbb{R}$, where $\phi_k(x) = \frac{1}{n_k} \chi_{(0,n_k)}(x)$, and $\hat{\phi}_k$ is its Fourier transform.

Proof. First, note that we have

$$I(x) = \sum_{k=1}^{\infty} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)| = \sum_{k=1}^{\infty} \left| \frac{1 - e^{-ixn_k}}{xn_k} - \frac{1 - e^{-ixn_{k-1}}}{xn_{k-1}} \right|$$

Let

$$I(x) = \sum_{\{k: |x|n_k \ge 1\}} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)| + \sum_{\{k: |x|n_k < 1\}} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)| = I_1(x) + I_2(x).$$

Let us now fix $x \in \mathbb{R}$ and let k_0 be the first k such that $|x|n_k \ge 1$. Since $\hat{\phi}_k(x)$ is an even function, we can assume without the loss of generality that $x \ge 0$. We clearly have

$$I_1(x) \leq \sum_{\{k: |x|n_k \geq 1\}} \frac{4}{|x|n_k}.$$

Since the sequence $\{n_k\}$ is lacunary, there exists a constant $\beta > 1$ such that $n_{k+1}/n_k \ge \beta$ for all $k \in \mathbb{N}$. Also note that in the sum, I_1 , the term with index n_{k_0} is the term with smallest index, since it is the first term that satisfies condition $|x|n_k \ge 1$ and the sequence $\{n_k\}$ is increasing. On the other hand, we have

$$\frac{n_{k_0}}{n_k} = \frac{n_{k_0}}{n_{k_0+1}} \cdot \frac{n_{k_0+1}}{n_{k_0+2}} \cdot \frac{n_{k_0+2}}{n_{k_0+3}} \cdots \frac{n_{k-1}}{n_k} \le \frac{1}{\beta^k}.$$

We now have

$$I_{1}(x) \leq \sum_{\{k:|x|n_{k}\}} \frac{4}{|x|n_{k}}$$
$$= \sum_{\{k:|x|n_{k}\geq 1\}} \frac{4n_{k_{0}}}{|x|n_{k_{0}}n_{k}}$$
$$= \frac{4}{|x|n_{k_{0}}} \sum_{\{k:|x|n_{k}\geq 1\}} \frac{n_{k_{0}}}{n_{k}}$$
$$\leq 4 \sum_{\{k:|x|n_{k}\geq 1\}} \frac{1}{\beta^{k}}$$

since $\frac{1}{|x|n_{k_0}} \le 1$ and $\frac{n_{k_0}}{n_k} = \frac{1}{\beta^k}$. Also, since

$$\sum_{k=1}^{\infty} \frac{1}{\beta^k} = \frac{1}{1 - \frac{1}{\beta}},$$

we clearly see that $I_1(x) \leq C_1$ for some constant $C_1 > 0$.

To control the summation I_2 let us first define the function F as

$$F(r) = \frac{1 - e^{-ir}}{r}.$$

Then we have $\hat{\phi}_k(x) = F(xn_k)$. Now by the Mean Value Theorem, there exists a constant $\xi \in (xn_k, xn_{k+1})$ such that

$$|F(xn_{k+1}) - F(xn_k)| = |F'(\xi)| |xn_{k+1} - xn_k|.$$

Also, it is easy to verify that

$$|F'(x)| \le \frac{x+2}{x^2},$$

for x > 0.

Now we have

$$|F(xn_{k+1}) - F(xn_k)| = |F'(\xi)| |xn_{k+1} - xn_k|$$

$$\leq \frac{\xi + 2}{\xi^2} |x| (n_{k+1} - n_k)$$

$$\leq \frac{xn_{k+1} + 2}{x^2 n_k^2} |x| (n_{k+1} - n_k)$$

$$= \frac{2n_{k+1}}{n_k^2} (n_{k+1} - n_k).$$

Thus, we have

$$\begin{split} I_{2}(x) &= \sum_{\{k: |x|n_{k}<1\}} |F(xn_{k+1}) - F(xn_{k})| \\ &\leq \sum_{\{k: |x|n_{k}<1\}} \frac{2}{|x|n_{k}} \cdot \frac{2n_{k+1}}{n_{k}^{2}} (n_{k+1} - n_{k}) \\ &\leq \sum_{\{k: |x|n_{k}<1\}} \frac{4n_{k+1}^{2}}{n_{k}^{2}|x|} \left(\frac{1}{n_{k}} - \frac{1}{n_{k+1}}\right) \\ &= \sum_{\{k: |x|n_{k}<1\}} \frac{16}{|x|} \left(\frac{1}{n_{k}} - \frac{1}{n_{k+1}}\right) \\ &= \frac{16}{|x|} \left(\frac{1}{n_{1}} - \frac{1}{n_{k_{0}+1}}\right) \\ &\leq \frac{16}{|x|n_{k_{0}+1}} \\ &\leq 16. \end{split}$$

We thus conclude that

$$I(x) = I_1(x) + I_2(x) \le C_1 + 16 := C$$

for all $x \in \mathbb{R}$ and this completes our proof.

Lemma 6. Let $s \ge 2$ and (n_k) be a lacunary sequence. Then there exits a constant C > 0 such that

$$\|\mathcal{V}_s f\|_{L^2(\mathbb{R})} \le C \|f\|_{L^2(\mathbb{R})}$$

for all $f \in L^2(\mathbb{R})$.

Proof. Since

$$\sum_{k=1}^{\infty} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)|^2 \le \sum_{k=1}^{\infty} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)|,$$

it is clear from Lemma 5 that there exists a constant C > 0 such that

$$\sum_{k=1}^{\infty} |\hat{\phi}_k(x) - \hat{\phi}_{k-1}(x)|^2 < C$$

for all $x \in \mathbb{R}$.

We now obtain

$$\begin{split} \|\mathcal{V}_{s}f\|_{L^{2}(\mathbb{R})} &= \int_{\mathbb{R}} \left(\sum_{k=1}^{\infty} \left| \phi_{k} * f(x) - \phi_{k-1} * f(x) \right|^{\rho} \right)^{2/\rho} dx \\ &\leq \int_{\mathbb{R}} \sum_{k=1}^{\infty} \left| \phi_{k} * f(x) - \phi_{k-1} * f(x) \right|^{2} dx \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left| \phi_{k} * f(x) - \phi_{k-1} * f(x) \right|^{2} dx \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left| (\phi_{k} - \phi_{k-1}) * f(x) \right|^{2} dx \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left| \Delta_{k} * f(x) \right|^{2} dx \quad (\Delta_{k}(x) = \phi_{k}(x) - \phi_{k-1}(x)) \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left| \widehat{\Delta_{k}} * f(x) \right|^{2} dx \quad (by \text{ Plancherel's theorem}) \\ &= \sum_{k=1}^{\infty} \int_{\mathbb{R}} \left| \widehat{\Delta_{k}}(x) \right|^{2} \cdot |\widehat{f}(x)|^{2} dx \\ &= \int_{\mathbb{R}} \sum_{k=1}^{\infty} |\widehat{\Delta_{k}}(x)|^{2} \cdot |\widehat{f}(x)|^{2} dx \\ &= \int_{\mathbb{R}} \sum_{k=1}^{\infty} |\widehat{\phi_{k}}(x) - \widehat{\phi_{k-1}}(x)|^{2} \cdot |\widehat{f}(x)|^{2} dx \\ &\leq C \int_{\mathbb{R}} |\widehat{f}(x)|^{2} dx \end{split}$$

$$= C \int_{\mathbb{R}} |f(x)|^2 dx \quad \text{(by Plancherel's theorem)}$$
$$= C ||f||_{L^2(\mathbb{R})}^2$$

as desired.

Remark 7. Since for $s \ge 2$, we have proved in Lemma 4 that the kernel operator $K(x) = \{\phi_k(x) - \phi_{k-1}(x)\}_{k \in \mathbb{Z}^+}$ satisfies the D_r condition for $1 \le r < \infty$, it specifically satisfies D_1 condition. We also have proved in Lemma 6 that $Tf = \{(\phi_k - \phi_{k-1}) * f\}_{k \in \mathbb{Z}^+}$ is a bounded operator from $L^2(\mathbb{R})$ to $L^2_{\ell^s(\mathbb{Z}^+)}(\mathbb{R})$ since $\|K * f(x)\|_{\ell^s(\mathbb{Z}^+)} = \mathcal{V}_s f(x)$. Therefore, $Tf = \{(\phi_k - \phi_{k-1}) * f\}_{k \in \mathbb{Z}^+}$ is an ℓ^s -valued singular operator of convolution type for $s \ge 2$.

Lemma 8. Let A and B be Banach spaces. A singular integral operator T mapping A-valued functions into B-valued functions can be extended to an operator defined in all L_A^p , $1 \le p < \infty$, and satisfying

- (i) $||Tf||_{L^p_B} \le C_p ||f||_{L^p_A}$, 1 , $(ii) <math>||Tf||_{WL^1_B} \le C_1 ||f||_{L^1_A}$, (iii) $||Tf||_{L^1_B} \le C_2 ||f||_{H^1_A}$,
- (iv) $||Tf||_{BMO(B)} \le C_3 ||f||_{L^{\infty}(A)}, \quad f \in L^{\infty}_c(A),$

where C_p , C_1 , C_2 , $C_3 > 0$, and $L_c^{\infty}(A)$ is the space of bounded functions with compact support.

Proof. This is Theorem 1.3 of Part II in Rubio de Francia, J. L. *et al* [5].

The following theorem is our first result:

Theorem 9. Let $2 \le s < \infty$, and let (n_k) be a lacunary sequence. Then there exits a constant C > 0 such that

$$\|\mathcal{V}_s f\|_{L^1(\mathbb{R})} \le C \|f\|_{H^1(\mathbb{R})}$$

for all $f \in H^1(\mathbb{R})$.

Proof. This follows from Remark 7 and Lemma 8 (iii) since $||K * f(x)||_{\ell^s(\mathbb{Z}^+)} = \mathcal{V}_s f(x)$.

Remark 10. We have proved that $Tf = \{(\phi_k - \phi_{k-1}) * f\}_{k \in \mathbb{Z}^+}$ is an ℓ^s -valued singular operator of convolution type for $s \ge 2$. By applying Lemma 8 to this observation we also provide a different proof for the following known facts for $s \ge 2$ (see [4]) since $||K * f(x)||_{\ell^s(\mathbb{Z}^+)} = \mathcal{V}_s f(x)$.

- (i) $\|\mathcal{V}_s f\|_{L^p(\mathbb{R})} \leq C_p \|f\|_{L^p(\mathbb{R})}, \quad 1$
- (ii) $\|\mathcal{V}_s f\|_{WL^1(\mathbb{R})} \leq C_1 \|f\|_{L^1(\mathbb{R})},$
- (iii) $\|\mathcal{V}_s f\|_{\mathrm{BMO}(\mathbb{R})} \leq C_2 \|f\|_{L^{\infty}(\mathbb{R})}, \quad f \in L^{\infty}_c(\mathbb{R}),$
- where $C_p, C_1, C_2 > 0$.

1108

Let $w \in L^1_{loc}(\mathbb{R})$ be a positive function. We say that w is an A_p weight for some 1 if the following condition is satisfied:

$$\sup_{I}\left(\frac{1}{|I|}\int_{I}w(x)\,dx\right)\left(\frac{1}{|I|}\int_{I}w(x)^{-\frac{1}{p-1}}\,dx\right)^{p-1}<\infty,$$

where the supremum is taken over all intervals *I* in \mathbb{R} . We say that the function *w* is an A_{∞} weight if there exist $\delta > 0$ and $\epsilon > 0$ such that given an interval *I* in \mathbb{R} , for any measurable $E \subset I$,

$$|E| < \delta \cdot |I| \implies w(E) < (1 - \epsilon) \cdot w(I).$$

Here

$$w(E) = \int_E w.$$

It is well known and easy to see that $w \in A_p \implies w \in A_\infty$ if 1 . $We say that <math>w \in A_1$ if given an interval *I* in \mathbb{R} there is a positive constant *C* such that

$$\frac{1}{|I|} \int_{I} w(y) \, dy \le C w(x)$$

for a.e. $x \in I$.

Lemma 11. Let A and B be Banach spaces, and T be a singular integral operator mapping A-valued functions into B-valued functions with kernel $K \in D_r$, where $1 < r < \infty$. Then, for all $1 < \rho < \infty$, and for all $(f_j) \in L^p_A(w) \cap L^p_A(\mathbb{R}^n)$, the weighted inequalities

$$\left\| \left(\sum_{j} \left\| Tf_{j} \right\|_{B}^{\rho} \right)^{1/\rho} \right\|_{L^{p}(w)} \leq C_{p,\rho}(w) \left\| \left(\sum_{j} \left\| f_{j} \right\|_{A}^{\rho} \right)^{1/\rho} \right\|_{L^{p}(w)}$$

hold if $w \in A_{p/r'}$ and $r' \leq p < \infty$, or if $w \in A_p^{r'}$ and $1 . Likewise, if <math>w(x)^{r'} \in A_1$, then the weak type inequality

$$w\left(\left\{x:\left(\sum_{j}\left\|Tf_{j}(x)\right\|_{B}^{\rho}\right)^{1/\rho}>\lambda\right\}\right)\leq C_{\rho}(w)\frac{1}{\lambda}\int\left(\sum_{j}\left\|f_{j}(x)\right\|_{A}^{\rho}\right)^{1/\rho}w(x)\,dx$$

holds for all $(f_j) \in L^1_A(w) \cap L^1_A(\mathbb{R}^n)$.

Proof. This is Theorem 1.6 of Part II in Rubio de Francia, J. L. *et al* [5].

Our next result is the following:

Theorem 12. Let $2 \le s < \infty$. Then, for all $1 < \rho < \infty$, and for all $(f_j) \in L^p(w) \cap L^p(\mathbb{R})$, the weighted inequalities

$$\left\| \left(\sum_{j} (\mathcal{V}_s f_j)^{\rho} \right)^{1/\rho} \right\|_{L^p(w)} \le C_{p,\rho}(w) \left\| \left(\sum_{j} |f_j|^{\rho} \right)^{1/\rho} \right\|_{L^p(w)}$$

hold if $w \in A_{p/r'}$ and $r' \leq p < \infty$, or if $w \in A_p^{r'}$ and $1 . Likewise, if <math>w(x)^{r'} \in A_1$, then the weak type inequality

$$w\left(\left\{x:\left(\sum_{j}(\mathcal{V}_{s}f_{j}(x))^{\rho}\right)^{1/\rho}>\lambda\right\}\right)\leq C_{\rho}(w)\frac{1}{\lambda}\int\left(\sum_{j}|f_{j}(x)|^{\rho}\right)^{1/\rho}w(x)\,dx$$

holds for all $(f_j) \in L^1(w) \cap L^1(\mathbb{R})$.

Proof. We have proved for $2 \le s < \infty$ that $Tf = \{(\phi_k - \phi_{k-1}) * f\}_{k \in \mathbb{Z}^+}$ is an ℓ^s -valued singular integral operator of convolution type and its kernel operator $K(x) = \{\phi_k(x) - \phi_{k-1}(x)\}_{k \in \mathbb{Z}^+}$ satisfies D_r condition for $1 \le r < \infty$. Thus, the result follows from Lemma 11 and the fact that $||K * f(x)||_{\ell^s(\mathbb{Z}^+)} = \mathcal{V}_s f(x)$. \Box

In particular we have the following corollary:

Corollary 13. Let $2 \le s < \infty$. Then the weighted inequalities

$$\left\|\mathcal{V}_{s}f\right\|_{L^{p}(w)} \leq C_{p,\rho}(w)\left\|f\right\|_{L^{p}(w)}$$

hold for all $(f_j) \in L^p_A(w) \cap L^p_A(\mathbb{R}^n)$ if $w \in A_{p/r'}$ and $r' \leq p < \infty$, or if $w \in A_p^{r'}$ and $1 . Likewise, if <math>w(x)^{r'} \in A_1$, then the weak type inequality

$$w\left(\left\{x : \mathcal{V}_s f(x) > \lambda\right\}\right) \le C_{\rho}(w) \frac{1}{\lambda} \int |f(x)| w(x) \, dx$$

holds for all $(f_i) \in L^1(w) \cap L^1(\mathbb{R})$.

References

- DEMIR, SAKIN. Inequalities for the variaiton operator. *Bull. of Hellenic Math Soc.* 64 (2020), 92–97. MR4140164, Zbl 1451.26019. arXiv:2001.09316. 1100
- [2] GARCIA-CUERVA, JOSÉ; RUBIO DE FRANCIA, JOSÉ L. Weighted norm inequalities and related topics. North-Holland Mathematics Studies, 116. Notas de Matemática, 104. North-Holland Publishing Co., Amsterdam, 1985. x+604 pp. ISBN: 0-444-87804-1. MR0807149, Zbl 0578.46046.
- [3] JONES, ROGER L.; KAUFMAN, ROBERT; ROSENBLATT, JOSEPH M.; WIERDL, MÁTÉ. Oscillation in ergodic theory. *Ergodic Theory Dynam. Systems* 18 (1998), no. 4, 889–935. MR1645330, Zbl 0924.28009, doi:10.1017/S0143385798108349. 1108
- [4] JONES, ROGER L.; SEEGER, ANDREAS; WRIGHT, JAMES. Strong variational and jump inequalities in harmonic analysis. *Trans. Amer. Math. Soc.* **360** (2008), no. 12, 6711–6742. MR2434308, Zbl 1159.42013, doi: 10.1090/S0002-9947-08-04538-8. 1108
- [5] RUBIO DE FRANCIA, JOSÉ L.; RUIZ, FRANCISCO J.; TORREA, JOSÉ L. Calderón–Zygmund theory for operator-valued kernels. *Adv. in Math.* 62 (1986), no. 1, 7–48. MR0859252, Zbl 0627.42008, doi: 10.1016/0001-8708(86)90086-1. 1108, 1109

[6] MUCKENHOUPT, BENJAMIN. Weighted norm inequalities for the Hardy maximal function. *Trans. Amer. Math. Soc.* 165 (1972), 207–226. MR0293384, Zbl 0236.26016, doi: 10.1090/S0002-9947-1972-0293384-6.

(Sakin Demir) DEPARTMENT OF BASIC EDUCATION, FACULTY OF EDUCATION, AGRI IBRAHIM CECEN UNIVERSITY, 04100, AGRI, TURKEY sakin.demir@gmail.com

This paper is available via http://nyjm.albany.edu/j/2022/28-46.html.