New York Journal of Mathematics

New York J. Math. 26 (2020) 790-798.

A note on decomposable maps on operator systems

Sriram Balasubramanian

Abstract

This article contains a characterization of operator systems \mathcal{S} with the property that every positive $\operatorname{map} \phi: \mathcal{S} \rightarrow M_{n}$ is decomposable, as well as an alternate and a more direct proof of a characterization of decomposable maps due to E. Størmer.

Contents

1. Introduction 790
2. Preliminaries 792
3. The proofs 794
References 797

1. Introduction

Let H denote a Hilbert space over \mathbb{C} and $B(H)$ the C^{*}-algebra of bounded operators on H. Let \mathcal{A} be a unital C^{*}-algebra. Without loss of generality, we shall assume \mathcal{A} to be a C^{*}-subalgebra of $B(H)$ for some Hilbert space H. An operator system $\mathcal{S} \subseteq \mathcal{A}$ is a unital self-adjoint subspace of \mathcal{A}. Letting $M_{n}=B\left(\mathbb{C}^{n}\right)$ to denote the C^{*}-algebra of $n \times n$ complex matrices, a linear $\operatorname{map} \phi: \mathcal{S} \rightarrow M_{n}$ is positive if $\phi(s) \succeq 0$ whenever s is a positive element of \mathcal{S}. Given a positive integer k, let $\phi_{k}=\phi \otimes I_{k}: \mathcal{S} \otimes M_{k} \rightarrow M_{n} \otimes M_{k}$ denote the linear map determined by $\phi_{k}(s \otimes X)=\phi(s) \otimes X$. The map ϕ is completely positive, or cp for short, if each ϕ_{k} is positive; that is, if $S \in \mathcal{S} \otimes M_{k}$ is positive as an element of the algebra $B(H) \otimes M_{k}=B\left(\oplus_{1}^{k} H\right)$ of $k \times k$ matrices with entries from $B(H)$, then $\phi_{k}(S)$ is positive in $M_{n} \otimes M_{k}=B\left(\mathbb{C}^{n} \otimes C^{k}\right)$.

Let t denote a transpose on M_{n}. A mapping $\phi: \mathcal{S} \rightarrow M_{n}$ is co-cp if $t \circ \phi$ is cp. As is well known, the definition of co-cp is independent of the choice of transpose since any two transposes are unitarily equivalent. The

[^0]linear map ϕ is said to be decomposable if it is a sum of a cp map and a co-cp map. Maps that are positive, but not completely so, like the generic decomposable map, are of importance in quantum information theory as entanglement detecting maps.

Let \mathcal{S}^{+}denote its positive elements of an operator space $\mathcal{S} \subseteq \mathcal{A}$. Given a positive integer n, it is evident that $\mathcal{S}^{+} \otimes M_{n}^{+}$, which is the cone generated by elementary tensors $s \otimes X$ where both s and X are positive, is a subset of $\left(\mathcal{S} \otimes M_{n}\right)^{+}$. Operator systems \mathcal{S} with the property that every positive $\operatorname{map} \phi: \mathcal{S} \rightarrow M_{n}$ is completely positive are characterized as follows. See for instance Theorem 6.6 in [5].

Proposition 1.1. Every positive map $\phi: \mathcal{S} \rightarrow M_{n}$ is completely positive if and only if $\mathcal{S}^{+} \otimes M_{n}^{+}$is dense in $\left(\mathcal{S} \otimes M_{n}\right)^{+}$.

Using techniques from [3] and [12], here we establish the analog of Proposition 1.1 for decomposable maps. Let $k \in \mathbb{N}, t$ denote a transpose on M_{k} and

$$
\begin{equation*}
J_{k}(\mathcal{S}):=\left\{S=\sum_{j=1}^{k} s_{j} \otimes x_{j}: S \succeq 0, \sum_{j=1}^{k} s_{j} \otimes t\left(x_{j}\right) \succeq 0\right\} \subseteq \mathcal{S} \otimes M_{k} \tag{1}
\end{equation*}
$$

Theorem 1.2. Let $n \in \mathbb{N}$ and \mathcal{S} be an operator system in the unital C^{*} algebra \mathcal{A}. Every positive linear map $\psi: \mathcal{S} \rightarrow M_{n}$ is decomposable if and only if $J_{n}(\mathcal{S}) \subseteq \mathcal{S}^{+} \otimes M_{n}^{+}$.

It is well known that every positive linear map $\phi: M_{p} \rightarrow M_{q}$ is decomposable, whenever $p, q \in \mathbb{N}$ and $p q \leq 6$. (please see [7], [11], [3] and [12]). By combining this fact with Theorem 1.2, one can immediately conclude the following.
Corollary 1.3. If $p, q \in \mathbb{N}$ and $p q \leq 6$, then $J_{p}\left(M_{q}\right) \subseteq \overline{M_{q}^{+} \otimes M_{p}^{+}}$.
The proof of Theorem 1.2 is based upon a result of E. Størmer. Let $L\left(\mathcal{S}, M_{n}\right)$ denote the vector space of linear maps from \mathcal{S} to M_{n}. The dual functional $s_{\phi}: \mathcal{S} \otimes M_{n} \rightarrow \mathbb{C}$, associated to the linear map $\phi \in L\left(\mathcal{S}, M_{n}\right)$, is the mapping defined by

$$
\begin{equation*}
s_{\phi}(s \otimes x)=\langle(\phi(s) \otimes x) \mathbf{e}, \mathbf{e}\rangle, \tag{2}
\end{equation*}
$$

where \otimes denotes the Kronecker product, $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard orthonormal basis of \mathbb{C}^{n} and $\mathbf{e}=\sum_{j=1}^{n} e_{j} \otimes e_{j} \in \mathbb{C}^{n} \otimes \mathbb{C}^{n}$. It is customary to identify $M_{n}(\mathcal{S})$ with $\mathcal{S} \otimes M_{n}$, via the mapping

$$
\begin{equation*}
M_{n}(\mathcal{S}) \ni\left[x_{i, j}\right] \mapsto \sum_{i, j=1}^{n} x_{i, j} \otimes E_{i, j} \in \mathcal{S} \otimes M_{n} \tag{3}
\end{equation*}
$$

where $E_{i, j}=e_{i} e_{j}^{*}$ are the standard matrix units in M_{n}. Under this identification, the dual functional $s_{\phi}: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ becomes

$$
s_{\phi}\left(\left[x_{i, j}\right]\right)=\left\langle\left[\phi\left(x_{i, j}\right)\right] \mathbf{e}, \mathbf{e}\right\rangle,
$$

where $\mathbf{e}=e_{1} \oplus e_{2} \cdots \oplus e_{n} \in \mathbb{C}^{n^{2}}$. It is also to be noted that the definition of $s_{\phi}: \mathcal{S} \otimes M_{n} \rightarrow \mathbb{C}$ given above, coincides with that given in [10] namely,

$$
s_{\phi}(s \otimes x)=n(\operatorname{Trace}(\phi(s) t(x))),
$$

where $t(x)$ is the (standard) transpose of x.
Remark 1.4. Suppose that $f: \mathcal{S} \otimes M_{n} \rightarrow \mathbb{C}$ is linear, then with $\phi: \mathcal{S} \rightarrow M_{n}$ denoting the linear map determined by

$$
\begin{equation*}
\left\langle\phi(s) e_{k}, e_{j}\right\rangle=f\left(s \otimes e_{j} e_{k}^{*}\right), \tag{4}
\end{equation*}
$$

one gets that $s_{\phi}=f$. It follows from equations (2) and (4) that the mapping

$$
L\left(\mathcal{S}, M_{n}\right) \ni \phi \mapsto s_{\phi} \in L\left(\mathcal{S} \otimes M_{n}, \mathbb{C}\right)
$$

is bijective.
Theorem 1.5 ([10]). Let $\mathcal{S} \subseteq \mathcal{A}$ be an operator system, $\phi: \mathcal{S} \rightarrow M_{n}$ be a linear map. The map $\phi: \mathcal{S} \rightarrow M_{n}$ is decomposable if and only if its associated dual functional $s_{\phi}: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ satisfies $s_{\phi}(S) \geq 0$ whenever $S \in J_{n}(\mathcal{S})$.

A second contribution of this article is to give an alternate and a more direct proof of Theorem 1.5 by using the techniques developed in Chapter 6 of [5]. This approach also yields a simpler proof of a characterization of a cp map $\phi: \mathcal{S} \rightarrow M_{n}$ in terms of its associated dual functional. Please see Theorem 3.2 in Section 3.

2. Preliminaries

This section contains some lemmas that will be used in the sequel.
Given an orthonormal basis \mathcal{E} of a Hilbert space E, the linear map $t_{\mathcal{E}}$: $B(E) \rightarrow B(E)$ uniquely determined by the property

$$
\left\langle t_{\mathcal{E}}(T) y, x\right\rangle=\langle T x, y\rangle
$$

for all $x, y \in \mathcal{E}$ is positive and isometric and is the transpose on E associated to \mathcal{E}.

If \mathcal{F} is an orthonormal basis on a Hilbert space F, then $\mathcal{E} \otimes \mathcal{F}=\{e \otimes f$: $e \in \mathcal{E}, f \in \mathcal{F}\}$ is an orthonormal basis for $E \otimes F$ and moreover,

$$
t_{\mathcal{E} \otimes \mathcal{F}}=t_{\mathcal{E}} \otimes t_{\mathcal{F}} .
$$

In particular, $t_{\mathcal{E}} \otimes t_{\mathcal{F}}$ is a positive map.
Given a unitary U on E, the set $\mathcal{F}=U \mathcal{E}$ is also an orthonormal basis and an elementary computation shows, for $T \in B(E)$,

$$
t_{\mathcal{F}}(T)=V t_{\mathcal{E}}(T) V^{*}
$$

where $V=U t_{\mathcal{E}}(U)^{*}$ is unitary. Thus, any two transposes on E are unitarily equivalent. As a consequence, the notion of co-cp for a linear map from an operator space into $B\left(\mathbb{C}^{n}\right)$ is independent of the choice of transpose (basis) on $B\left(\mathbb{C}^{n}\right)$ (of \mathbb{C}^{n}).

Recall the identification of $\mathcal{S} \otimes M_{n}$ with $M_{n}(\mathcal{S})$ from (3). The following result (Lemma 1 in [9]) \& Lemma 6.5 in [5]) explains the significance of the dual functional.

Lemma 2.1. The linear map $\phi: \mathcal{S} \rightarrow M_{n}$ is positive if and only if the linear functional $s_{\phi}: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ takes positive values on $\mathcal{S}^{+} \otimes M_{n}^{+}$.

The notion of cp and co-cp maps easily extends to maps from an operator system into $B(E)$ for a Hilbert space E.
Lemma 2.2. Suppose E is a Hilbert space. If $\eta: \mathcal{S} \rightarrow B(E)$ is co-cp, $m \in \mathbb{N}$ and $S \in J_{m}(\mathcal{S})$, then $\left(\eta \otimes I_{m}\right)(S) \succeq 0$.

Proof. Let t denote a transpose on $B(E)$ and t_{m} the standard transpose on M_{m}. Suppose $S=\sum_{j=1}^{m} s_{j} \otimes x_{j} \in J_{m}(\mathcal{S})$. Thus S and also $S^{\prime}=\sum s_{j} \otimes t_{m}\left(x_{j}\right)$ are positive. Let I_{m} denote the identity operator on M_{m}. Since η is co-cp, $S^{\prime} \succeq 0$, and $t \otimes t_{m}$ is positive, it follows that

$$
0 \preceq\left(t \otimes t_{m}\right)\left(t \circ \eta \otimes I_{m}\right)\left(S^{\prime}\right)=\left(\eta \otimes t_{m}\right)\left(S^{\prime}\right)=\left(\eta \otimes I_{m}\right)(S)
$$

Recall the standard matrix units $E_{j, k} \in M_{m}$. The following is a key positivity property that will be utilized to prove our main results.
Lemma 2.3. Suppose that $m \in \mathbb{N}, S=\sum_{j, k=1}^{m} s_{j, k} \otimes E_{j, k} \in \mathcal{S} \otimes M_{m}$, $y_{1}, \ldots, y_{m} \in \mathbb{C}^{n}$ and $T=\sum_{j, k=1}^{m} s_{j, k} \otimes y_{j} y_{k}^{*} \in \mathcal{S} \otimes M_{n}$.
(i) If $S \succeq 0$, then $T \succeq 0$.
(ii) If $S \in J_{m}(\mathcal{S})$, then $T \in J_{n}(\mathcal{S})$.

Proof. (i) Let 1 denote the unit element in $\mathcal{S},\left\{e_{1}, \ldots, e_{m}\right\}$ denote the standard orthonormal basis for \mathbb{C}^{m} and $Y=1 \otimes \sum_{\alpha=1}^{m} e_{\alpha} y_{\alpha}^{*}$. It follows that

$$
Y^{*} S Y=\sum_{\alpha, \beta=1}^{m} \sum_{j, k=1}^{m} s_{j, k} \otimes y_{\beta}\left[e_{\beta}^{*} E_{j, k} e_{\alpha}\right] y_{\alpha}^{*}=\sum_{\alpha, \beta=1}^{m} s_{\beta, \alpha} \otimes y_{\beta} y_{\alpha}^{*}=T
$$

since $e_{\beta}^{*} E_{j, k} e_{\alpha}=1$ if $(\alpha, \beta)=(k, j)$ and 0 otherwise. Thus if $S \succeq 0$, then so is T.
(ii) Let $z_{j}=\overline{y_{j}}$, the entrywise complex conjugate. Suppose $S \in J_{m}(\mathcal{S})$. By definition of $J_{m}(\mathcal{S})$,

$$
S^{\prime}=\left(I \otimes t_{m}\right)(S)=\sum_{j, k=1}^{m} s_{k, j} \otimes E_{j, k} \succeq 0
$$

where I is the identity operator on \mathcal{S} and t_{m} is the transpose on M_{m}. From part (i) it follows that $T \succeq 0$ and

$$
T^{\prime}=\left(I \otimes t_{m}\right)(T)=\sum_{j, k=1}^{m} s_{k, j} \otimes y_{j} y_{k}^{*}=\sum_{j, k=1}^{m} s_{j, k} \otimes z_{j} z_{k}^{*} \succeq 0 .
$$

Hence, $T \in J_{n}(\mathcal{S})$.

Recall the dual functional s_{ϕ} associated to ϕ, from equation (2).
Lemma 2.4. Suppose $\mathcal{S} \subset \mathcal{A}$ is an operator system and $\phi: \mathcal{S} \rightarrow M_{n}$ is a linear map. If $s \in \mathcal{S}$ and $y, z \in \mathbb{C}^{n}$, then

$$
\langle\phi(s) \bar{z}, \bar{y}\rangle=s_{\phi}\left(s \otimes y z^{*}\right) .
$$

Moreover, if $S=\sum_{j, k=1}^{m} s_{j, k} \otimes E_{j, k} \in \mathcal{S} \otimes M_{m}$ and $w=w_{1} \oplus w_{2} \oplus \cdots \oplus w_{m}=$ $\sum_{j=1}^{m} e_{j} \otimes w_{j} \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$, then

$$
\left\langle\phi_{m}(S) \bar{w}, \bar{w}\right\rangle=s_{\phi}\left(\sum_{j, k=1}^{m} s_{j, k} \otimes w_{j} w_{k}^{*}\right) .
$$

Proof. Compute

$$
\begin{aligned}
s_{\phi}\left(s \otimes y z^{*}\right) & =\left\langle\left(\phi(s) \otimes y z^{*}\right) \sum_{j=1}^{n} e_{j} \otimes e_{j}, \sum_{k=1}^{n} e_{k} \otimes e_{k}\right\rangle \\
& =\sum_{j, k}\left(e_{k}^{*} \phi(s) e_{j}\right)\left(e_{k}^{*} y\right)\left(z^{*} e_{j}\right) \\
& =\sum_{j, k}\left(e_{j}^{*} \phi(s) e_{k}\right)\left(z^{*} e_{k}\right)\left(e_{j}^{*} y\right) \\
& =\langle\phi(s) \bar{z}, \bar{y}\rangle .
\end{aligned}
$$

The second part can be obtained from the first part by linearity, as follows.

$$
\begin{aligned}
s_{\phi}\left(\sum_{j, k=1}^{m} s_{j, k} \otimes w_{j} w_{k}^{*}\right) & =\sum_{j, k=1}^{m} s_{\phi}\left(s_{j, k} \otimes w_{j} w_{k}^{*}\right) \\
& =\sum_{j, k=1}^{m}\left\langle\phi\left(s_{j, k}\right) \overline{w_{k}}, \overline{w_{j}}\right\rangle=\left\langle\phi_{m}(S) \bar{w}, \bar{w}\right\rangle .
\end{aligned}
$$

3. The proofs

This section contains our main results. We begin with the following theorem which is a more elaborate version of our main Theorem 1.5 stated in Section 1. The elaboration is in the sense that it also integrates another characterization of decomposable maps on C^{*}-algebras due to E. Størmer ([8]).
Theorem 3.1. Let \mathcal{A} be a unital C^{*}-algebra, $\mathcal{S} \subseteq \mathcal{A}$ be an operator system and $\phi: \mathcal{S} \rightarrow M_{n}$ be a linear map. The following statements are equivalent.
(i) ϕ is decomposable.
(ii) $\phi_{m}(S) \succeq 0$ for all $m \in \mathbb{N}$ and $S \in J_{m}(\mathcal{S})$.
(iii) $\phi_{n}(S) \succeq 0$, for all $S \in J_{n}(\mathcal{S})$.
(iv) The linear functional $s_{\phi}: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ is positive on $J_{n}(\mathcal{S})$.

To prove (i) \Rightarrow (ii), let $\phi=\psi+\eta$, where ψ is cp and η is co-cp, $m \in \mathbb{N}$ and $S \in J_{m}(\mathcal{S})$. By Lemma $2.2,\left(\eta \otimes I_{m}\right)(S) \succeq 0$ and by the complete positivity of $\psi,\left(\psi \otimes I_{m}\right)(S) \succeq 0$. Hence $\phi_{m}(S) \succeq 0$.

A proof of (ii) \Rightarrow (i) for the case $\mathcal{S}=\mathcal{A}$, can be found in [8]. With minor modifications, the proof can be made to work for any non-trivial operator system $\mathcal{S} \subset \mathcal{A}$. Hence, we omit the proof.

The implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (iv) are immediate.
Using Lemmas 2.3 and 2.4 and techniques from Chapter 6 of [5], we give a streamlined proof of (iv) implies (ii) below. Let e_{1}, \ldots, e_{m} denote the standard orthonormal basis for \mathbb{C}^{m} and $E_{j, k}=e_{j} e_{k}^{*}$, the resulting matrix units in M_{m}.

Proof of $(i v) \Rightarrow(i i)$. Let $m \in \mathbb{N}, S=\sum_{j, k=1}^{m} s_{j, k} \otimes E_{j, k} \in J_{m}(\mathcal{S})$ and $w=w_{1} \oplus \cdots \oplus w_{m}=\sum_{j=1}^{m} e_{j} \otimes w_{j} \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$. From Lemma 2.4,

$$
\begin{equation*}
\left\langle\phi_{m}(S) \bar{w}, \bar{w}\right\rangle=s_{\phi}\left(\sum_{j, k=1}^{m} s_{j, k} \otimes w_{j} w_{k}^{*}\right)=s_{\phi}(T) . \tag{5}
\end{equation*}
$$

where $T=\sum_{j, k=1}^{m} s_{j, k} \otimes w_{j} w_{k}^{*}$. Since $S \in J_{m}(\mathcal{S})$, Lemma 2.3 implies that $T \in J_{n}(\mathcal{S})$. Thus, by hypothesis, $s_{\phi}(T) \succeq 0$. Since $w \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is arbitrary, it follows that $\phi_{m}(S)$ is positive and the proof is complete.

The following theorem can be found in Chapter 6 of [5]. The proof given there uses the fact that every positive matrix in $M_{k}(\mathcal{A})$ is a finite sum of matrices of the form $\left[a_{i}^{*} a_{j}\right]$, where $a_{1}, \ldots, a_{k} \in \mathcal{A}$. It is observed that, one can obtain a proof without using this property, by using Lemma 2.3 instead, as indicated below.

Theorem 3.2. Let \mathcal{A} be a unital C^{*}-algebra, $\mathcal{S} \subseteq \mathcal{A}$ be an operator system and $\phi: \mathcal{S} \rightarrow M_{n}$ be a linear map. The following statements are equivalent.
(i) ϕ is $c p$.
(ii) The linear functional $s_{\phi}: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ is positive on $\left(\mathcal{S} \otimes M_{n}\right)^{+}$.

Proof. That (i) implies (ii) is immediate from the complete positivity of ϕ and the definition of s_{ϕ}. To prove (ii) implies (i), let $m \in \mathbb{N}$ and $S=$ $\sum_{j, k=1}^{m} s_{j, k} \otimes E_{j, k} \in\left(\mathcal{S} \otimes M_{m}\right)^{+}$be given. Given $w=\sum_{j, k=1}^{m} e_{j} \otimes w_{j} \in$ $\mathbb{C}^{m} \otimes \mathbb{C}^{n}$, it follows from part (i) of Lemma 2.3 that $T=\sum s_{j, k} \otimes w_{j} w_{k}^{*} \in$ $\left(\mathcal{S} \otimes M_{n}\right)^{+}$. Hence, using Lemma 2.4,

$$
\left\langle\phi_{m}(S) \bar{w}, \bar{w}\right\rangle=s_{\phi}(T) \succeq 0 .
$$

Thus, $\phi_{m}(S)$ is positive and the result follows.
Proof of Theorem 1.2. $(i) \Rightarrow(i i)$: Suppose not. Choose $p \in J_{n}(\mathcal{S})$ such that $p \notin \overline{\mathcal{S}^{+} \otimes M_{n}^{+}}$. Let $A=\{p\}$ and $B=\overline{\mathcal{S}^{+} \otimes M_{n}^{+}}$. Observe that A
and B satisfy the hypotheses of the Hahn-Banach separation theorem [6, Theorem 3.4]. It follows that there exists a continuous linear functional $\Lambda: \mathcal{S} \otimes M_{n} \rightarrow \mathbb{C}$ and $\gamma_{1}, \gamma_{2} \in \mathbb{R}$ such that

$$
\operatorname{Re}(\Lambda(p))<\gamma_{1}<\gamma_{2}<\operatorname{Re}(\Lambda(x))
$$

for all $x \in B$. Since $0 \in B$, it must be the case that $\gamma_{2} \leq 0$. Suppose that $\operatorname{Re}\left(\Lambda\left(x_{0}\right)\right)<0$ for some $x_{0} \in B$. Since B is a cone, $n x_{0} \in B$ for all $n \in \mathbb{N}$. The above equation implies that $\operatorname{Re}\left(\Lambda\left(n x_{0}\right)\right)=n \operatorname{Re}\left(\Lambda\left(x_{0}\right)\right)>\gamma_{2}$ for all $n \in \mathbb{N}$. This is impossible, since $\gamma_{2} \leq 0$. Thus,

$$
\operatorname{Re}(\Lambda(p))<\gamma_{1}<\gamma_{2} \leq 0 \leq \operatorname{Re}(\Lambda(x)),
$$

for all $x \in B$. Define $f: M_{n}(\mathcal{S}) \rightarrow \mathbb{C}$ by $f(x)=\frac{1}{2}\left(\Lambda(x)+\overline{\Lambda\left(x^{*}\right)}\right)$. Observe that f is a continuous linear functional which satisfies

$$
\begin{equation*}
f(p)<0 \text { and } f(x) \geq 0 \tag{6}
\end{equation*}
$$

for all $x \in B$. By equation (4), there exists $\phi: \mathcal{S} \rightarrow M_{n}$ such that $f=s_{\phi}$. Since f is positive on B, by Lemma 2.1, it follows that $\phi: \mathcal{S} \rightarrow M_{n}$ is positive. Since $p \in J_{n}(\mathcal{S})$ and $f(p)=s_{\phi}(p)<0$, it follows from Theorem 3.1 that $\phi: \mathcal{S} \rightarrow M_{n}$ is not decomposable, a contradiction.
$(i i) \Rightarrow(i)$: Let $\psi: \mathcal{S} \rightarrow M_{n}$ be a positive map. It follows from Lemma 2.1 that, s_{ψ} takes positive values on $\mathcal{S}^{+} \otimes M_{n}^{+}$, and hence also on $\overline{\mathcal{S}^{+} \otimes M_{n}^{+}}$. Since $J_{n}(\mathcal{S}) \subseteq \overline{\mathcal{S}^{+} \otimes M_{n}^{+}}$, it follows that s_{ψ} takes positive values on $J_{n}(\mathcal{S})$. An application of Theorem 3.1 yields the decomposability of ψ, and the proof is complete.

Following [8], we end with an application of Theorem 3.1.
Example 3.3. Consider the map $\phi: M_{3} \rightarrow M_{3}$ defined by

$$
\phi\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \tag{7}\\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right)=\left(\begin{array}{ccc}
x_{11} & -x_{12} & -x_{13} \\
-x_{21} & x_{22} & -x_{23} \\
-x_{31} & -x_{32} & x_{33}
\end{array}\right)+\mu\left(\begin{array}{ccc}
x_{33} & 0 & 0 \\
0 & x_{11} & 0 \\
0 & 0 & x_{22}
\end{array}\right),
$$

where $\mu \geq 1$. It was shown by M.D. Choi that the above map is a positive map but not decomposable (See [1] and [2]). Consider the matrix

$$
A(a):=\left(\begin{array}{ccc|ccc|ccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \tag{8}\\
0 & 1 / a & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & a & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 / a & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 / a & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & a & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

We note that the matrix $A(a)$ is a minor refinement of the matrix that appears in page 403 of [8] and that $A(a)$ belongs to $J_{3}\left(M_{3}\right)$, if $a>0$ (Ex. $5(\mathrm{a})$ on Page 32 of [4]). Also observe that $s_{\phi}(A(a))=(a \mu-1)$. Since $\mu \geq 1$, if one chooses $0<a<\frac{1}{\mu}$, then it follows easily from Theorem 3.1 that $\phi: M_{3} \rightarrow M_{3}$ is not decomposable. Since ϕ is a positive map, using Lemma 2.1, one can also conclude that the matrix $A(a)$ does not belong to $M_{3}^{+} \otimes M_{3}^{+}$, whenever $0<a<\frac{1}{\mu}$.

Acknowledgements. The author would like to thank Prof. Scott McCullough for many helpful suggestions and Prof. Erling Størmer for useful comments during the initial stages of this work.

References

[1] Choi, Man Duen. Some assorted inequalities for positive linear maps on C^{*} algebras. J. Operator Theory 4 (1980), no. 2, 101-125. MR0595415, Zbl 0511.46051. 796
[2] Choi, Man Duen. Positive semidefinite biquadratic forms. Linear Algebra Appl. 12 (1975), no. 2, 95-100. MR0379365, Zbl 0336.15014, doi: 10.1016/0024-3795(75)90058-0. 796
[3] Horodecki, Michal; Horodecki, Pawel; Horodecki, Ryszard. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223 (1996), no. 1-2, 1-8. MR1421501, Zbl 1037.81501 doi: 10.1016/S0375-9601(96)00706-2. 791
[4] Johnston, Nathaniel. Entanglement detection. Course notes, 2014. http://www.njohnston.ca/ed.pdf. 797
[5] Paulsen, Vern. Completely bounded maps and operator algebras. Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002. xii +300 pp. ISBN: 0-521-81669-6. MR1976867. Zbl 1029.4700.3, doi: 10.1017/CBO9780511546631. 791, 792, 793, 795
[6] Rudin, Walter. Functional analysis, Second edition. International Series in Pure and Applied mathematics. McGraw-Hill, Inc., New York, 1991. xviii+424 pp. ISBN: 0-07-054236-8. MR1157815, Zbl 0867.46001. 796
[7] StøRmer, Erling. Positive linear maps of operator algebras. Acta Math. 110 (1963), 233-278. MR0156216, Zbl 1269.46003, doi: 10.1007/BF02391860. 791
[8] Størmer, Erling. Decomposable positive maps on C*-algebras. Proc. Amer. Math. Soc. 86 (1982), no. 3, 402-404. MR0671203, Zbl 0526.46054, doi: $10.2307 / 2044436.794,795,796,797$
[9] Størmer, Erling. Separable states and positive maps. J. Funct. Anal. 254 (2008), no. 8, 2303-2312. MR2402111, Zbl 1143.46033, doi: 10.1016/j.jfa.2007.12.017. 793
[10] Størmer, Erling. Separable states and positive maps. II. Math. Scand. 105 (2009), no. 2, 188-198. MR2573544, Zbl 1186.46064, doi: 10.7146/math.scand.a15114. 792
[11] StøRmer, Erling. Positive linear maps of operator algebras. Springer Monographs in Mathematics. Springer, Heidelberg, 2013. viii+134 pp. ISBN: 978-3-642-34368-1; 978-3-642-34369-8. MR3012443, Zbl 1269.46003, doi: 10.1007/978-3-642-34369-8. 791
[12] Woronowicz S. L. Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10 (1976), no. 2, 165-183. MR0573218, Zbl 0347.46063, doi: 10.1016/0034-4877(76)90038-0. 791
(Sriram Balasubramanian) Department of Mathematics, IIT Madras, Chennai 600036, India
bsriram@iitm.ac.in, bsriram80@yahoo.co.in
This paper is available via http://nyjm.albany.edu/j/2020/26-35.html.

[^0]: Received November 18, 2019.
 2010 Mathematics Subject Classification. 46L05, 15B48 (Primary), 47B65, 47L07 (Secondary).

 Key words and phrases. Positive maps, completely positive (cp) maps, co-completely positive (co-cp) maps, decomposable maps.

 Research supported by the grant MTR/2018/000113 from the Department of Science and Technology, India.

