Evolution of the first eigenvalue of weighted p-Laplacian along the Ricci-Bourguignon flow

Shahroud Azami

Abstract

Let M be an n-dimensional closed Riemannian manifold with metric $g, d \mu=e^{-\phi(x)} d \nu$ be the weighted measure and $\Delta_{p, \phi}$ be the weighted p-Laplacian. In this article we will investigate monotonicity for the first eigenvalue problem of the weighted p-Laplace operator acting on the space of functions along the Ricci-Bourguignon flow on closed Riemannian manifolds. We find the first variation formula for the eigenvalues of the weighted p-Laplacian on a closed Riemannian manifold evolving by the Ricci-Bourguignon flow and we obtain various monotonic quantities. At the end we find some applications in 2-dimensional and 3 -dimensional manifolds and give an example.

Contents

1. Introduction 735
2. Preliminaries 737
3. Variation of $\lambda(t)$ 738
4. Example 753
References 754

1. Introduction

A smooth metric measure space is a triple $(M, g, d \mu)$, where g is a metric, $d \mu=e^{-\phi(x)} d \nu$ is the weighted volume measure on (M, g) related to function $\phi \in C^{\infty}(M)$ and $d \nu$ is the Riemannian volume measure. Such spaces have been used more widely in the work of mathematicians, for instance, Perelman used it in [13]. Let M be an n-dimensional closed Riemannian manifold with metric g.

Over the last few years the geometric flows as the Ricci-Bourguignon flow have been a topic of active research interest in both mathematics and physics. A geometric flow is an evolution of a geometric structure under a differential equation related to a functional on a manifold, usually associated

[^0]with some curvature. The family $g(t)$ of Riemannian metrics on M is called a Ricci-Bourguignon flow when it satisfies the equations
\[

$$
\begin{equation*}
\frac{d}{d t} g(t)=-2 \operatorname{Ric}(g(t))+2 \rho R(g(t)) g(t)=-2(R i c-\rho R g) \tag{1.1}
\end{equation*}
$$

\]

with the initial condition

$$
g(0)=g_{0}
$$

where Ric is the Ricci tensor of $g(t), R$ is the scalar curvature and ρ is a real constant. When $\rho=0, \rho=\frac{1}{2}, \rho=\frac{1}{n}$ and $\rho=\frac{1}{2(n-1)}$, the tensor Ric $-\rho R g$ corresponds to the Ricci tensor, Einstein tensor, the traceless Ricci tensor and Schouten tensor respectively. In fact the Ricci-Bourguignon flow is a system of partial differential equations which was introduced by Bourguignon for the first time in 1981 (see [3]). Short time existence and uniqueness for solution to the Ricci-Bourguignon flow on $[0, T)$ have been shown by Catino et al. in [6] for $\rho<\frac{1}{2(n-1)}$. When $\rho=0$, the RicciBourguignon flow is the Ricci flow.
Let $f: M \rightarrow \mathbb{R}, f \in W^{1, p}(M)$ where $W^{1, p}(M)$ is the Sobolev space. For $p \in[1,+\infty)$, the p-Laplacian of f defined as

$$
\begin{equation*}
\Delta_{p} f=\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)=|\nabla f|^{p-2} \Delta f+(p-2)|\nabla f|^{p-4}(\text { Hessf })(\nabla f, \nabla f) . \tag{1.2}
\end{equation*}
$$

The Witten-Laplacian is defined by $\Delta_{\phi}=\Delta-\nabla \phi . \nabla$, which is a symmetric diffusion operator on $L^{2}(M, \mu)$ and is self-adjoint. Now, for $p \in[1,+\infty)$ and any smooth function f on M, we define the weighted p-Laplacian on M by

$$
\begin{equation*}
\Delta_{p, \phi} f=e^{\phi} d i v\left(e^{-\phi}|\nabla f|^{p-2} \nabla f\right)=\Delta_{p} f-|\nabla f|^{p-2} \nabla \phi . \nabla f . \tag{1.3}
\end{equation*}
$$

In the weighted p-Laplacian when ϕ is a constant function, the weighted p-Laplace operator is just the p-Laplace operator and when $p=2$, the weighted p-Laplace operator is the Witten-Laplace operator.

Let Λ satisfies in $-\Delta_{p, \phi} f=\Lambda|f|^{p-2} f$, for some $f \in W^{1, p}(M)$, in this case we say Λ is an eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$ at time $t \in[0, T)$. Notice that Λ equivalently satisfies in

$$
\begin{equation*}
-\int_{M} f \Delta_{p, \phi} f d \mu=\Lambda \int_{M}|f|^{p} d \mu \tag{1.4}
\end{equation*}
$$

where $d \mu=e^{-\phi(x)} d \nu$ and $d \nu$ is the Riemannian volume measure Using integration by parts, it results that

$$
\begin{equation*}
\int_{M}|\nabla f|^{p} d \mu=\Lambda \int_{M}|f|^{p} d \mu \tag{1.5}
\end{equation*}
$$

in above equation, $f(x, t)$ called eigenfunction corresponding to eigenvalue $\Lambda(t)$. The first non-zero eigenvalue $\lambda(t)=\lambda(M, g(t), d \mu)$ is defined as follows

$$
\begin{equation*}
\lambda(t)=\inf _{0 \neq f \in W_{0}^{1, p}(M)}\left\{\int_{M}|\nabla f|^{p} d \mu: \int_{M}|f|^{p} d \mu=1\right\} \tag{1.6}
\end{equation*}
$$

where $W_{0}^{1, p}(M)$ is the completion of $C_{0}^{\infty}(M)$ with respect to the Sobolev norm

$$
\begin{equation*}
\|f\|_{W^{1, p}}=\left(\int_{M}|f|^{p} d \mu+\int_{M}|\nabla f|^{p} d \mu\right)^{\frac{1}{p}} . \tag{1.7}
\end{equation*}
$$

The eigenvalue problem for weighted p-Laplacian has been extensively studied in the literature [14, 15].

The problem of monotonicity of the eigenvalue of geometric operator is a known and an intrinsic problem. Recently many mathematicians study properties of evolution of the eigenvalue of geometric operators (for instance, Laplace, p-Laplace, Witten-Laplace) along various geometric flows (for example, Yamabe flow, Ricci flow, Ricci-Bourguignon flow, Ricci-harmonic flow and mean curvature flow). The main study of evolution of the eigenvalue of geometric operator along the geometric flow began when Perelman in [13] showed that the first eigenvalue of the geometric operator $-4 \Delta+R$ is nondecreasing along the Ricci flow, where R is scalar curvature.

Then Cao [5] and Chen et al. [7] extended the geometric operator $-4 \Delta+R$ to the operator $-\Delta+c R$ on closed Riemannian manifolds, and investigated the monotonicity of eigenvalues of the operator $-\Delta+c R$ under the Ricci flow and the Ricci-Bourguignon flow, respectively.

Author in [2] studied the monotonicity of the first eigenvalue of WittenLaplace operator $-\Delta_{\phi}$ along the Ricci-Bourguignon flow with some assumptions and in [1] investigated the evolution for the first eigenvalue of the p-Laplacian along the Yamabe flow.

In [11] and [10] have been studied the evolution for the first eigenvalue of geometric operator $-\Delta_{\phi}+\frac{R}{2}$ along the Yamabe flow and the Ricci flow, respectively. For the other recent research in this subject, see $[9,8,17]$.

Motivated by the described above works, in this paper, we will study the evolution of the first eigenvalue of the weighted p-Laplace operator whose metric satisfying the Ricci-Bourguignon flow (1.1) and ϕ evolves by $\frac{\partial \phi}{\partial t}=\Delta \phi$ that is ($\left.M^{n}, g(t), \phi(t)\right)$ satisfying in following system

$$
\begin{cases}\frac{d}{d t} g(t)=-2 \operatorname{Ric}(g(t))+2 \rho R(g(t)) g(t)=-2(\operatorname{Ric}-\rho R g), & g(0)=g_{0} \tag{1.8}\\ \frac{\partial \phi}{\partial t}=\Delta \phi & \phi(0)=\phi_{0}\end{cases}
$$

where Δ is Laplace operator of metric $g(t)$.

2. Preliminaries

In this section, we will discuss the differentiable (of first nonzero eigenvalue and its corresponding eigenfunction of the weighted p-Laplacian $\Delta_{p, \phi}$ along the flow (1.8). Let M be a closed oriented Riemannian n-manifold and $(M, g(t), \phi(t))$ be a smooth solution of the evolution equations system
(1.8) for $t \in[0, T)$.

In what follows, we assume that $\lambda(t)$ exists and is C^{1}-differentiable under the flow (1.8) in the given interval $t \in[0, T)$. The first nonzero eigenvalue of weighted p-Laplacian and its corresponding eigenfunction are not known to be C^{1}-differentiable. For this reason, we apply techniques of Cao [4] and $\mathrm{Wu}[17]$ to study the evolution and monotonicity of $\lambda(t)=\lambda(t, f(t))$, where $\lambda(t, f(t))$ and $f(t)$ are assumed to be smooth. For this end, we assume that at time $t_{0}, f_{0}=f\left(t_{0}\right)$ is the eigenfunction for the first eigenvalue $\lambda\left(t_{0}\right)$ of $\Delta_{p, \phi}$. Then we have

$$
\begin{equation*}
\int_{M}\left|f\left(t_{0}\right)\right|^{p} d \mu_{g\left(t_{0}\right)}=1 \tag{2.1}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
h(t):=f_{0}\left[\frac{\operatorname{det}\left(g_{i j}\left(t_{0}\right)\right)}{\operatorname{det}\left(g_{i j}(t)\right)}\right]^{\frac{1}{2(p-1)}}, \tag{2.2}
\end{equation*}
$$

along the Ricci-Bourguignon flow $g(t)$. We assume that

$$
\begin{equation*}
f(t)=\frac{h(t)}{\left(\int_{M}|h(t)|^{p} d \mu\right)^{\frac{1}{p}}}, \tag{2.3}
\end{equation*}
$$

which $f(t)$ is smooth function along the Ricci-Bourguignon flow, satisfied in $\int_{M}|f|^{p} d \mu=1$ and at time t_{0}, f is the eigenfunction for λ of $\Delta_{p, \phi}$. Therefore, if $\int_{M}|f|^{p} d \mu=1$ and

$$
\begin{equation*}
\lambda(t, f(t))=-\int_{M} f \Delta_{p, \phi} f d \mu \tag{2.4}
\end{equation*}
$$

then $\lambda\left(t_{0}, f\left(t_{0}\right)\right)=\lambda\left(t_{0}\right)$.

3. Variation of $\boldsymbol{\lambda}(\boldsymbol{t})$

In this section, we will find some useful evolution formulas for $\lambda(t)$ along the flow (1.8). We first recall some evolution of geometric structure along the Ricci-Bourguignon flow and then give a useful proposition about the variation of eigenvalues of the weighted p-Laplacian under the flow (1.8). From [6], we have:

Lemma 3.1. Under the Ricci-Bourguignon flow equation (1.1), we get
(1) $\frac{\partial}{\partial t} g^{i j}=2\left(R^{i j}-\rho R g^{i j}\right)$,
(2) $\frac{\partial}{\partial t}(d \nu)=(n \rho-1) R d \nu$,
(3) $\frac{\partial}{\partial t}(d \mu)=\left(-\phi_{t}+(n \rho-1) R\right) d \mu$,
(4) $\frac{\partial}{\partial t}\left(\Gamma_{i j}^{k}\right)=-\nabla_{j} R_{i}^{k}-\nabla_{i} R_{j}^{k}+\nabla^{k} R_{i j}+\rho\left(\nabla_{j} R \delta_{i}^{k}+\nabla_{i} R \delta_{j}^{k}-\nabla^{k} R g_{i j}\right)$,
(5) $\frac{\partial}{\partial t} R=[1-2(n-1) \rho] \Delta R+2|R i c|^{2}-2 \rho R^{2}$,
where R is scalar curvature.

Lemma 3.2. Let $(M, g(t), \phi(t)), t \in[0, T)$ be a solution to the flow (1.8) on a closed oriented Riemannain manifold for $\rho<\frac{1}{2(n-1)}$. Let $f \in C^{\infty}(M)$ be a smooth function on $(M, g(t))$. Then we have the following evolutions:

$$
\begin{align*}
\frac{\partial}{\partial t}|\nabla f|^{2} & =2 R^{i j} \nabla_{i} f \nabla_{j} f-2 \rho R|\nabla f|^{2}+2 g^{i j} \nabla_{i} f \nabla_{j} f_{t}, \tag{3.1}\\
\frac{\partial}{\partial t}|\nabla f|^{p-2} & =(p-2)|\nabla f|^{p-4}\left\{R^{i j} \nabla_{i} f \nabla_{j} f-\rho R|\nabla f|^{2}+g^{i j} \nabla_{i} f \nabla_{j} f_{t}\right\}, \tag{3.2}\\
\frac{\partial}{\partial t}(\Delta f) & =2 R^{i j} \nabla_{i} \nabla_{j} f+\Delta f_{t}-2 \rho R \Delta f-(2-n) \rho \nabla^{k} R \nabla_{k} f, \tag{3.3}\\
\frac{\partial}{\partial t}\left(\Delta_{p} f\right) & =2 R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right)-2 \rho R \Delta_{p} f+g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right) \tag{3.4}\\
& +g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right)+\rho(n-2) Z g^{i j} \nabla_{i} R \nabla_{j} f, \\
\frac{\partial}{\partial t}\left(\Delta_{p, \phi} f\right) & =2 R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right)+g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right)+g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right) \tag{3.5}\\
& -2 \rho R \Delta_{p, \phi} f+\rho(n-2) Z g^{i j} \nabla_{i} R \nabla_{j} f-Z_{t} \nabla \phi . \nabla f \\
& -2 Z R^{i j} \nabla_{i} \phi \nabla_{j} f-Z \nabla \phi_{t} . \nabla f-Z \nabla \phi . \nabla f_{t},
\end{align*}
$$

where $Z:=|\nabla f|^{p-2}$ and $f_{t}=\frac{\partial f}{\partial t}$.

Proof. By direct computation in local coordinates we have

$$
\begin{aligned}
\frac{\partial}{\partial t}|\nabla f|^{2} & =\frac{\partial}{\partial t}\left(g^{i j} \nabla_{i} f \nabla_{j} f\right) \\
& =\frac{\partial g^{i j}}{\partial t} \nabla_{i} f \nabla_{j} f+2 g^{i j} \nabla_{i} f \nabla_{j} f_{t} \\
& =2 R^{i j} \nabla_{i} f \nabla_{j} f-2 \rho R|\nabla f|^{2}+2 g^{i j} \nabla_{i} f \nabla_{j} f_{t},
\end{aligned}
$$

which exactly (3.1). We prove (3.2) by using (3.1) as follows

$$
\begin{aligned}
\frac{\partial}{\partial t}|\nabla f|^{p-2} & =\frac{\partial}{\partial t}\left(|\nabla f|^{2}\right)^{\frac{p-2}{2}} \\
& =\frac{p-2}{2}\left(|\nabla f|^{2}\right)^{\frac{p-4}{2}} \frac{\partial}{\partial t}\left(|\nabla f|^{2}\right) \\
& =\frac{p-2}{2}|\nabla f|^{p-4}\left\{2 R^{i j} \nabla_{i} f \nabla_{j} f-2 \rho R|\nabla f|^{2}+2 g^{i j} \nabla_{i} f \nabla_{j} f_{t}\right\} \\
& =(p-2)|\nabla f|^{p-4}\left\{R^{i j} \nabla_{i} f \nabla_{j} f-\rho R|\nabla f|^{2}+g^{i j} \nabla_{i} f \nabla_{j} f_{t}\right\},
\end{aligned}
$$

which is (3.2). Now previous lemma and $2 \nabla^{i} R_{i j}=\nabla_{j} R$ result that

$$
\begin{aligned}
\frac{\partial}{\partial t}(\Delta f) & =\frac{\partial}{\partial t}\left[g^{i j}\left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial f}{\partial x^{k}}\right)\right] \\
& =\frac{\partial g^{i j}}{\partial t}\left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial f}{\partial x^{k}}\right)+g^{i j}\left(\frac{\partial^{2} f_{t}}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial f_{t}}{\partial x^{k}}\right)-g^{i j} \frac{\partial}{\partial t}\left(\Gamma_{i j}^{k}\right) \frac{\partial f}{\partial x^{k}} \\
& =2 R^{i j} \nabla_{i} \nabla_{j} f-2 \rho R \Delta f+\Delta f_{t}-g^{i j}\left\{-\nabla_{j} R_{i}^{k}-\nabla_{i} R_{j}^{k}+\nabla^{k} R_{i j}\right\} \nabla_{k} f \\
& -g^{i j} \rho\left(\nabla_{j} R \delta_{i}^{k}+\nabla_{i} R \delta_{j}^{k}-\nabla^{k} R g_{i j}\right) \nabla_{k} f \\
& =2 R^{i j} \nabla_{i} \nabla_{j} f+\Delta f_{t}-2 \rho R \Delta f-(2-n) \rho \nabla^{k} R \nabla_{k} f .
\end{aligned}
$$

Let $Z=|\nabla f|^{p-2}$ we get

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\Delta_{p} f\right)= & \frac{\partial}{\partial t}\left(\operatorname{div}\left(|\nabla f|^{p-2} \nabla f\right)\right)=\frac{\partial}{\partial t}\left(g^{i j} \nabla_{i}\left(Z \nabla_{j} f\right)\right) \\
= & \frac{\partial}{\partial t}\left(g^{i j} \nabla_{i} Z \nabla_{j} f+g^{i j} Z \nabla_{i} \nabla_{j} f\right) \\
= & \frac{\partial g^{i j}}{\partial t} \nabla_{i} Z \nabla_{j} f+g^{i j} \nabla_{i} Z_{t} \nabla_{j} f+g^{i j} \nabla_{i} Z \nabla_{j} f_{t} \\
& +Z_{t} \Delta f+Z \frac{\partial}{\partial t}(\Delta f) \\
= & 2 R^{i j} \nabla_{i} Z \nabla_{j} f-2 \rho R g^{i j} \nabla_{i} Z \nabla_{j} f+g^{i j} \nabla_{i} Z_{t} \nabla_{j} f \\
& +g^{i j} \nabla_{i} Z \nabla_{j} f_{t}+Z_{t} \Delta f \\
& +Z\left\{2 R^{i j} \nabla_{i} \nabla_{j} f+\Delta f_{t}-2 \rho R \Delta f-(2-n) \rho \nabla^{k} R \nabla_{k} f\right\} \\
= & 2 R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right)-2 \rho R \Delta_{p} f+g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right) \\
& +g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right)+\rho(n-2) Z g^{i j} \nabla_{i} R \nabla_{j} f .
\end{aligned}
$$

We have $\Delta_{p, \phi} f=\Delta_{p} f-|\nabla f|^{p-2} \nabla \phi . \nabla f$. Taking derivative with respect to time of both sides of last equation and (3.4) imply that

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\Delta_{p, \phi} f\right)= & \frac{\partial}{\partial t}\left(\Delta_{p} f\right)-Z \frac{\partial g^{i j}}{\partial t} \nabla_{i} \phi \nabla_{j} f-Z_{t} g^{i j} \nabla_{i} \phi \nabla_{j} f-Z g^{i j} \nabla_{i} \phi_{t} \nabla_{j} f \\
& -Z g^{i j} \nabla_{i} \phi \nabla_{j} f_{t} \\
= & 2 R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right)-2 \rho R \Delta_{p} f+g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right)+g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right) \\
& +\rho(n-2) Z g^{i j} \nabla_{i} R \nabla_{j} f-2 Z R^{i j} \nabla_{i} \phi \nabla_{j} f+2 \rho Z R g^{i j} \nabla_{i} \phi \nabla_{j} f \\
& -Z_{t} g^{i j} \nabla_{i} \phi \nabla_{j} f-Z g^{i j} \nabla_{i} \phi_{t} \nabla_{j} f-Z g^{i j} \nabla_{i} \phi \nabla_{j} f_{t},
\end{aligned}
$$

it results (3.5).
Proposition 3.3. Let $(M, g(t), \phi(t)), t \in[0, T)$ be a solution of the flow (1.8) on the smooth closed oriented Riemannain manifold (M^{n}, g_{0}, ϕ_{0}) for $\rho<\frac{1}{2(n-1)}$. If $\lambda(t)$ denotes the evolution the first non-zero eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$ corresponding to the eigenfunction $f(t)$ under the
flow (1.8), then

$$
\begin{align*}
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} & =\lambda\left(t_{0}\right)(1-n \rho) \int_{M} R|f|^{p} d \mu-(1+\rho p-\rho n) \int_{M} R|\nabla f|^{p} d \mu \\
& +p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\lambda\left(t_{0}\right) \int_{M}(\Delta \phi)|f|^{p} d \mu \tag{3.6}\\
& -\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu
\end{align*}
$$

Proof. Let $f(t)$ be a smooth function where $f\left(t_{0}\right)$ is the corresponding eigenfunction to $\lambda\left(t_{0}\right)=\lambda\left(t_{0}, f\left(t_{0}\right)\right) . \lambda(t, f(t))$ is a smooth function and taking derivative of both sides $\lambda(t, f(t))=-\int_{M} f \Delta_{p, \phi} f d \mu$ with respect to time, we get

$$
\begin{equation*}
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}}=-\frac{\partial}{\partial t} \int_{M} f \Delta_{p, \phi} f d \mu \tag{3.7}
\end{equation*}
$$

Now by applying condition $\int_{M}|f|^{p} d \mu=1$ and the time derivative, we can have

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{M}|f|^{p} d \mu & =0=\frac{\partial}{\partial t} \int_{M}|f|^{p-2} f^{2} d \mu \tag{3.8}\\
& =\int_{M}(p-1)|f|^{p-2} f f_{t} d \mu+\int_{M}|f|^{p-2} f \frac{\partial}{\partial t}(f d \mu)
\end{align*}
$$

hence

$$
\begin{equation*}
\int_{M}|f|^{p-2} f\left[(p-1) f_{t} d \mu+\frac{\partial}{\partial t}(f d \mu)\right]=0 \tag{3.9}
\end{equation*}
$$

On the other hand, using (3.5), we obtain

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{M} f \Delta_{p, \phi} f d \mu & =\int_{M} \frac{\partial}{\partial t}\left(\Delta_{p, \phi} f\right) f d \mu+\int_{M} \Delta_{p, \phi} f \frac{\partial}{\partial t}(f d \mu) \\
& =2 \int_{M} R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right) f d \mu-2 \rho \int_{M} R \Delta_{p, \phi} f f d \mu \\
& +\int_{M} g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right) f d \mu+\int_{M} g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right) f d \mu \tag{3.10}\\
& +\rho(n-2) \int_{M} Z \nabla R . \nabla f f d \mu-\int_{M} Z_{t} \nabla \phi . \nabla f f d \mu \\
& -\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu-\int_{M} Z \nabla \phi \cdot \nabla f_{t} f d \mu \\
& -2 \int_{M} R^{i j} Z \nabla_{i} \phi \nabla_{j} f f d \mu-\int_{M} \lambda|f|^{p-2} f \frac{\partial}{\partial t}(f d \mu) .
\end{align*}
$$

By the application of integration by parts, we can conclude that

$$
\begin{equation*}
\int_{M} g^{i j} \nabla_{i}\left(Z_{t} \nabla_{j} f\right) f d \mu=-\int_{M} Z_{t}|\nabla f|^{2} d \mu+\int_{M} Z_{t} \nabla f . \nabla \phi f d \mu \tag{3.11}
\end{equation*}
$$

Similarly, integration by parts implies that

$$
\begin{equation*}
\int_{M} g^{i j} \nabla_{i}\left(Z \nabla_{j} f_{t}\right) f d \mu=-\int_{M} Z \nabla f_{t} . \nabla f d \mu+\int_{M} Z \nabla f_{t} . \nabla \phi f d \mu, \tag{3.12}
\end{equation*}
$$

and

$$
\begin{align*}
\int_{M} R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right) f d \mu= & -\int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\int_{M} Z R^{i j} \nabla_{j} f \nabla_{i} \phi f d \mu \\
& -\int_{M} Z \nabla_{i} R^{i j} \nabla_{j} f f d \mu \tag{3.13}
\end{align*}
$$

But, we can write

$$
\begin{align*}
2 \int_{M} Z \nabla_{i} R^{i j} \nabla_{j} f f d \mu & =2 \int_{M} Z g^{i k} g^{j l} \nabla_{j} f \nabla_{i} R_{k l} f d \mu=\int_{M} Z g^{j l} \nabla_{j} f \nabla_{l} R f d \mu \\
& =-\int_{M} R \Delta_{p, \phi} f f d \mu-\int_{M} R|\nabla f|^{p} d \mu \tag{3.14}
\end{align*}
$$

Putting (3.14) in (3.13), yields

$$
\begin{align*}
2 \int_{M} R^{i j} \nabla_{i}\left(Z \nabla_{j} f\right) f d \mu= & -2 \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+2 \int_{M} Z R^{i j} \nabla_{j} f \nabla_{i} \phi f d \mu \\
& -\int_{M} \lambda R|f|^{p} d \mu+\int_{M} R|\nabla f|^{p} d \mu \tag{3.15}
\end{align*}
$$

Now, replacing (3.11), (3.12) and (3.15) in (3.10), we obtain

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{M} f \Delta_{p, \phi} f d \mu & =-2 \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu-\int_{M} \lambda R|f|^{p} d \mu+\int_{M} R|\nabla f|^{p} d \mu \\
& +2 \rho \int_{M} \lambda R|f|^{p} d \mu+\rho(n-2) \int_{M} Z \nabla R . \nabla f f d \mu \\
& -\int_{M} Z_{t}|\nabla f|^{2} d \mu-\int_{M} Z \nabla f_{t} . \nabla f d \mu-\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu \tag{3.16}\\
& -\int_{M} \lambda|f|^{p-2} f \frac{\partial}{\partial t}(f d \mu) .
\end{align*}
$$

On the other hand of Lemma 3.2, we have

$$
\begin{equation*}
Z_{t}=\frac{\partial}{\partial t}\left(|\nabla f|^{p-2}\right)=(p-2)|\nabla f|^{p-4}\left\{R^{i j} \nabla_{i} f \nabla_{j} f-\rho R|\nabla f|^{2}+g^{i j} \nabla_{i} f \nabla_{j} f_{t}\right\} . \tag{3.17}
\end{equation*}
$$

Therefore, putting this into (3.16), we get

$$
\begin{align*}
-\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}}= & -p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\lambda\left(t_{0}\right)(2 \rho-1) \int_{M} R|f|^{p} d \mu \\
& +(1+\rho p-2 \rho) \int_{M} R|\nabla f|^{p} d \mu+\rho(n-2) \int_{M} Z \nabla R . \nabla f f d \mu \\
& -(p-1) \int_{M} Z \nabla f_{t} . \nabla f d \mu-\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu \\
& -\lambda\left(t_{0}\right) \int_{M}|f|^{p-2} f \frac{\partial}{\partial t}(f d \mu) . \tag{3.18}
\end{align*}
$$

Also,

$$
\begin{align*}
-(p-1) \int_{M} Z \nabla f_{t} . \nabla f d \mu & =(p-1) \int_{M} \nabla(Z \nabla f) f_{t} d \mu-(p-1) \int_{M} Z \nabla f . \nabla \phi f_{t} d \mu \\
& =(p-1) \int_{M} f_{t} \Delta_{p, \phi} f d \mu=-(p-1) \int_{M} \lambda|f|^{p-2} f f_{t} d \mu . \tag{3.19}
\end{align*}
$$

Then we arrive at

$$
\begin{aligned}
-\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} & =-p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\lambda\left(t_{0}\right)(2 \rho-1) \int_{M} R|f|^{p} d \mu \\
& +(1+\rho p-2 \rho) \int_{M} R|\nabla f|^{p} d \mu \\
& +\rho(n-2) \int_{M} Z \nabla R . \nabla f f d \mu-\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu \\
& -\lambda\left(t_{0}\right) \int_{M}|f|^{p-2} f\left((p-1) f_{t} d \mu+\frac{\partial}{\partial t}(f d \mu)\right) .
\end{aligned}
$$

Hence, (3.9) yields

$$
\begin{align*}
-\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}}= & -p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\lambda\left(t_{0}\right)(2 \rho-1) \int_{M} R|f|^{p} d \mu \\
& +(1+\rho p-2 \rho) \int_{M} R|\nabla f|^{p} d \mu \tag{3.21}\\
& +\rho(n-2) \int_{M} Z \nabla R . \nabla f f d \mu-\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu .
\end{align*}
$$

By integration by parts, we get

$$
\begin{equation*}
\int_{M} Z \nabla \phi_{t} . \nabla f f d \mu=\int_{M} \lambda|f|^{p}(\Delta \phi) d \mu-\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{M} Z \nabla R . \nabla f f d \mu=\int_{M} \lambda R|f|^{p} d \mu-\int_{M} R|\nabla f|^{p} d \mu . \tag{3.23}
\end{equation*}
$$

Plug in (3.22) and (3.23) into (3.21) imply that (3.6).

Corollary 3.4. Let $(M, g(t)), t \in[0, T)$, be a solution of the flow (1.1) on the smooth closed oriented Riemannain manifold $\left(M^{n}, g_{0}\right)$ for $\rho<\frac{1}{2(n-1)}$. If $\lambda(t)$ denotes the evolution the first non-zero eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$ corresponding to the eigenfunction $f(x, t)$ under the RicciBourguignon flow where ϕ is independent of t, then

$$
\begin{align*}
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} & =\lambda\left(t_{0}\right)(1-n \rho) \int_{M} R|f|^{p} d \mu-(1+\rho p-\rho n) \int_{M} R|\nabla f|^{p} d \mu \\
& +p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu \tag{3.24}
\end{align*}
$$

We can get the evolution for the first eigenvalue of the geometric operator Δ_{p} under the Ricci-Bourguignon flow (1.1) and along the Ricci flow, which was studied in [17]. Also, in Corollary 3.4, if $p=2$ then we can obtain the evolution for the first eigenvalue of the Witten-Laplace operator along the the Ricci-Bourguignon flow (1.1), which was investigated in [2].

Theorem 3.5. Let $(M, g(t), \phi(t)), t \in[0, T)$ be a solution of the flow (1.8) on the smooth closed oriented Riemannain manifold $\left(M^{n}, g_{0}\right)$ for $\rho<\frac{1}{2(n-1)}$. Let $R_{i j}-(\beta R+\gamma \Delta \phi) g_{i j} \geq 0, \beta \geq \frac{1+\rho(p-n)}{p}$ and $\gamma \geq \frac{1}{p}$ along the flow (1.8) and $R<\Delta \phi$ in $M \times[0, T)$. Suppose that $\lambda(t)$ denotes the evolution the first non-zero eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$ then
(1) If $R_{\min }(0) \geq 0, \lambda(t)$ is nondecreasing along the Ricci-Bourguignon flow for any $t \in[0, T)$.
(2) If $R_{\min }(0)>0$, then the quantity $\lambda(t)\left(n-2 R_{\min }(0) t\right)^{\frac{1}{n}}$ is nondecreasing along the Ricci-Bourguignon flow for $T \leq \frac{n}{2 R_{\min }(0)}$.
(3) If $R_{\min }(0)<0$, then the quantity $\lambda(t)\left(n-2 R_{\min }(0) t\right)^{\frac{1}{n}}$ is nondecreasing along the Ricci-Bourguignon flow for any $t \in[0, T)$.

Proof. According to (3.6) of Proposition 3.3, we have

$$
\begin{align*}
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} & \geq \lambda\left(t_{0}\right)(1-n \rho) \int_{M} R|f|^{p} d \mu-(1+\rho p-\rho n) \int_{M} R|\nabla f|^{p} d \mu \\
& +p \beta \int_{M} R|\nabla f|^{p} d \mu+p \gamma \int_{M}(\Delta \phi)|\nabla f|^{p} d \mu \tag{3.25}\\
& +\lambda\left(t_{0}\right) \int_{M} R|f|^{p} d \mu-\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu \\
& =\lambda\left(t_{0}\right)(2-n \rho) \int_{M} R|f|^{p} d \mu+(p \gamma-1) \int_{M} R|\nabla f|^{p} d \mu \\
& +[p \beta-(1+\rho p-\rho n)] \int_{M} R|\nabla f|^{p} d \mu .
\end{align*}
$$

On the other hand, the scalar curvature along the Ricci-Bourguignon flow evolves by

$$
\begin{equation*}
\frac{\partial R}{\partial t}=(1-2(n-1) \rho) \Delta R+2|R i c|^{2}-2 \rho R^{2} . \tag{3.26}
\end{equation*}
$$

The inequality $|R i c|^{2} \geq \frac{R^{2}}{n}$ yields

$$
\begin{equation*}
\frac{\partial R}{\partial t} \geq(1-2(n-1) \rho) \Delta R+2\left(\frac{1}{n}-\rho\right) R^{2} \tag{3.27}
\end{equation*}
$$

Since the solution to the corresponding ODE $y^{\prime}=2\left(\frac{1}{n}-\rho\right) y^{2}$ with initial value $c=\min _{x \in M} R(0)=R_{\text {min }}(0)$ is

$$
\begin{equation*}
\sigma(t)=\frac{n c}{n-2(1-n \rho) c t} . \tag{3.28}
\end{equation*}
$$

Notice that $\sigma(t)$ defined on $\left[0, T^{\prime}\right)$ where $T^{\prime}=\min \left\{T, \frac{n}{2(1-n) \rho c}\right\}$ when $c>0$ and on $[0, T)$ when $c \leq 0$. Using the maximum principle to (3.27), we have $R_{g(t)} \geq \sigma(t)$. Therefore, (3.25) becomes

$$
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} \geq A \lambda\left(t_{0}\right) \sigma\left(t_{0}\right)
$$

where $A=p(\beta+\gamma)-\rho(p+2 n)$ and this results that in any sufficiently small neighborhood of t_{0} as I_{0}, we obtain

$$
\frac{d}{d t} \lambda(t, f(t)) \geq A \lambda(f, t) \sigma(t)
$$

Integrating both sides of the last inequality with respect to t on $\left[t_{1}, t_{0}\right] \subset I_{0}$, we have

$$
\ln \frac{\lambda\left(t_{0}, f\left(t_{0}\right)\right)}{\lambda\left(f\left(t_{1}\right), t_{1}\right)}>\ln \left(\frac{n-2(1-n \rho) c t_{1}}{n-2(1-n \rho) c t_{0}}\right)^{\frac{n A}{2(1-n \rho)}} .
$$

Since $\lambda\left(t_{0}, f\left(t_{0}\right)\right)=\lambda\left(t_{0}\right)$ and $\lambda\left(f\left(t_{1}\right), t_{1}\right) \geq \lambda\left(t_{1}\right)$, we conclude that

$$
\ln \frac{\lambda\left(t_{0}\right)}{\lambda\left(t_{1}\right)}>\ln \left(\frac{n-2(1-n \rho) c t_{1}}{n-2(1-n \rho) c t_{0}}\right)^{\frac{n A}{2(1-n \rho)}},
$$

that is, the quantity $\lambda(t)(n-2(1-n \rho) c t)^{\frac{n A}{(1-n \rho)}}$ is strictly increasing in any sufficiently small neighborhood of t_{0}. Since t_{0} is arbitrary, then $\lambda(t)(n-$ $2(1-n \rho) c t)^{\frac{n A}{2(1-n \rho)}}$ is strictly increasing along the flow (1.8) on $[0, T)$. Now we have,
(1) If $R_{\min }(0) \geq 0$, by the non-negatively of $R_{g(t)}$ preserved along the Ricci-Bourguignon flow hence $\frac{d}{d t} \lambda(t, f(t)) \geq 0$, consequently $\lambda(t)$ is strictly increasing along the flow (1.1) on $[0, T)$.
(2) If $R_{\min }(0)>0$ then $\sigma(t)$ defined on $\left[0, T^{\prime}\right)$, thus the quantity $\lambda(t)(n-$ $2(1-n \rho) c t)^{\frac{n A}{2(1-n \rho)}}$ is nondecreasing along the flow (1.1) on $\left[0, T^{\prime}\right)$.
(3) If $R_{\min }(0)<0$ then $\sigma(t)$ defined on $\left[0, T^{\prime}\right)$, thus the quantity $\lambda(t)(n-$ $2(1-n \rho) c t)^{\frac{n A}{2(1-n \rho)}}$ is nondecreasing along the flow (1.1) on $\left[0, T^{\prime}\right)$.

Theorem 3.6. Let $\left(M^{n}, g(t), \phi(t)\right), t \in[0, T)$ be a solution of the flow (1.8) on a closed Riemannian manifold $\left(M^{n}, g_{0}\right)$ with $R(0)>0$ for $\rho<\frac{1}{2(n-1)}$. Let $\lambda(t)$ be the first eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$, then $\lambda(t) \rightarrow$
$+\infty$ in finite time for $p \geq 2$ where Ric $-\nabla \phi \otimes \nabla \phi \geq \beta R g$ in $M \times[0, T)$ and $\beta \in\left[0, \frac{1}{n}\right]$ is a constant.
Proof. The weighted p-Reilly formula on closed Riemannian manifolds (see [16]) as follows

$$
\begin{align*}
& \int_{M}\left[\left(\Delta_{p, \phi} f\right)^{2}-|\nabla f|^{2 p-4} \mid \text { Hess }\left.f\right|_{A} ^{2}\right] d \mu \\
&=\int_{M}|\nabla f|^{2 p-4}\left(\text { Ric }+\nabla^{2} \phi\right)(\nabla f, \nabla f) d \mu \tag{3.29}
\end{align*}
$$

where $f \in C^{\infty}(M)$ and

$$
\begin{equation*}
\mid \text { Hess }\left.f\right|_{A} ^{2}=\mid \text { Hess }\left.f\right|^{2}+\frac{p-2}{2} \frac{\left.\left.|\nabla| \nabla f\right|^{2} f\right|^{2}}{|\nabla f|^{2}}+\frac{(p-2)^{2}}{4} \frac{<\nabla f, \nabla|\nabla f|^{2}>^{2}}{|\nabla f|^{4}} \text {. } \tag{3.30}
\end{equation*}
$$

By a straightforward computation, we have the following inequality:

$$
\begin{align*}
|\nabla f|^{2 p-4} \mid \text { Hess }\left.f\right|_{A} ^{2} & \geq \frac{1}{n}\left(\Delta_{p, \phi} f+|\nabla f|^{p-2}<\nabla \phi, \nabla f>\right)^{2} \\
& \geq \frac{1}{1+n}\left(\Delta_{p, \phi} f\right)^{2}-|\nabla f|^{2 p-4}|\nabla \phi \cdot \nabla f|^{2} \tag{3.31}
\end{align*}
$$

Recall that $\Delta_{p, \phi} f=-\lambda|f|^{p-2} f$, which implies

$$
\begin{equation*}
\int_{M}\left(\Delta_{p, \phi} f\right)^{2} d \mu=\lambda^{2} \int_{M}|f|^{2 p-2} d \mu \tag{3.32}
\end{equation*}
$$

Combining (3.31) and (3.32), we can write

$$
\begin{align*}
& \int_{M}\left[\left(\Delta_{p, \phi} f\right)^{2}-|\nabla f|^{2 p-4} \mid \text { Hess }\left.f\right|_{A} ^{2}\right] d \mu \\
& \leq\left(1-\frac{1}{1+n}\right) \lambda^{2} \int_{M}|f|^{2 p-2} d \mu+\int_{M}|\nabla f|^{2 p-4}|\nabla \phi \cdot \nabla f|^{2} d \mu, \tag{3.33}
\end{align*}
$$

putting (3.33) in (3.29) yields

$$
\begin{align*}
& \left(1-\frac{1}{1+n}\right) \lambda^{2} \int_{M}|f|^{2 p-2} d \mu+\int_{M}|\nabla f|^{2 p-4}|\nabla \phi . \nabla f|^{2} d \mu \geq \\
& \int_{M}|\nabla f|^{2 p-4} \operatorname{Ric}(\nabla f, \nabla f) d \mu+\int_{M}|\nabla f|^{2 p-4} \nabla^{2} \phi(\nabla f, \nabla f) d \mu . \tag{3.3}
\end{align*}
$$

By identifying $\nabla \phi \otimes \nabla \phi(\nabla f, \nabla f)$ with $|\nabla \phi . \nabla f|^{2}$ (see [12]), we obtain

$$
\begin{equation*}
\int_{M}|\nabla f|^{2 p-4} \nabla \phi \otimes \nabla \phi(\nabla f, \nabla f) d \mu=\int_{M}|\nabla f|^{2 p-4}|\nabla \phi \cdot \nabla f|^{2} d \mu . \tag{3.35}
\end{equation*}
$$

Therefore, it and Ric $-\nabla \phi \otimes \nabla \phi \geq \beta R g$ yield that

$$
\begin{align*}
& \left(1-\frac{1}{1+n}\right) \lambda^{2} \int_{M}|f|^{2 p-2} d \mu \\
& \geq \beta \int_{M} R|\nabla f|^{2 p-2} d \mu+\int_{M}|\nabla f|^{2 p-4} \nabla^{2} \phi(\nabla f, \nabla f) d \mu \tag{3.36}
\end{align*}
$$

Now, since ϕ satisfies in $\phi_{t}=\Delta \phi$, we get

$$
\begin{equation*}
\left|\nabla^{2} \phi\right| \geq \frac{1}{\sqrt{n}}|\Delta \phi|=\frac{1}{\sqrt{n}}\left|\phi_{t}\right| . \tag{3.37}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\left(1-\frac{1}{1+n}\right) \lambda^{2} \int_{M}|f|^{2 p-2} d \mu & \geq \beta \int_{M} R|\nabla f|^{2 p-2} d \mu+\frac{1}{\sqrt{n}} \int_{M}\left|\phi_{t}\right||\nabla f|^{2 p-2} d \mu \\
& \geq\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right) \int_{M}|\nabla f|^{2 p-2} d \mu . \tag{3.38}
\end{align*}
$$

Multiplying $\Delta_{p, \phi} f=-\lambda|f|^{p-2} f$ by $|f|^{p-2} f$ on both sides, we obtain

$$
|f|^{p-2} f \Delta_{p, \phi} f=-\lambda|f|^{2 p-2} f .
$$

Then integrating by parts and using the Hölder inequality for $p>2$, we obtain

$$
\begin{aligned}
\lambda \int_{M}|\nabla f|^{2 p-2} d \mu & =-\int_{M}|f|^{p-2} f \Delta_{p, \phi} f d \mu=(p-1) \int_{M}|\nabla f|^{p}|f|^{p-2} d \mu \\
& \leq(p-1)\left[\int_{M}\left(|\nabla f|^{p}\right)^{\frac{2 p-2}{p}} d \mu\right]^{\frac{p}{2 p-2}}\left[\int_{M}\left(|f|^{p-2}\right)^{\frac{2 p-2}{p-2}} d \mu\right]^{\frac{p-2}{2 p-2}} \\
& =(p-1)\left[\int_{M}|\nabla f|^{2 p-2} d \mu\right]^{\frac{p}{2 p-2}}\left[\int_{M}|f|^{2 p-2} d \mu\right]^{\frac{p-2}{2 p-2}} .
\end{aligned}
$$

So, we can conclude that

$$
\int_{M}|\nabla f|^{2 p-2} d \mu \geq\left(\frac{\lambda}{p-1}\right)^{\frac{2 p-2}{p}} \int_{M}|f|^{2 p-2} d \mu
$$

which implies

$$
\begin{aligned}
\left(1-\frac{1}{1+n}\right) & \lambda^{2} \int_{M}|f|^{2 p-2} d \mu \\
& \geq\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right)\left(\frac{\lambda}{p-1}\right)^{\frac{2 p-2}{p}} \int_{M}|f|^{2 p-2} d \mu,
\end{aligned}
$$

or, more precisely,

$$
\left[\left(1-\frac{1}{1+n}\right) \lambda^{2}-\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right)\left(\frac{\lambda}{p-1}\right)^{\frac{2 p-2}{p}}\right] \int_{M}|f|^{2 p-2} d \mu \geq 0 .
$$

Since $\int_{M}|f|^{2 p-2} d \mu \geq 0$, for $p>2$ we get

$$
\lambda(t) \geq\left[\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right) \frac{1+n \alpha}{1+n \alpha-\alpha}\right]^{\frac{p}{2}} \frac{1}{(p-1)^{(p-1)}} .
$$

Since $R_{\min }(t) \rightarrow+\infty$ (see [6]) and $\min _{x \in M}\left|\phi_{t}\right|$ is finite, then $\lambda(t) \rightarrow+\infty$. For $p=2$, (3.38) yields that

$$
\left(1-\frac{1}{1+n}\right) \lambda^{2} \int_{M}|f|^{2} d \mu \geq\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right) \lambda \int_{M}|f|^{2} d \mu
$$

hence,

$$
\lambda(t) \geq\left(\beta R_{\min }(t)+\frac{1}{\sqrt{n}} \min _{x \in M}\left|\phi_{t}\right|\right) \frac{1+n \alpha}{1+n \alpha-\alpha}
$$

This implies that $\lambda(t) \rightarrow+\infty$.
Corollary 3.7. Let $(M, g(t)), t \in[0, T)$, be a solution of the flow (1.1) on the smooth closed Riemannnian manifold $\left(M^{3}, g_{0}\right), \phi$ is independent of t, $\frac{1}{6}<\rho<\frac{1}{4}$ and $\lambda(t)$ be the first eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$. If $R_{i j}>\frac{1+\rho p-3 \rho}{p} R g_{i j}$ on $M^{n} \times\{0\}$ and $c=R_{\min }(0) \geq 0$ then the quantity $\lambda(t)(3-2(1-3 \rho) c t)^{\frac{3}{2}}$ is nondecreasing along the flow (1.1) for $p \geq 3$.
Proof. The pinching inequality $R_{i j}>\frac{1+\rho p-3 \rho}{p} R g_{i j}$ for $\frac{1}{6}<\rho<\frac{1}{4}$ and $p \geq 3$ is preserved along the Ricci-Bourguignon flow. Therefore, we have

$$
R_{i j}>\frac{1+\rho p-3 \rho}{p} R g_{i j}, \quad \text { on }[0, T) \times M
$$

Now according to Corollary 3.4, we get

$$
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} \geq \lambda\left(t_{0}\right)(1-n \rho) \int_{M} R|f|^{p} d \mu
$$

hence, similar to the proof of Theorem 3.5, we have $R_{g(t)} \geq \sigma(t)$ on $[0, T)$ and then

$$
\left.\frac{\partial}{\partial t} \lambda(t, f(t))\right|_{t=t_{0}} \geq \lambda\left(t_{0}\right)(1-n \rho) \sigma\left(t_{0}\right)
$$

thus we arrive at the the quantity $\lambda(t)(3-2(1-3 \rho) c t)^{\frac{3}{2}}$ is nondecreasing.
Theorem 3.8. Let $(M, g(t), \phi(t)), t \in[0, T)$ be a solution of the flow (1.8) on the smooth closed oriented Riemannain manifold $\left(M^{n}, g_{0}\right)$ for $\rho<\frac{1}{2(n-1)}$. Let $0<R_{i j}<\frac{1+p \rho-n \rho}{p} R g_{i j}$ on $M^{n} \times[0, T)$ and $R<\Delta \phi$ in $M \times[0, T)$. Suppose that $\lambda(t)$ denotes the evolution the first non-zero eigenvalue of the weighted p-Laplacian $\Delta_{p, \phi}$ and $C=R_{\max }(0)$ then the quantity $\lambda(t)(1-$ $C A t)^{\frac{n \rho-1}{A}}$ is strictly decreasing along the flow (1.8) on $\left[0, T^{\prime}\right)$ where $T^{\prime}=$ $\min \left\{T, \frac{1}{C A}\right\}$ and $A=2\left(n\left(\frac{1-(n-p) \rho}{p}\right)^{2}-\rho\right)$.
Proof. The proof is similar to proof of Theorem 3.5 with the difference that we need to estimate the upper bound of the right hand (3.6). Notice that $R_{i j}<\frac{1+p \rho-n \rho}{p} R g_{i j}$ implies that $|R i c|^{2}<n\left(\frac{1+p \rho-n \rho}{p}\right)^{2} R^{2}$. So, the evolution of the scalar curvature under the Ricci-Bourguignon flow evolve by (3.26) and it yields

$$
\begin{equation*}
\frac{\partial R}{\partial t} \leq(1-2(n-1) \rho) \Delta R+2\left(n\left(\frac{1+p \rho-n \rho}{p}\right)^{2}-\rho\right) R^{2} . \tag{3.39}
\end{equation*}
$$

Applying the maximum principle to (3.39), we have $0 \leq R_{g(t)} \leq \gamma(t)$ where

$$
\gamma(t)=\left[C^{-1}-2\left(n\left(\frac{1+p \rho-n \rho}{p}\right)^{2}-\rho\right) t\right]^{-1}=\frac{C}{1-C A t} \quad \text { on }\left[0, T^{\prime}\right)
$$

Replacing $0 \leq R_{g(t)} \leq \gamma(t)$ and $R_{i j}<\frac{1-(n-2) \rho}{2} R g_{i j}$ into equation (3.6), we can write $\frac{d}{d t} \lambda(t, f(t)) \leq \frac{(1-n \rho) C}{1-C A t} \lambda(t, f(t))$ in any sufficiently small neighborhood of t_{0}. Hence, with a sequence of calculation, the quantity $\lambda(t)(1-$ $C A t)^{\frac{n \rho-1}{A}}$ is strictly decreasing.

Theorem 3.9. Let $(M, g(t)), t \in[0, T)$ be a solution of the Ricci-Bourguignon flow (1.1) on a closed manifold M^{n} and $\rho<\frac{1}{2(n-1)}$. Let $\lambda(t)$ be the first nonzero eigenvalue of the weighted p-Laplacian of the metric $g(t)$ and ϕ be independent of t. If there is a non-negative constant a such that

$$
\begin{equation*}
R_{i j}-\frac{1-(n-p) \rho}{p} R g_{i j} \geq-a g_{i j} \quad \text { in } M^{n} \times[0, T) \tag{3.40}
\end{equation*}
$$

and

$$
\begin{equation*}
R \geq \frac{p a}{1-n \rho} \quad \text { in } M^{n} \times\{0\} \tag{3.41}
\end{equation*}
$$

then $\lambda(t)$ is strictly monotone increasing along the Ricci-Bourguignon flow.
Proof. By Corollary 3.4, we write evolution of first eigenvalue as follows

$$
\begin{align*}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} & =(1-n \rho) \lambda\left(t_{0}\right) \int_{M} R f^{2} d \mu \\
& +p \int_{M}\left(R_{i j}-\frac{1-(n-p) \rho}{p} R g_{i j}\right)|\nabla f|^{p-2} \nabla_{i} f \nabla_{j} f d \mu \tag{3.42}\\
& \geq(1-n \rho) \lambda\left(t_{0}\right) \int_{M} R f^{2} d \mu-a p \int_{M}|\nabla f|^{p} d \mu \geq 0
\end{align*}
$$

combining (3.40), (3.41) and (3.42), we arrive at $\frac{d}{d t} \lambda(f(t), t)>0$ in any sufficiently small neighborhood of t_{0}. Since t_{0} is arbitrary, then $\lambda(t)$ is strictly increasing along the Ricci-Bourguignon flow on $[0, T)$.
3.1. Variation of $\boldsymbol{\lambda}(\boldsymbol{t})$ on a surface. Now, we rewrite Proposition 3.3 and Corollary 3.4 in some remarkable particular cases.

Corollary 3.10. Let $\left(M^{2}, g(t)\right), t \in[0, T)$ be a solution of the RicciBourguignon flow on a closed Riemannnian surface $\left(M^{2}, g_{0}\right)$ for $\rho<\frac{1}{2}$. If $\lambda(t)$ denotes the evolution of the first eigenvalue of the weighted p-Laplacian under the Ricci-Bourguignon flow, then:
(1) If $\frac{\partial \phi}{\partial t}=\Delta \phi$ then

$$
\begin{align*}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} & =(1-2 \rho) \lambda\left(t_{0}\right) \int_{M} R|f|^{p} d \mu+\lambda\left(t_{0}\right) \int_{M}(\Delta \phi)|f|^{p} d \mu \\
& -\left(1+\rho \phi-2 \rho-\frac{p}{2}\right) \int_{M} R|\nabla f|^{p} d \mu-\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu \tag{3.43}
\end{align*}
$$

(2) If ϕ is independent of t then
$\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}}=(1-2 \rho) \lambda\left(t_{0}\right) \int_{M} R|f|^{p} d \mu-\left(1+\rho \phi-2 \rho-\frac{p}{2}\right) \int_{M}|\nabla f|^{p} d \mu$.

Proof. In dimension $n=2$, we have Ric $=\frac{1}{2} R g$, then (3.6) and (3.24) imply that (3.43) and (3.44) respectively.

Lemma 3.11. Let $\left(M^{2}, g(t)\right), t \in[0, T)$, be a solution of the Ricci-Bourguignon flow on a closed surface $\left(M^{2}, g_{0}\right)$ with nonnegative scalar curvature for $\rho<\frac{1}{2}$, ϕ be independent of t and $p \geq 2$. If $\lambda(t)$ denotes the evolution of the first eigenvalue of the weighted p-Laplacian under the Ricci-Bourguignon flow, then

$$
\frac{\lambda(0)}{(1-c(1-2 \rho) t)^{\frac{p}{2}}} \leq \lambda(t)
$$

on $\left(0, T^{\prime}\right)$ where $c=\min _{x \in M} R(0)$ and $T^{\prime}=\min \left\{T, \frac{1}{c(1-2 \rho)}\right\}$.
Proof. On a surface, we have $R i c=\frac{1}{2} R g$, and for the scalar curvature R on a closed surface M along the Ricci-Bourguignon flow, we get

$$
\begin{equation*}
\frac{c}{1-c(1-2 \rho) t} \leq R, \quad \text { on } \quad\left[0, T^{\prime}\right) \tag{3.45}
\end{equation*}
$$

where $T^{\prime}=\min \left\{T, \frac{1}{c(1-2 \rho)}\right\}$. According to (3.44) and $\int_{M}|f|^{p} d \mu=1$, we have

$$
\begin{equation*}
\frac{p}{2} \frac{c(1-2 \rho) \lambda(t, f(t))}{1-c(1-2 \rho) t} \leq \frac{d}{d t} \lambda(t, f(t)) \tag{3.46}
\end{equation*}
$$

in any small enough neighborhood of t_{0}. After integrating the above inequality with respect to time t, this becomes

$$
\frac{\lambda(0, f(0))}{(1-c(1-2 \rho) t)^{\frac{p}{2}}} \leq \lambda\left(t_{0}\right)
$$

Now, $\lambda(0, f(0)) \geq \lambda(0)$ yields that $\frac{\lambda(0)}{(1-c(1-2 \rho) t)^{\frac{p}{2}}} \leq \lambda\left(t_{0}\right)$. Since t_{0} is arbitrary, then $\frac{\lambda(0)}{(1-c(1-2 \rho) t)^{\frac{p}{2}}} \leq \lambda(t)$ on $\left(0, T^{\prime}\right)$.
Lemma 3.12. Let $\left(M^{2}, g_{0}\right)$ be a closed surface with nonnegative scalar curvature and ϕ be independent of t, then the eigenvalues of the weighted p Laplacian are increasing under the Ricc-Bourguignon flow for $\rho<\frac{1}{2}$.

Proof. Along the Ricci-Bourguignon flow on a surface, we have

$$
\frac{\partial R}{\partial t}=(1-2 \rho)\left(\Delta R+R^{2}\right)
$$

by the scalar maximum principle, the nonnegativity of the scalar curvature is preserved along the Ricci-Bourguignon flow (see [6]). Then (3.44) implies that $\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}}>0$, this results that in any sufficiently small neighborhood of t_{0} as I_{0}, we get $\frac{d}{d t} \lambda(t, f(t))>0$. Hence, by integrating on the interval $\left[t_{1}, t_{0}\right] \subset I_{0}$, we have $\lambda\left(t_{1}, f\left(t_{1}\right)\right) \leq \lambda\left(t_{0}, f\left(t_{0}\right)\right)$. Since $\lambda\left(t_{0}, f\left(t_{0}\right)\right)=\lambda\left(t_{0}\right)$ and $\lambda\left(t_{1}, f\left(t_{1}\right)\right) \geq \lambda\left(t_{1}\right)$, we conclude that $\lambda\left(t_{1}\right) \leq \lambda\left(t_{0}\right)$. Therefore, the quantity $\lambda(t)$ is strictly increasing in any sufficiently small neighborhood of t_{0}, but t_{0} is arbitrary, then $\lambda(t)$ is strictly increasing along the RicciBourguignon flow on $[0, T)$.
3.2. Variation of $\lambda(t)$ on homogeneous manifolds. In this section, we consider the behavior of the first eigenvalue when we evolve an initial homogeneous metric along the flow (1.8).

Proposition 3.13. Let $\left(M^{n}, g(t)\right)$ be a solution of the Ricci-Bourguignon flow on the smooth closed homogeneous manifold $\left(M^{n}, g_{0}\right)$ for $\rho<\frac{1}{2(n-1)}$. Let $\lambda(t)$ denote the evaluation of an eigenvalue under the Ricci-Bourguignon flow, then
(1) If $\frac{\partial \phi}{\partial t}=\Delta \phi$ then

$$
\begin{align*}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} & =-\rho p R \lambda\left(t_{0}\right)+p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu \\
& +\lambda\left(t_{0}\right) \int_{M}(\Delta \phi)|f|^{p} d \mu-\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu \tag{3.47}
\end{align*}
$$

(2) If ϕ is independent of t then

$$
\begin{equation*}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}}=-\rho p R \lambda\left(t_{0}\right)+p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu \tag{3.48}
\end{equation*}
$$

Proof. Since the evolving metric remains homogeneous and a homogeneous manifold has constant scalar curvature. Therefore (3.6) implies that

$$
\begin{aligned}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} & =(1-n \rho) \lambda\left(t_{0}\right) R \int_{M} f^{2} d \mu+((n-p) \rho-1) R \int_{M}|\nabla f|^{2} d \mu \\
& +p \int_{M} Z R^{i j} \nabla_{i} f \nabla_{j} f d \mu+\lambda\left(t_{0}\right) \int_{M}(\Delta \phi)|f|^{p} d \mu \\
& -\int_{M}(\Delta \phi)|\nabla f|^{p} d \mu .
\end{aligned}
$$

But $\int_{M} f^{2} d \mu=1$ and $\int_{M}|\nabla f|^{2} d \mu=1$ therefore last equation results that (3.47) and (3.48).
3.3. Variation of $\lambda(t)$ on 3 -dimensional manifolds. In this section, we consider the behavior of $\lambda(t)$ on 3 -dimensional manifolds.

Proposition 3.14. Let $\left(M^{3}, g(t)\right)$ be a solution of the Ricci-Bourguignon flow (1.1) for $\rho<\frac{1}{4}$ on a closed Riemannian manifold M^{3} whose Ricci curvature is initially positive and there exists $0 \leq \epsilon \leq \frac{1}{3}$ such that

$$
R i c \geq \epsilon R g .
$$

If ϕ is independent of t and $\lambda(t)$ denotes the evolution of the first eigenvalue of the weighted p-Laplacian under the Ricci-Bourguignon flow then the quantity $e^{-\int_{0}^{t} A(\tau) d \tau} \lambda(t)$ is nondecreasing along the Ricci-Bourguignon flow (1.1) for $p \leq 3$, where

$$
A(t)=\frac{3 c(1-3 \rho)}{3-2(1-3 \rho) c t}+(3 \rho+p \epsilon-1-\rho p)\left(-2(1-\rho) t+\frac{1}{C}\right)^{-1}
$$

$C=R_{\text {max }}(0)$ and $c=R_{\text {min }}(0)$.
Proof. In [6], it has been shown that the pinching inequality Ric $\geq \epsilon R g$ and nonnegative scalar curvature are preserved along the Ricci-Bourguignon flow (1.1) on closed manifold M^{3}. Then using (3.24), we obtain

$$
\begin{aligned}
\left.\frac{d}{d t} \lambda(f, t)\right|_{t=t_{0}} & \geq(1-3 \rho) \lambda\left(t_{0}\right) \int_{M} R f^{2} d \mu+(3 \rho-1-\rho p) \int_{M} R|\nabla f|^{2} d \mu \\
& +p \epsilon \int_{M} R|\nabla f|^{2} d \mu \\
& =(1-3 \rho) \lambda\left(t_{0}\right) \int_{M} R f^{2} d \mu+(3 \rho+p \epsilon-1-\rho p) \int_{M} R|\nabla f|^{2} d \mu
\end{aligned}
$$

On the other hand, the scalar curvature under the Ricci-Bourguignon flow evolves by (3.26) for $n=3$. By \mid Ric $\left.\right|^{2} \leq R^{2}$ we have

$$
\frac{\partial R}{\partial t} \leq(1-4 \rho) \Delta R+2(1-\rho) R^{2}
$$

Let $\gamma(t)$ be the solution to the ODE $y^{\prime}=2(1-\rho) y^{2}$ with initial value $C=R_{\max }(0)$. By the maximum principle, we have

$$
\begin{equation*}
R(t) \leq \gamma(t)=\left(-2(1-\rho) t+\frac{1}{C}\right)^{-1} \tag{3.49}
\end{equation*}
$$

on $\left[0, T^{\prime}\right)$, where $T^{\prime}=\min \left\{T, \frac{1}{2(1-\rho) C}\right\}$. Also, similar to proof of Theorem 3.5 , we have

$$
\begin{equation*}
R(t) \geq \sigma(t)=\frac{3 c}{3-2(1-3 \rho) c t} \text { on }[0, T) . \tag{3.50}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}} \geq & (1-3 \rho) \lambda\left(t_{0}\right) \frac{3 c}{3-2(1-3 \rho) c t_{0}} \\
& +(\rho-1+2 \epsilon) \lambda\left(t_{0}\right)\left(-2(1-\rho) t_{0}+\frac{1}{C}\right)^{-1} \\
= & \lambda\left(t_{0}\right) A\left(t_{0}\right) .
\end{aligned}
$$

This yields that in any sufficiently small neighborhood of t_{0} as I_{0}, we obtain

$$
\frac{d}{d t} \lambda(t, f(t)) \geq \lambda(f, t) A(t)
$$

Integrating both sides of the last inequality with respect to t on $\left[t_{1}, t_{0}\right] \subset I_{0}$, we can write

$$
\ln \frac{\lambda\left(t_{0}, f\left(t_{0}\right)\right)}{\lambda\left(t_{1}, f\left(t_{1}\right)\right)}>\int_{t_{1}}^{t_{0}} A(\tau) d \tau .
$$

Since $\lambda\left(t_{0}, f\left(t_{0}\right)\right)=\lambda\left(t_{0}\right)$ and $\lambda\left(t_{1}, f\left(t_{1}\right)\right) \geq \lambda\left(t_{1}\right)$, we conclude that

$$
\ln \frac{\lambda\left(t_{0}\right)}{\lambda\left(t_{1}\right)}>\int_{t_{1}}^{t_{0}} A(\tau) d \tau
$$

That is, the quantity $\lambda(t) e^{-\int_{0}^{t} A(\tau) d \tau}$ is strictly increasing in any sufficiently small neighborhood of t_{0}. Since t_{0} is arbitrary, then $\lambda(t) e^{-\int_{0}^{t} A(\tau) d \tau}$ is strictly increasing along the Ricci-Bourguignon flow on $[0, T)$.
Proposition 3.15. Let $\left(M^{3}, g(t)\right)$ be a solution to the Ricci-Bourguignon flow for $\rho<0$ on a closed homogeneous 3-manifold whose Ricci curvature is initially nonnegative and ϕ be independent of t then the first eigenvalues of the weighted p-Laplacian is increasing.
Proof. In dimension three, the Ricci-Bourguignon flow preseves the nonnegativity of the Ricci curvature is preserved. From (3.48), its implies that $\lambda(t)$ is increasing.

4. Example

In this section, we consider the initial Riemannian manifold $\left(M^{n}, g_{0}\right)$ is Einstein manifold and then find evolving first eigenvalue of the weighted p-Laplace operator along the Ricci-Bourguignon flow.
Example 4.1. Let $\left(M^{n}, g_{0}\right)$ be an Einstein manifold i.e. there exists a constant a such that $\operatorname{Ric}\left(g_{0}\right)=a g_{0}$. Assume that a solution to the RicciBourguignon flow is of the form

$$
g(t)=u(t) g_{0}, \quad u(0)=1
$$

where $u(t)$ is a positive function. By a straightforward computation, we have

$$
\frac{\partial g}{\partial t}=u^{\prime}(t) g_{0}, \quad \operatorname{Ric}(g(t))=\operatorname{Ric}\left(g_{0}\right)=a g_{0}=\frac{a}{u(t)} g(t), R_{g(t)}=\frac{a n}{u(t)},
$$

for this to be a solution of the Ricci-Bourguignon flow, we require

$$
u^{\prime}(t) g_{0}=-2 \operatorname{Ric}(g(t))+2 \rho R_{g(t)} g(t)=(-2 a+2 \rho a n) g_{0} .
$$

This shows that

$$
u(t)=(-2 a+2 \rho a n) t+1,
$$

so $g(t)$ is an Einstein metric. Using formula (3.24) for evolution of first eigenvalue along the Ricci-Bourguignon flow, we obtain the following relation

$$
\begin{aligned}
\left.\frac{d}{d t} \lambda(t, f(t))\right|_{t=t_{0}}= & (1-n \rho) \frac{a n}{u\left(t_{0}\right)} \lambda\left(t_{0}\right) \int_{M}|f|^{p} d \mu+2 \frac{a}{u\left(t_{0}\right)} \int_{M}|\nabla f|^{p} d \mu \\
& -((p-n) \rho-1) \frac{a n}{u\left(t_{0}\right)} \int_{M}|\nabla f|^{p} d \mu=\frac{p a(1-n \rho) \lambda\left(t_{0}\right)}{u\left(t_{0}\right)},
\end{aligned}
$$

. This yields that in any sufficiently small neighborhood of t_{0} as I_{0}, we get

$$
\frac{d}{d t} \lambda(t, f(t))=\frac{p a(1-n \rho) \lambda(t, f(t))}{(-2 a+2 \rho a n) t+1} .
$$

Integrating the last inequality with respect to t on $\left[t_{1}, t_{0}\right] \subset I_{0}$, we have

$$
\ln \frac{\lambda\left(t_{0}, f\left(t_{0}\right)\right)}{\lambda\left(t_{1}, f\left(t_{1}\right)\right)}=\int_{t_{1}}^{t_{0}} \frac{p a(1-n \rho)}{(-2 a+2 \rho a n) \tau+1} d \tau=\ln \left(\frac{-2 a(1-n \rho) t_{1}+1}{-2 a(1-n \rho) t_{0}+1}\right)^{\frac{p}{2}} .
$$

Since $\lambda\left(t_{0}, f\left(t_{0}\right)\right)=\lambda\left(t_{0}\right)$ and $\lambda\left(t_{1}, f\left(t_{1}\right)\right) \geq \lambda\left(t_{1}\right)$, we conclude that

$$
\ln \frac{\lambda\left(t_{0}\right)}{\lambda\left(t_{1}\right)}>\ln \left(\frac{-2 a(1-n \rho) t_{1}+1}{-2 a(1-n \rho) t_{0}+1}\right)^{\frac{p}{2}} .
$$

That is, the quantity $\lambda(t)[-2 a(1-n \rho) t+1]^{\frac{p}{2}}$ is strictly increasing along the Ricci-Bourguignon flow on $[0, T)$.

References

[1] Azami, Shahroud. Eigenvalue variation of the p-Laplacian under the Yamabe flow. Cogent Math. 3 (2016), Art. ID 1236566, 10 pp. MR3625386, Zbl 07074345 , doi: 10.1080/23311835.2016.1236566. 737
[2] Azami, Shahroud. Monotonicity of eigenvalues of Witten-Laplace operator along the Ricci-Bourguignon flow. AIMS Math. 2 (2017), no. 2, 230-243. Zbl 1427.53107 doi: 10.3934/Math.2017.2.230. 737, 744
[3] Bourguignon, Jean-Pierre. Ricci curvature and Einstein metrics. Global differential geometry and global analysis (Berlin, 1979), 42-63. Lecture Notes in Math., 838, Springer, Berlin-New York, 1981. MR0636265, Zbl 0437.53029, doi: 10.1007/BFb0088841. 736
[4] Cao, Xiaodong. Eigenvalues of $\left(-\Delta+\frac{R}{2}\right)$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2007), no. 2, 435-442. MR2262792, Zbl 1105.53051, doi: 10.1007/s00208-006-0043-5. 738
[5] Cao, Xiaodong. First eigenvalues of geometric operators under the Ricci flow. Proc. Amer. Math. Soc. 136 (2008), no. 11, 4075-4078. MR2425749, Zbl 1166.58007, arXiv:0710.3947, doi: 10.1090/S0002-9939-08-09533-6. 737
[6] Catino, Giovanni; Cremaschi, Laura; Djadli, Zindine; Mantegazza, Carlo; Mazzieri, Lorenzo. The Ricci-Bourguignon flow. Pacific J. Math. 287 (2017), no. 2, 337-370. MR3632891, Zbl 1371.53061, arXiv:1507.00324, doi: 10.2140/pjm.2017.287.337. 736, 738, 748, 751, 752
[7] Chen, Bin; He, Qun; Zeng, Fanqi. Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow. Pacific J. Math. 296 (2018), no. 1, 1-20. MR3803719, Zbl 1396.53062, doi: 10.2140/pjm.2018.296.1. 737
[8] Cheng, Qing-Ming; Yang, Hongcang. Estimates on eigenvalues of Laplacian. Math. Ann. 331 (2005), no. 2, 445-460. MR2115463, Zbl 1122.35086, doi: 10.1007/s00208-004-0589-z. 737
[9] Di Cerbo, Luca Fabrizio. Eigenvalues of the Laplacian under the Ricci flow. Rend. Mat. Appl. VII. 27 (2007), no. 2, 183-195. MR2361028, Zbl 1144.53056, arXiv:math/0702740. 737
[10] Fang, Shouwen; Xu, Haifeng; Zhu, Peng. Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China Math. 58 (2015), no. 8, 1737-1744. MR3368179, Zbl 1327.53084, doi: 10.1007/s11425-014-4943-7. 737
[11] Fang, Shouwen; Yang, Fei. First eigenvalues of geometric operators under the Yamabe flow. Bull. Korean Math. Soc. 53 (2016), no. 4, 1113-1122. MR3534307, Zbl 1350.53051, doi: 10.4134/BKMS.b150530. 737
[12] Li, Xiang-Dong. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84 (2005), no. 10, 1295-1361. MR2170766, Zbl 1082.58036, doi: 10.1016/j.matpur.2005.04.002. 746
[13] Perelman, Grisha. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv:math/0211159. 735, 737
[14] Wang, Lin Feng. Eigenvalue estimate for the weighted p-Laplacian. Ann. Mat. Pura Appl. (4) 191 (2012), no. 3, 539-550. MR2958348, Zbl 1267.53041, doi: 10.1007/s10231-011-0195-0. 737
[15] Wang, Lin Feng. Gradient estimates on the weighted p-Laplace heat equation. J. Differential equations 264 (2018), no. 1, 506-524. MR3712949, Zbl 1381.58011, doi: 10.1016/j.jde.2017.09.012. 737
[16] Wang, Yu-Zhao; Li, Huai-Qian. Lower bound estimates for the first eigenvalue of the weighted p-lapacian on smooth metric measure spaces. Differential Geom. Appl. 45 (2016), 23-42. MR3457386, Zbl 1334.58020, doi: 10.1016/j.difgeo.2015.11.008. 746
[17] Wu, Jia Yong. First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow. Acta Math. Sin. (English Ser.) 27 (2011), no. 8, 1591-1598. MR2822831, Zbl 1306.58003, doi: 10.1007/s10114-011-8565-5. 737, 738, 744
(Shahroud Azami) Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
azami@sci.ikiu.ac.ir
This paper is available via http://nyjm.albany.edu/j/2020/26-33.html.

[^0]: Received December 15, 2018.
 2010 Mathematics Subject Classification. 58C40; 53C44, 53C21.
 Key words and phrases. Laplace, Ricci-Bourguignon flow, eigenvalue.

