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On simultaneous rational approximation
to a real number and its

integral powers, II

Dzmitry Badziahin and Yann Bugeaud

Abstract. For a positive integer n and a real number ξ, let λn(ξ)
denote the supremum of the real numbers λ for which there are arbi-
trarily large positive integers q such that ||qξ||, ||qξ2||, . . . , ||qξn|| are all
less than q−λ. Here, || · || denotes the distance to the nearest integer.
We establish new results on the Hausdorff dimension of the set of real
numbers ξ such that λn(ξ) is equal (or greater than or equal) to a given
value.
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1. Introduction

In 1932, in order to define his classification of real numbers, Mahler [15, 16]
introduced the exponents of Diophantine approximation wn, which measure
how small an integer linear form in the first n powers of a given real number
can be.

Definition 1.1. Let n ≥ 1 be an integer and ξ a real number. We denote
by wn(ξ) the supremum of the real numbers w such that, for arbitrarily large
real numbers X, the inequalities

0 < |xnξn + . . .+ x1ξ + x0| ≤ X−w, max
0≤m≤n

|xm| ≤ X,

have a solution in integers x0, . . . , xn.
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We refer to [5, 8] for an overview of the known results on the exponents wn.
In particular, it follows from the Schmidt Subspace Theorem that wn(ξ) =
min{n, d − 1} for every positive integer n and every real algebraic number
ξ of degree d. In the sequel, by spectrum of a function, we mean the set of
values taken by this function at transcendental real numbers.

It is easy to apply the theory of continued fractions to show that the
spectrum of w1 is equal to the whole interval [1,+∞]. Moreover, the classical
Jarńık–Besicovich theorem [14] asserts that, for any w ≥ 1, we have

dim{ξ ∈ R : w1(ξ) ≥ w} = dim{ξ ∈ R : w1(ξ) = w} =
2

1 + w
. (1)

Here, and throughout this paper, 1/ +∞ is understood to be 0 and dim
stands for the Hausdorff dimension. To be precise, the Jarńık–Besicovich
theorem concerns the set {ξ ∈ R : w1(ξ) ≥ w} and not the level set {ξ ∈
R : w1(ξ) = w}. However, we easily deduce (1) from [14]. In the sequel, we
state several metric results on level sets which, sometimes, are not explicitly
stated in the original papers, but whose validity is known. For n ≥ 2, the
fact that the spectrum of wn equals [n,+∞] is an immediate consequence
of the extension of (1) established in 1983 by Bernik [3], which states that

dim{ξ ∈ R : wn(ξ) ≥ w} =
n+ 1

w + 1
, (2)

for every positive integer n and every real number w with w ≥ n.
Another exponent of Diophantine approximation, introduced in [10], mea-

sures the quality of the simultaneous rational approximation to the first n
integral powers of a real number by rational numbers with the same denom-
inator.

Definition 1.2. Let n ≥ 1 be an integer and ξ a real number. We denote
by λn(ξ) the supremum of the real numbers λ such that, for arbitrarily large
real numbers X, the inequalities

0 < |x0| ≤ X, max
1≤m≤n

|x0ξm − xm| ≤ X−λ, (3)

have a solution in integers x0, . . . , xn.

Observe that λ1 and w1 coincide. The Dirichlet theorem implies that
λn(ξ) is at least equal to 1/n for every real number ξ which is not algebraic
of degree at most n. Furthermore, there is equality for almost all ξ, with
respect to the Lebesgue measure; see [6, 8, 17] for further results. The
following question reproduces Problems 2.9 and 2.10 of the survey [7].

Problem 1.3. Let n ≥ 1 be an integer. Is the spectrum of the function λn
equal to [1/n,+∞]? For λ ≥ 1/n, what are the Hausdorff dimensions of the
set {ξ ∈ R : λn(ξ) ≥ λ} and of the level set {ξ ∈ R : λn(ξ) = λ} ?

The above mentioned Jarńık–Besicovich theorem answers the case n = 1
of Problem 1.3. For n ≥ 2, the state-of-the-art is as follows. It has been
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proved in [6] that, for any positive integer n and any real number λ with
λ ≥ 1, we can construct explicitly uncountably many real numbers ξ such
that λn(ξ) = λ. Since any real number ξ such that w1(ξ) is infinite satisfies
λn(ξ) = +∞ (see Corollary 3.2 of [6]), we get that the spectrum of λn
includes the interval [1,+∞].

Problem 1.3 for n = 2 and λ in [1/2, 1] was solved completely by Beres-
nevich, Dickinson, Vaughan and Velani [2, 20].

Theorem 1.4. For any real number λ with 1/2 ≤ λ ≤ 1, we have

dim{ξ ∈ R : λ2(ξ) ≥ λ} = dim{ξ ∈ R : λ2(ξ) = λ} =
2− λ
1 + λ

.

For n ≥ 2 the dimension of the level sets {ξ ∈ R : λn(ξ) = λ} has been
determined by Schleischitz [17] for λ > 1.

Theorem 1.5. Let n ≥ 2 be an integer and λ > 1 a real number. Then, we
have

dim{ξ ∈ R : λn(ξ) ≥ λ} = dim{ξ ∈ R : λn(ξ) = λ} =
2

n(1 + λ)
. (4)

Let us briefly explain the easy part of the proof of Theorem 1.5. One
way to construct a good rational approximation (p1q , . . . ,

pn
q ) to (ξ, . . . , ξn)

is to start with a rational number p/q very close to ξ, that is, such that
|qξ − p| = q−λ, for some λ > 1. We then observe that, for j = 1, . . . , n, we
have

|qnξj − qn−jpj | �n q
n−1q−λ �n (qn)−(λ−n+1)/n, j = 1, . . . , n.

This gives at once the lower bound

λn(ξ) ≥ λ1(ξ)− n+ 1

n
, (5)

which is non-trivial if λ1(ξ) exceeds n. In particular, it then follows from
(1) that

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ dim{ξ ∈ R : λ1(ξ) ≥ nλ+n−1} =
2

n(1 + λ)
. (6)

This inequality is valid for all λ with λ ≥ 1/n, but the lower bound is not
greater than 2/(n + 1) for λ = 1/n, thus it is far from the truth when
n ≥ 2. To establish Theorem 1.5, Schleischitz proved that, for λ > 1, all
but finitely many rational n-tuples which are the best approximations of the
real n-tuple (ξ, . . . , ξn) are of the form (p/q, (p/q)2, . . . , (p/q)n), that is, lie
on the Veronese curve x 7→ (x, . . . , xn). In Section 5, we give a new, shorter
(and, we believe, illuminating) proof of this assertion.

As a first observation towards Problem 1.3 for λ ≤ 1, let us note that the
transference inequality (due to Khintchine, see e.g. [8])

λn(ξ) ≥ wn(ξ)

(n− 1)wn(ξ) + n
,
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combined with (2), shows that, for 1/n ≤ λ < 1/(n− 1), we get

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ dim

{
ξ ∈ R : wn(ξ) ≥ nλ

1− λ(n− 1)

}
≥ (n+ 1)(1− λ(n− 1))

1 + λ
.

(7)

This (easy) lower estimate, which applies to a very small set of values of λ,
gives, unlike (6), that the Hausdorff dimension of the set {ξ ∈ R : λn(ξ) ≥ λ}
tends to 1 as λ tends to 1/n. It is superseded by a deep result of Beresnevich
[1] dealing with values of λ close to 1/n.

Theorem 1.6. Let n ≥ 2 be an integer. Let λ be a real number with
1/n ≤ λ < 3/(2n− 1). Then, we have

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ n+ 1

λ+ 1
− (n− 1). (8)

The lower bound (8) is not surprising since we may often expect that
the codimension of the intersection of two fractal sets is the sum of their
codimensions. Here, we intersect the Veronese curve, of dimension 1, with
the set of real n-tuples (ξ1, . . . , ξn) for which there exist infinitely many
integers q such that max1≤j≤n ‖qξj‖ < q−λ, where ‖ · ‖ denotes the distance
to the nearest integer. The Hausdorff dimension of the latter set is equal to
(n+ 1)/(λ+ 1), by a result of Dodson [13].

Observe that the lower bounds in (6) and (8) coincide for λ = 2/n and
are equal to 2/(n + 2) at this value of λ. Thus, it could be tempting to
conjecture that we have equalities in (6) and (8) for λ ≥ 2/n and for λ ≤ 2/n,
respectively. This is, however, not the case for n ≥ 3: namely, we show that
the graph of the function λ 7→ dim{ξ ∈ R : λn(ξ) ≥ λ} is more complicated
and presumably composed of about n parts. Among our results, stated in
Section 2, we extend the range of validity of (4) and obtain new lower and
upper bounds for the Hausdorff dimension of the set of real numbers ξ such
that λn(ξ) ≥ λ, for λ > 1/n.

Throughout this paper, b·c denotes the integer part function and d·e the
ceiling function. The notation a �d b means that a exceeds b times a
constant depending only on d. When � is written without any subscript,
it means that the constant is absolute. We write a � b if both a � b and
a� b hold.

2. Main results

Our first result is an extension of the range of validity of (4).

Theorem 2.1. Let n ≥ 2 be an integer. The spectrum of λn contains the
interval [(n+ 4)/(3n),+∞]. Let λ ≥ (n+ 4)/(3n) be a real number. Then,
we have

dim{ξ ∈ R : λn(ξ) = λ} =
2

n(1 + λ)
.
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In particular, for any real number λ with λ > 1/3, there exists an integer
n0 such that

dim{ξ ∈ R : λn(ξ) = λ} =
2

n(1 + λ)
,

for any integer n greater than n0.

Our next result shows that the assumption ‘λ > 1/3’ in the last assertion
of Theorem 2.1 is sharp.

Theorem 2.2. For any integer n ≥ 2, we have

dim{ξ ∈ R : λn(ξ) ≥ 1/3} ≥ 2

(n− 1)(1 + 1/3)
.

Theorems 2.1 and 2.2 above are special cases of the following general
statement.

Theorem 2.3. Let k, n be integers with 1 ≤ k ≤ n. Let λ be a real number
with λ ≥ 1/n. Then we have

dim{ξ ∈ R : λn(ξ) ≥ λ} ≥ (k + 1)(1− (k − 1)λ)

(n− k + 1)(1 + λ)
. (9)

If λ > 1/bn+1
2 c, then, setting m = 1 + b1/λc, we have

dim{ξ ∈ R : λn(ξ) ≥ λ} ≤ max
1≤h≤m

{
(h+ 1)(1− (h− 1)λ)

(n− 2h+ 2)(1 + λ)

}
. (10)

Observe that (7) is the special case k = n of (9).
The lower bounds (9) have been independently obtained by Schleischitz

(Theorem 4.9 of [18]) with a different proof.
Theorem 2.2 corresponds to (9) applied with λ = 1/3 and k = 2.
We briefly show how Theorem 2.1 follows from Theorem 2.3. For n = 2

it follows immediately from Theorem 1.4 and Theorem 1.5, hence we can
assume that n ≥ 3.

For n with 3 ≤ n ≤ 7 and λ ≥ n+4
3n , we have m ≤ 2. Therefore, for

λ ≥ n+4
3n , we get by (10) that

max
1≤h≤2

{
(h+ 1)(1− (h− 1)λ)

(n− 2h+ 2)(1 + λ)

}
= max

{
2

n(1 + λ)
,

3(1− λ)

(n− 2)(1 + λ)

}
=

2

n(1 + λ)
.

For n ≥ 8 and λ ≥ n+4
3n , we have m ≤ 3. Therefore, for λ ≥ n+4

3n , we get by
(10) that



ON SIMULTANEOUS RATIONAL APPROXIMATION 367

max
1≤h≤3

{
(h+ 1)(1− (h− 1)λ)

(n− 2h+ 2)(1 + λ)

}

= max

{
2

n(1 + λ)
,

3(1− λ)

(n− 2)(1 + λ)
,

4(1− 2λ)

(n− 4)(1 + λ)

}
=

2

n(1 + λ)
.

Combined with (6), this gives

dim{ξ ∈ R : λn(ξ) ≥ λ} =
2

n(1 + λ)
,

for λ ≥ n+4
3n . The remaining part of the proof is standard. Since the function

x 7→ 2
x(1+λ) is strictly decreasing, we get

dim{ξ ∈ R : λn(ξ) = λ} = dim
⋂
ε>0

{ξ ∈ R : λ ≤ λn(ξ) ≤ λ+ ε} =
2

n(1 + λ)
.

The special case k = m of (9) asserts that, for any positive integer m
with m ≤ n,

dim
{
ξ ∈ R : λn(ξ) ≥ 1

m

}
≥ 1

n−m+ 1
.

We believe that the graph of λ 7→ dim{ξ ∈ R : λn(ξ) ≥ λ} is composed of
about n parts.

Inequality (5) is a special case of Lemma 3.1 of [6], which asserts that, for
any positive integers k and n with k dividing n, and, for any transcendental
real number ξ, we have

λn(ξ) ≥ kλk(ξ)− n+ k

n
. (11)

Schleischitz [17] conjectured that (11) remains true when k is less than n
but does not divide n. Our next theorem confirms this conjecture.

Theorem 2.4. Let ξ be a real transcendental number. For any positive
integer k, we have

(k + 1)
(
1 + λk+1(ξ)

)
≥ k

(
1 + λk(ξ)

)
.

Consequently, for every integer n with n ≥ k, we have

λn(ξ) ≥ kλk(ξ)− n+ k

n
.

Theorem 2.4 has been established independently by Schleischitz [19], who
also proved a lower estimate of λn(ξ) in terms of wk(ξ), for n ≥ k.

The first assertion of Theorem 2.4 is of interest only when λk(ξ) > 2/k.
The last assertion is obtained by repeated application of the first one. This
shows at once that, if there is equality in (11), then we have

λm(ξ) =
kλk(ξ)−m+ k

m
, m = k, . . . , n.
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The present paper is organized as follows. We establish two new lower
bounds for λn(ξ) in Section 3. We derive (9) from one of them. The second
one is Theorem 2.4 above. Section 4 is devoted to the proof of (10), which
follows an original approach inspired by a paper of Davenport and Schmidt
[12]. Finally, in Section 5, we give alternative proofs of some earlier results
of Schleischitz, including Theorem 1.5.

3. Lower bounds for the exponents λn

The key ingredient for the proof of the first assertion of Theorem 2.3
is a new lower bound for λn(ξ) in terms of a quantity similar to wk(ξ).
For a positive integer n, we denote by wlead

n the exponent of approximation
defined as in Definition 1.1, but with the additional requirement that |xn|
is not smaller than max{|x0|, . . . , |xn−1|}.

Theorem 3.1. Let k, n be integers with 2 ≤ k ≤ n. Let ξ be a real tran-
scendental number. Then, we have

λn(ξ) ≥
wlead
k (ξ)− n+ k

(k − 1)wlead
k (ξ) + n

. (12)

In the first version of the present paper, we showed that wlead
k (ξ) can be

replaced by wk(ξ) in (12) when k = 2 or when n = k + 1. This has been
subsequently extended to every k, n with 2 ≤ k ≤ n by Champagne and Roy
[11], who made use of the invariance of wk by linear transformations with
rational coefficients.

Proof. Let k, n be integers with 2 ≤ k ≤ n. Let ξ be a real transcendental
number. We assume for the moment that wlead

k (ξ) is finite and set wk =

wlead
k (ξ). Let ε be a positive real number.
For arbitrarily large integers H, there exist integers a0, a1, . . . , ak, not all

zero, such that H = |ak| = max{|a0|, |a1|, . . . , |ak|} and

H−wk−ε ≤ |akξk + . . .+ a1ξ + a0| ≤ H−wk+ε. (13)

Take such an integer H and set

ρ := akξ
k + . . .+ a1ξ + a0.

Consider the matrix

M :=



ξ −1 0 · · · · · · · · · · · · 0
ξ2 0 −1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

ξk 0 0 · · · −1 0 · · · 0
a0 a1 a2 · · · ak 0 · · · 0
0 a0 a1 · · · ak−1 ak · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · · · · · · · ak−1 ak


.
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One can check that |detM | = |ak|n−k|ρ|. Therefore, by Minkowski’s Theo-
rem, there exist integers v0, . . . , vn, not all zero, such that

|v0ξj − vj | ≤ |ak|(n−k)/k|ρ|1/k, 1 ≤ j ≤ k,

|a0vi + a1vi+1 + . . .+ akvi+k| < 1, 0 ≤ i ≤ n− k.
Since the aj ’s and vj ’s are integers, we get that

a0vi + a1vi+1 + . . .+ akvi+k = 0, 0 ≤ i ≤ n− k.

Using i = 0 above, we get

|ρv0| = |(v0ξ − v1)a1 + . . .+ (v0ξ
k − vk)ak| ≤ kH|ak|(n−k)/k|ρ|1/k

= kHn/k|ρ|1/k.

It then follows from (13) that

|v0| ≤ kHn/k|ρ|−(k−1)/k ≤ kH(n+(k−1)(wk+ε))/k. (14)

Furthermore, for i = 1, . . . , n− k, we have

|v0ξi+k − vi+k| =
∣∣∣v0(ak−1ξi+k−1 + . . .+ a1ξ

i+1 + a0ξ
i − ρξi

ak

)
−a0vi + a1vi+1 + . . .+ ak−1vi+k−1

ak

∣∣∣.
Inductively, we derive that

|v0ξi+k − vi+k| �n,ξ H
(n−k)/k|ρ|1/k �n,ξ H

(n−k−wk+ε)/k, i = 1, . . . , n− k.
(15)

We deduce at once from (14) and (15) that

λn(ξ) ≥
wlead
k (ξ)− n+ k

(k − 1)wlead
k (ξ) + n

.

An inspection of the proof shows that it yields λn(ξ) ≥ 1/(k − 1) when
wlead
k (ξ) is infinite, so (12) holds in all cases. �

Proof of the first assertion of Theorem 2.3. Let k, n be integers with
1 ≤ k ≤ n. For k = 1, Inequality (9) reduces to (6). For k ≥ 2 and λ ≥ 1/n,
Inequality (12) implies that

{ξ ∈ R : λn(ξ) ≥ λ} ⊃
{
ξ ∈ R : wlead

k (ξ) ≥ (λ+ 1)n− k
1− λ(k − 1)

}
. (16)

Bernik [3] established that

dim{ξ ∈ R : wlead
k (ξ) ≥ w} =

k + 1

w + 1
, (17)

for every real number w with w ≥ k. The combination of (16) and (17)
yields (9). �
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Similar ideas as the ones used in the proof of Theorem 3.1 allow us to
bound λn(ξ) from below in terms of λk(ξ), where k ≤ n.

Proof of Theorem 2.4. Write λk = λk(ξ). Assume that λk is finite (oth-
erwise, λk+1(ξ) is infinite and we are done). Let ε be a positive real number.
There exist arbitrarily large positive integers q such that

q−λk−ε ≤ max{‖qξ‖, . . . , ‖qξk‖} ≤ q−λk+ε. (18)

Take such an integer q. For j = 1, . . . , k, let vj be the integer such that
‖qξj‖ = |qξj − vj |. It follows from Siegel’s lemma (see Lemma 2.9.1 in [4])
that there exist integers a0, a1, . . . , ak, not all zero, such that

a0q + a1v1 + . . .+ akvk = 0

and

H := max{|a0|, |a1|, . . . , |ak|} ≤k,ξ q1/k.
Then, we derive from (18) that

|q(akξk + . . .+ a1ξ + a0)−(akvk + . . .+ a1v1 + a0q)|

≤ kHq−λk+ε �k,ξ q
1/k−λk+ε.

(19)

Using triangle inequalities as above, we get from (18) and (19) that

‖akqξk+1‖ ≤ |akqξk+1 + ak−1vk + ak−2vk−1 + . . .+ a1v2 + a0v1|

�n,ξ q · |akξk + . . .+ a1ξ + a0|+Hq−λk+ε

�n,ξ q
1/k−λk+ε.

(20)

It now follows from |akq| �k,ξ q
1+1/k, (18), and (20) that

λk+1(ξ) ≥
λk(ξ)− 1/k − ε

1 + 1/k
.

As ε can be chosen arbitrarily close to 0, we deduce that

(k + 1)
(
1 + λk+1(ξ)

)
≥ k

(
1 + λk(ξ)

)
.

This concludes the proof. �

4. Upper bound

Since λn(ξ) = λn(ξ + m) for any integer m, we may assume that ξ is
in [1, 2) and therefore ξ � 1. We investigate the (n + 1)-tuples p :=
(q, p1, p2, . . . , pn) of integers which approximate at least one point ξ =
(ξ, ξ2, . . . , ξn) on the Veronese curve, that is, which satisfy

|qξi − pi| � q−λ, i = 1, . . . , n. (21)

Obviously, the condition ξ � 1 is equivalent to q � p1 � p2 � · · · � pn. For
convenience, we will often write p0 instead of q.
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Throughout this section, we extensively make use of matrices of the form

∆m,k :=


pk−m+1 pk−m+2 · · · pk
pk−m+2 pk−m+3 · · · pk+1

...
...

. . .
...

pk pk+1 · · · pk+m−1

 .

Observe that ∆m,k is an m × m matrix with pk in its antidiagonal. Note
also that the matrices ∆m,k are precisely Hankel matrices constructed from
the sequence (pk)k∈{0,...,n}. For a given square matrix A we denote by |A|
the absolute value of its determinant.

Proposition 4.1. Assume that a tuple p = (p0, . . . , pn) in Zn+1 satisfies
(21) for some real number ξ with ξ � 1. Then, we have

|piξ − pi+1| � q−λ, for i ∈ {0, . . . , n− 1}, and

|∆2,i| � q1−λ, for i ∈ {0, . . . , n− 1}. (22)

Conversely, if an integer tuple p in Zn+1 with p0 � p1 � · · · � pn satis-
fies (22), then there exists a real number ξ for which (21) is true.

Proof. For the first part of the proposition, the triangle inequality gives

|piξ−pi+1| = |(qξi+(pi−qξi))ξ−pi+1| ≤ |ξ(qξi−pi)|+ |qξi+1−pi+1| � q−λ.

For the second inequality, we have∣∣∣∣pi−1 pi
pi pi+1

∣∣∣∣ =

∣∣∣∣ pi−1 pi
pi − ξpi−1 pi+1 − ξpi

∣∣∣∣� q1−λ.

Finally, consider an integer tuple p which satisfies (22). Then, for i =
1, . . . , n− 1, we have ∣∣∣∣ pipi−1

− pi+1

pi

∣∣∣∣� q−1−λ.

Setting ξ := p1/p0, these inequalities yield∣∣∣∣ξ − pi+1

pi

∣∣∣∣� q−1−λ, thus |piξ − pi+1| � q−λ.

Now we use induction on i. For i = 0, the statement |qξ−p1| � q−λ follows
from the last estimate. Assuming that (21) is true for i, we deduce from

|qξi+1 − pi+1| = |(qξi − pi)ξ + piξ − pi+1| � q−λ.

that it is also true for i+ 1. �

Proposition 4.1 allows us to investigate integer (n + 1)-tuples p which
satisfy (22), instead of real numbers ξ with λn(ξ) ≥ λ. The next proposition
can be found in [12]. However for the sake of completeness we provide its
proof here.
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Proposition 4.2. Let p be in Zn+1 which satisfies (22). Then, for any
positive integers m, k with k −m+ 1 ≥ 0 and k +m− 1 ≤ n, we have

|∆m,k| � q1−(m−1)λ.

Proof. By Proposition 4.1, there exists a real number ξ which satisfies (21)
and, in particular, such that |piξ − pi+1| � q−λ, for i = 1, . . . , n− 1. Then,

|∆m,k| =

∣∣∣∣∣∣∣∣∣
pk−m+1 · · · pk
pk−m+2 · · · pk+1

...
. . .

...
pk · · · pk+m−1

∣∣∣∣∣∣∣∣∣
is equal to∣∣∣∣∣∣∣∣∣

pk−m+1 pk−m+2 · · · pk
pk−m+2 − pk−m+1ξ pk−m+3 − pk−m+2ξ · · · pk+1 − pkξ

...
...

. . .
...

pk − pk−1ξ pk+1 − pkξ · · · pk+m−1 − pk+m−2ξ

∣∣∣∣∣∣∣∣∣ ,
which, by our assumption, is clearly � q1−(m−1)λ. �

The proof of Proposition 4.2 can easily be adapted to show the next
proposition, which is more general.

Proposition 4.3. Let p be in Zn+1 which satisfies (22) and m a positive in-
teger. For i = 0, . . . , n−m+1, let yi denote the vector (pi, pi+1, . . . , pi+m−1).
Then, for any sequence c1, c2, . . . , cm of integers in {0, . . . , n − k + 1}, the
determinant d(c1, . . . , cm) of the m × m matrix composed of the vectors
yc1 ,yc2 , . . . ,ycm satisfies

|d(c1, . . . , cm)| � q1−(m−1)λ.

Theorem 4.4 below is a straightforward corollary of Theorem 3 of Daven-
port and Schmidt [12].

Theorem 4.4. Let a0, a1, . . . , ah be integers with no common factor through-
out. Assume that, for some non-negative integers t, k with k + h − 1 ≤ t
and t + h ≤ n, the integers pk, pk+1, . . . , pt+h are related by the recurrence
relation

a0pi + a1pi+1 + · · ·+ ahpi+h = 0, k ≤ i ≤ t.
Let Z be the maximum of the absolute values of all the h× h determinants
formed from any h of the vectors yi := (pi, pi+1, . . . , pi+h−1), i = k, . . . , t+1.
If Z is non-zero, then

max{|a0|, |a1|, . . . , |ah|} � Z1/(t−k−h+2).

We are now in position to establish the second assertion of Theorem 2.3.
We use the ideas from [12]. Let λ > 1/b(n+ 1)/2c be a real number and set
m = 1 + b1/λc. Let ξ be a transcendental real number such that λn(ξ) ≥ λ
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and consider an (n + 1)-tuple p for which (21) is satisfied and q is large
enough.

Let h be the smallest non-negative integer number such that the matrix

Ph :=


p0 p1 · · · pn−h−1 pn−h
p1 p2 · · · pn−h pn−h+1
...

...
. . .

...
...

ph ph+1 · · · pn−1 pn

 .

has rank at most h. Obviously, h ≤ dn+1
2 e, because for ` = dn+1

2 e the matrix
P` has more rows than columns and its rank is at most `. Also, we have h ≥ 1
since p is not the zero vector. On the other hand, for q = p0 large enough,
we get h ≤ m. Indeed, consider m+ 1 arbitrary columns of the matrix Pm.
By Proposition 4.3, the matrix formed from these columns has determinant
at most cq1−mλ for some absolute positive constant c. Since λ > 1/m, for q
large enough, this determinant is zero. Since λ > 1/b(n+ 1)/2c, we have

h ≤ m ≤
⌊
n+ 1

2

⌋
. (23)

By construction of the matrix Ph, there exist integers a0, a1, . . . , ah with
no common factor such that

a0pi + a1pi+1 + · · ·+ ahpi+h = 0, 0 ≤ i ≤ n− h. (24)

Note that the matrix Ph−1 has rank h and therefore the value of Z, defined
in Theorem 4.4 is non-zero. Moreover, Proposition 4.3 implies that Z �
q1−(h−1)λ. From inequality (23) we have h − 1 ≤ n − h and thus all the
assumptions of Theorem 4.4 are satisfied. Applied with k = 0 and t = n−h,
it yields

H := max{|a0|, |a1|, . . . , |ah|} ≤ Z1/(n−2h+2) � q
1−(h−1)λ
n−2h+2 .

Consider the relation (24) for i = 0 and divide it by p0 = q. Then, the
condition (21) implies that

|ahξh + ah−1ξ
h−1 + . . .+ a0| � Hq−1−λ � H

1− (1+λ)(n−2h+2)
1−(h−1)λ .

This shows that every good approximation p of ξ with q large enough pro-
vides us with an integer polynomial Qp(X) of degree at most h such that

|Qp(ξ)| � Hq−1−λ. Then, since ξ is transcendental, we must have infinitely
many different polynomials Qp(X) with this property. In other words,

{ξ ∈ R \Q : λn(ξ) ≥ λ} ⊂
⋃

1≤h≤m
Ah

(
(1 + λ)(n− 2h+ 2)

1− (h− 1)λ
− 1

)
,

where Q denotes the set of algebraic numbers and

Ah(w) := {ξ ∈ R : |P (ξ)| � H(P )−w for i. m. P ∈ Z[x], degP ≤ h}.
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It then follows from (2) that

dim{ξ ∈ R : λn(ξ) ≥ λ} ≤ max
1≤h≤m

{
(h+ 1)(1− (h− 1)λ)

(n− 2h+ 2)(1 + λ)

}
.

The proof of the last assertion of Theorem 2.3 is complete.

5. A simple proof of Theorem 1.5

Schleischitz’ proof of Theorem 1.5 (see [17] and Theorem 2.5.8 of [8]) is
clever, but there is a simpler argument, that we present below. The common
ingredient of both proofs is the fact that, if a rational tuple is sufficiently
close to the n-tuple (ξ, . . . , ξn), then it must lie on the Veronese curve.

Let n ≥ 2 be an integer and ξ a real number with λn(ξ) > 1. Let λ be a
real number with 1 < λ < λn(ξ). Then, there are arbitrarily large integers
q, p1, . . . , pn such that

|qξj − pj | < q−λ, j = 1, . . . , n.

Set p0 = q. Observe that (as in the previous section, we denote by |A| the
absolute value of the determinant of a square matrix A), for j = 1, . . . , n−1,
we have

∆j :=

∣∣∣∣pj−1 pj
pj pj+1

∣∣∣∣ =

∣∣∣∣pj−1 pj − pj−1ξ
pj pj+1 − pjξ

∣∣∣∣ = |pj−1(pj+1−pjξ)−pj(pj−pj−1ξ)|,

thus, by the triangle inequality,

∆j �ξ |q|1−λ.
If |q| is sufficiently large, then we get

∆1 = . . . = ∆n−1 = 0,

which implies that there exist coprime non-zero integers a, b such that
p1
q

=
p2
p1

= . . . =
pn
pn−1

=
a

b
.

We deduce at once that the point(
p1
q
, . . . ,

pn
q

)
=
(a
b
, . . . ,

(a
b

)n)
lies on the Veronese curve x 7→ (x, x2, . . . , xn) and that q is an integer
multiple of bn. In particular, we get∣∣∣ξ − p1

q

∣∣∣ =
∣∣∣ξ − a

b

∣∣∣ < q−1−λ ≤ b−n(1+λ).

Since q (and, thus, b) is arbitrarily large, we deduce from the (easy half of
the) Jarńık–Besicovich theorem that

dim{ξ ∈ R : λn(ξ) ≥ λ} ≤ 2

n(1 + λ)
.

Combined with (6), this gives a full proof of Theorem 1.5.
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Similar arguments allow us to give an alternative proof of a result of
Schleischitz asserting that the inequality

λ̂n(ξ) ≤ max

{
1

n
,

1

λ1(ξ)

}
(25)

holds, where λ̂n(ξ) is the supremum of the real numbers λ for which the
inequalities (3) have a non-zero integer solution for all sufficiently large X.
We do not claim that the proof below is simpler than the original one.

Since (25) is clearly true for n = 1 and for λ1(ξ) = 1, we assume that
n ≥ 2 and λ1(ξ) > 1. Let q be a large positive integer and v be a real
number greater than 1 such that

‖qξ‖ = |qξ − p| ≤ q−v.

In the sequel we will let v tend to λ1(ξ) from below, thus we may assume
that p and q are coprime. Then, we check that

|qjξj − pj | � qj−1−v, 1 ≤ j ≤ n.

Let v′ be a real number with 1 < v′ < min{v, n} and set X = qv
′
. Let x be

a positive integer with x < X. Assume that λ̂n(ξ) > 1/v′. Then, there are
integers x1, . . . , xn such that

|xξj − xj | � X−1/v
′
.

We have ∣∣∣∣q p
x x1

∣∣∣∣ =

∣∣∣∣q qξ − p
x xξ − x1

∣∣∣∣� Xq−v + qX−1/v
′
< 1,

if q is large enough. As gcd(p, q) = 1, we derive that q divides x. Thus, the
determinant ∣∣∣∣q2 p2

x x2

∣∣∣∣
is an integer multiple of q. However, it satisfies∣∣∣∣q2 p2

x x2

∣∣∣∣ =

∣∣∣∣q2 q2ξ2 − p2
x xξ2 − x2

∣∣∣∣� Xq1−v + q2X−1/v
′
< q.

Consequently, we derive that, if q is large enough, the determinant is equal to
0, hence, q2 divides x. Continuing in the same way, we deduce that qn divides
x, a contradiction with the inequalities 1 ≤ x < qn. Since v′ can be chosen

arbitrarily close to min{v, n}, we conclude that λ̂n(ξ) ≤ max{1/n, 1/v}. By
letting v tend to λ1(ξ), we get (25).

These new proofs of Theorem 1.5 and (25) can be carried out in the p-adic
setting to give p-adic analogues of these results, thereby extending Theorem
2.3 of [9]. Details will be given elsewhere.
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