New York Journal of Mathematics

New York J. Math. 16 (2010) 489–505.

Wandering subspaces and the Beurling type theorem. II

Kei Ji Izuchi, Kou Hei Izuchi and Yuko Izuchi

ABSTRACT. Let H^2 be the Hardy space over the bidisk. Let $\varphi(w)$ be a nonconstant inner function. We denote by $[z - \varphi(w)]$ the smallest invariant subspace for both operators T_z and T_w containing the function $z - \varphi(w)$. Aleman, Richter and Sundberg showed that the Beurling type theorem holds for the Bergman shift on the Bergman space. It is known that the compression operator S_z on $H^2 \ominus [z - w]$ is unitarily equivalent to the Bergman shift, so the Beurling type theorem holds for S_z on $H^2 \ominus [z - w]$. As a generalization, we shall show that the Beurling type theorem holds for S_z on $H^2 \ominus [z - \varphi(w)]$. Also we shall prove that the Beurling type theorem holds for the fringe operator F_w on $[z - w] \ominus z[z - w]$ and for F_z on $[z - \varphi(w)] \ominus w[z - \varphi(w)]$ if $\varphi(0) = 0$.

Contents

1.	Introduction	489
2.	Wandering subspaces	491
3.	The Beurling type theorem for S_z	494
4.	The fringe operators	496
References		504

1. Introduction

Let T be a bounded linear operator on a Hilbert space H. For a subset E of H, we denote by [E] the smallest invariant subspace for T containing E. Let $M \subset H$ be an invariant subspace for T. We denote by $M \ominus TM$ the orthogonal complement of TM in M. The space $M \ominus TM$ is called a *wandering subspace* of M for the operator T. We have $[M \ominus TM] \subset M$. We say that the Beurling type theorem holds for T if $[M \ominus TM] = M$ for all invariant subspaces M of H for T. Our basic problem is to find operators for which the Beurling type theorem holds.

Received July 26, 2010; revised October 24, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.

Key words and phrases. Beurling type theorem, Hardy space over the bidisk, invariant subspace, wandering subspace, fringe operator.

The first author is partially supported by Grant-in-Aid for Scientific Research (No.21540166), Japan Society for the Promotion of Science.

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . We denote by $H^2(z)$ the Hardy space on \mathbb{D} with variable z. Let T_z be the multiplication operator on $H^2(z)$ by the coordinate function z. The Beurling theorem [3] says that $M = [M \oplus T_z M]$ holds for all invariant subspaces M of $H^2(z)$ for T_z . Let $L^2_a(z)$, the Bergman space, be the Hilbert space consisting of square integrable analytic functions on \mathbb{D} with respect to the normalized Lebesgue measure on \mathbb{D} . Let B be the Bergman shift on $L^2_a(z)$, that is, Bf(z) = zf(z) for $f \in L^2_a(z)$. It is known that the dimension of wandering subspaces of invariant subspaces in $L^2_a(z)$ for B ranges from 1 to ∞ (see [2, 7, 9]). In [1], Aleman, Richter and Sundberg proved that the Beurling type theorem holds for the Bergman shift B. In [16], Shimorin showed that if $T: H \to H$ satisfies the following conditions:

- (a) $||Tx + y||^2 \le 2(||x||^2 + ||Ty||^2), \quad x, y \in H;$
- (b) $\bigcap \{T^n H : n \ge 0\} = \{0\};$

then the Beurling type theorem holds for T. As an application of this theorem, Shimorin gave a simpler proof of the Aleman, Richter and Sundberg theorem. Later, different proofs of the the Beurling type theorem are given in [13, 14, 17]. Recently, the authors [10] proved the following.

Theorem A. Suppose $T: H \to H$ satisfies the following conditions:

- (i) $||Tx||^2 + ||T^{*2}Tx||^2 \le 2||T^*Tx||^2$, $x \in H$;
- (ii) T is bounded below, i.e., there is c > 0 satisfying that $||Tx|| \ge c||x||$ for every $x \in H$;
- (iii) $||T^{*n}x|| \to 0 \text{ as } n \to \infty \text{ for every } x \in H.$

Then the Beurling type theorem holds for T.

Also it was pointed out that conditions (i), (ii) and (iii) in Theorem A are equivalent to conditions (a) and (b) in Shimorin's theorem.

Let $H^2 = H^2(\mathbb{D}^2)$ be the Hardy space over the bidisk \mathbb{D}^2 . We identify a function in H^2 with its boundary function on the distinguished boundary Γ^2 of \mathbb{D}^2 , so we think of H^2 as a closed subspace of the Lebesgue space $L^2(\Gamma^2)$. We use z, w as variables in \mathbb{D}^2 . We note that the Hardy space H^2 coincides with the closed tensor product $H^2(z) \otimes H^2(w)$. Let T_z and T_w be multiplication operators on H^2 by z and w. A closed subspace M of H^2 is called invariant if $T_z M \subset M$ and $T_w M \subset M$. For a subset E of H^2 , we denote by [E] the smallest invariant subspace of H^2 containing E. For a subspace E of H^2 , we denote by P_E the orthogonal projection from $L^2(\Gamma^2)$ onto E. See books [4, 15] for the study of the Hardy space H^2 .

Let M be an invariant subspace of H^2 . Since T_z is an isometry on M, by the Wold decomposition theorem we have

$$M = \sum_{n=0}^{\infty} \oplus (M \ominus zM) z^n.$$

So many properties of the invariant subspace M are considered to be encoded in $M \ominus zM$. To study $M \ominus zM$, Yang defined the fringe operator F_w on

 $M \ominus zM$ by

$$F_w f = P_{M \ominus zM} T_w f, \quad f \in M \ominus zM,$$

and studied the properties of F_w (see [21, 23, 24]). Similarly, we may define the fringe operator F_z on $M \ominus wM$.

Let $N = H^2 \ominus M$. Then $T_z^* N \subset N$ and $T_w^* N \subset N$. Let S_z and S_w be the compression operators on N defined by

$$S_z f = P_N T_z f$$
 and $S_w f = P_N T_w f$, $f \in N$.

We note that $S_z^* = T_z^*|_N$ and $S_w^* = T_w^*|_N$.

One of the most interesting invariant subspaces of H^2 is [z - w]. It is known that $S_z = S_w$ on $H^2 \ominus [z - w]$ and S_z is unitarily equivalent to the Bergman shift on $L^2_a(\mathbb{D})$ (see [6, 12, 17, 18, 19, 20, 22]). So by the Aleman, Richter and Sundberg theorem, the Beurling type theorem holds for the operators S_z and S_w on $H^2 \ominus [z - w]$.

As generalized spaces of [z - w], we have invariant subspaces $M_{\varphi} := [z - \varphi(w)]$ for nonconstant inner functions $\varphi(w)$. We put $N_{\varphi} = H^2 \oplus M_{\varphi}$. The space N_{φ} has been studied by Yang and the first author in [11, 12]. In Section 2, as an application of Theorem A we shall prove that the Beurling type theorem holds for some other unilateral operators. And we give a sufficient condition on unilateral weighted shifts $W_{\mathbf{c}}$ for which $\dim(M \oplus W_{\mathbf{c}}M) = 1$ for every invariant subspace for $W_{\mathbf{c}}$. In Section 3, as an application of Section 2 we shall prove that the Beurling type theorem holds for the fringe operator F_w on $[z - w] \oplus z[z - w]$. And also the Beurling type theorem holds for the fringe operator F_z on $M_{\varphi} \oplus wM_{\varphi}$ for every inner function $\varphi(w)$ with $\varphi(0) = 0$. In this case, we have $\dim(M \oplus F_z M) = 1$ for every invariant subspace M of $M_{\varphi} \oplus wM_{\varphi}$ for F_z .

2. Wandering subspaces

Let B be the Bergman shift on $L^2_a(z)$. We put

$$e_n(z) = \sqrt{n+1}z^n, \quad n \ge 0.$$

Then $\{e_n(z)\}_{n\geq 0}$ is an orthonormal basis of $L^2_a(z)$. We have $B^*e_0(z)=0$,

$$Be_n(z) = \frac{\sqrt{n+1}}{\sqrt{n+2}}e_{n+1}(z)$$
 and $B^*e_n(z) = \frac{\sqrt{n}}{\sqrt{n+1}}e_{n-1}(z), \quad n \ge 1.$

Hence

$$B^*Be_n(z) = \frac{n+1}{n+2}e_n(z),$$

and

$$B^{*2}Be_n(z) = \frac{\sqrt{n}\sqrt{n+1}}{n+2}e_{n-1}(z), \quad n \ge 1.$$

By these equalities, we have

$$||Bf||^2 + ||B^{*2}Bf||^2 = 2||B^*Bf||^2$$

for every $f(z) \in L^2_a(z)$ (see [10]). Books [5, 8] are nice references for the study of the Bergman space.

Let *H* be a separable Hilbert space with an orthonormal basis $\{\tau_n\}_{n\geq 0}$. Let $\mathbf{c} = \{c_n\}_{n\geq 0}$ be a sequence of positive numbers with $\sup_n c_n < \infty$. Let $W_{\mathbf{c}}$ be a unilateral weighted shift on *H* defined by $W_{\mathbf{c}}\tau_n = c_n\tau_{n+1}$ for $n\geq 0$. We have $W_{\mathbf{c}}^*\tau_0 = 0$ and $W_{\mathbf{c}}^*\tau_n = c_{n-1}\tau_{n-1}$ for $n\geq 1$. We note that $\{W_{\mathbf{c}}\tau_n : n\geq 0\}$ and $\{W_{\mathbf{c}}^*\tau_n : n\geq 1\}$ are orthogonal systems. For $x\in H$ and $x = \sum_{n=0}^{\infty} a_n\tau_n$, we have

$$||W_{\mathbf{c}}x||^{2} = \left\|\sum_{n=0}^{\infty} a_{n}c_{n}\tau_{n+1}\right\|^{2} = \sum_{n=0}^{\infty} |a_{n}|^{2}c_{n}^{2}.$$

Then $W_{\mathbf{c}}$ is a bounded linear operator on H and $W_{\mathbf{c}}$ is bounded below if and only if $\inf_n c_n > 0$.

Theorem 2.1. For another Hilbert space E, let $E \otimes H$ be the tensor product of E and H. We define a bounded linear operator $T = I \otimes W_{\mathbf{c}}$ on $E \otimes H$ by $T(x \otimes \tau_n) = x \otimes W_{\mathbf{c}} \tau_n$ for $x \in E$ and $n \ge 0$. If $1/\sqrt{2} \le c_0 \le 1$ and $1 \le c_n^2(2 - c_{n-1}^2)$ for every $n \ge 1$, then the Beurling type theorem holds for T.

Proof. First, we prove that $c_n \leq 1$ for every $n \geq 0$. To prove this, suppose that $c_m > 1$ for some $m \geq 1$. Since $1 \leq c_{m+1}^2(2 - c_m^2)$, we have $c_m^2 < 2$. Since $0 < c_m^4 - 2c_m^2 + 1$, we have $c_m^2 < 1/(2 - c_m^2) \leq c_{m+1}^2$. Thus we get $c_m < c_{m+1} < c_{m+2} < \cdots$. Since $\sup_n c_n < \infty$, $c_n \to \alpha$ as $n \to \infty$ for some $0 < \alpha < \infty$. Then $1/(2 - \alpha^2) = \alpha^2$, so $\alpha = 1$. This contradicts with $1 < c_m < \alpha$.

Since $1 \leq c_n^2(2-c_{n-1}^2)$, we have $1/\sqrt{2} \leq c_n$ for every $n \geq 0$. Let $f \in E \otimes H$. We may write $f = \sum_{n=0}^{\infty} x_n \otimes \tau_n$ for some $x_n \in E$ with $||f||^2 = \sum_{n=0}^{\infty} ||x_n||^2 < \infty$. Since $W_{\mathbf{c}}\tau_n \perp W_{\mathbf{c}}\tau_k$ for $n \neq k$, we have $||Tf||^2 = \sum_{n=0}^{\infty} ||x_n||^2 ||W_{\mathbf{c}}\tau_n||^2$, so $||f||^2/2 \leq ||Tf||^2 \leq ||f||^2$. Then T is bounded below. We have

$$\|T^{*k}f\|^{2} = \left\|\sum_{n=k}^{\infty} x_{n} \otimes W_{\mathbf{c}}^{*k}\tau_{n}\right\|^{2}$$
$$= \left\|\sum_{n=k}^{\infty} x_{n} \otimes (c_{n-1}c_{n-2}\cdots c_{n-k})\tau_{n-k}\right\|^{2}$$
$$\leq \sum_{n=k}^{\infty} \|x_{n}\|^{2}$$
$$\to 0 \quad \text{as } k \to \infty.$$

We have also

$$Tf = \sum_{n=0}^{\infty} c_n(x_n \otimes \tau_{n+1}), \quad T^*Tf = \sum_{n=0}^{\infty} c_n^2(x_n \otimes \tau_n),$$

and

$$T^{*2}Tf = \sum_{n=1}^{\infty} c_n^2 c_{n-1}(x_n \otimes \tau_{n-1}).$$

Hence

$$||Tf||^{2} + ||T^{*2}Tf||^{2} = c_{0}^{2}||x_{0}||^{2} + \sum_{n=1}^{\infty} c_{n}^{2}(1 + c_{n}^{2}c_{n-1}^{2})||x_{n}||^{2}$$

and

$$2||T^*Tf||^2 = \sum_{n=0}^{\infty} 2c_n^4 ||x_n||^2.$$

Therefore

$$2\|T^*Tf\|^2 - (\|Tf\|^2 + \|T^{*2}Tf\|^2)$$

= $c_0^2(2c_0^2 - 1)\|x_0\|^2 + \sum_{n=1}^{\infty} c_n^2(c_n^2(2 - c_{n-1}^2) - 1)\|x_n\|^2$
 ≥ 0 by the assumption.

Applying Theorem A, we get the assertion.

Remark 2.2. Let $E = \mathbb{C}$. We shall consider the extremal case of conditions $1/\sqrt{2} \le c_0 \le 1$ and $1 \le c_n^2(2 - c_{n-1}^2)$. Take $c_0 = 1$ and inductively we take c_n such that $1 = c_n^2(2 - c_{n-1}^2)$. Then we have $c_n = 1$ for every $n \ge 0$. In this case, we may think that $H = H^2(z)$, $W_{\mathbf{c}} = T_z$, and $\prod_{i=0}^{\infty} c_i = 1 > 0$.

Take $c_0 = 1/\sqrt{2}$ and inductively we take c_n such that $1 = c_n^2(2 - c_{n-1}^2)$. We have $c_n = \sqrt{n+1}/\sqrt{n+2}$ for every $n \ge 0$. In this case, we may think that $H = L_a^2(z)$, $W_{\mathbf{c}} = B$, and $\prod_{i=0}^n c_i = 1/\sqrt{n+2} \to 0$ as $n \to \infty$.

Corollary 2.3. Let E be a Hilbert space. Then the Beurling type theorem holds for $I \otimes B$ on $E \otimes L^2_a(z)$.

We shall give a sufficient condition on $\mathbf{c} = \{c_n\}_{n \ge 0}$ for which

$$\dim(M \ominus W_{\mathbf{c}}M) = 1$$

for every invariant subspace M of H for $W_{\mathbf{c}}$. Let $\{\alpha_n\}_{n\geq 0}$ be a sequence of positive numbers and $\alpha_0 = 1$. We define a linear map

$$V: \operatorname{span}\{z^n: n \ge 0\} \to H$$

by $Vz^n = \alpha_n \tau_n$ for every $n \ge 0$.

Lemma 2.4. We have that $VT_z = W_{\mathbf{c}}V$ on span $\{z^n : n \ge 0\}$ if and only if $\alpha_{n+1} = \prod_{i=0}^{n} c_i$ for every $n \ge 0$. In this case, if $0 < \prod_{i=0}^{\infty} c_i < \infty$, then V has a bounded linear extension $\widetilde{V} : H^2(z) \to H$ satisfying that \widetilde{V} is invertible and $\widetilde{V}T_z = W_{\mathbf{c}}\widetilde{V}$.

Proof. We have $VT_z z^n = W_{\mathbf{c}} V z^n$ if and only if $\alpha_{n+1}\tau_{n+1} = \alpha_n c_n \tau_{n+1}$. Hence $VT_z = W_{\mathbf{c}} V$ on span $\{z^n : n \ge 0\}$ if and only if $\alpha_{n+1} = \prod_{i=0}^n c_i$ for every $n \ge 0$. In this case, moreover suppose that $0 < \prod_{i=0}^{\infty} c_i < \infty$. Then V is bounded and bounded below on span $\{z^n : n \ge 0\}$. Hence V has a bounded linear extension $\widetilde{V} : H^2(z) \to H$. It is easy to see that \widetilde{V} is invertible and $\widetilde{V}T_z = W_{\mathbf{c}}\widetilde{V}$.

We denote by $\operatorname{Lat}(W_{\mathbf{c}})$ and $\operatorname{Lat}(T_z)$ the lattice of invariant subspaces for $W_{\mathbf{c}}$ on H and T_z on $H^2(z)$, respectively. We write $\operatorname{Lat}(W_{\mathbf{c}}) \cong \operatorname{Lat}(T_z)$ if $\operatorname{Lat}(W_{\mathbf{c}})$ and $\operatorname{Lat}(T_z)$ have the same lattice structure.

Theorem 2.5. If $0 < \prod_{i=0}^{\infty} c_i < \infty$, then $\dim(M \ominus W_{\mathbf{c}}M) = 1$ for every invariant subspace M for $W_{\mathbf{c}}$. Moreover we have $\operatorname{Lat}(W_{\mathbf{c}}) \cong \operatorname{Lat}(T_z)$.

Proof. Let M be a nonzero invariant subspace M for $W_{\mathbf{c}}$. Let $\alpha_0 = 1$ and $\alpha_n = \prod_{i=0}^{n-1} c_i$ for $n \ge 1$. By Lemma 2.4, there is a bounded linear operator $\widetilde{V}: H^2(z) \to H$ satisfying $\widetilde{V}z^n = \alpha_n \tau_n$ for every $n \ge 0$, \widetilde{V} is invertible and $\widetilde{V}T_z = W_{\mathbf{c}}\widetilde{V}$. Then we have

$$T_z \widetilde{V}^{-1} M = \widetilde{V}^{-1} W_{\mathbf{c}} M \subset \widetilde{V}^{-1} M.$$

Hence $\widetilde{V}^{-1}M$ is an invariant subspace for T_z . By the Beurling theorem, $\widetilde{V}^{-1}M = \theta(z)H^2(z)$ for an inner function $\theta(z)$, so $M = \widetilde{V}\theta(z)H^2(z)$. Since $\widetilde{V}T_z = W_{\mathbf{c}}\widetilde{V}$, M is an invariant subspace for $W_{\mathbf{c}}$ generated by $\widetilde{V}\theta(z)$. Therefore we get dim $(M \ominus W_{\mathbf{c}}M) = 1$.

For an inner function $\theta_1(z)$, $\widetilde{V}\theta_1(z)H^2(z)$ is an invariant subspace for $W_{\mathbf{c}}$. Thus $\operatorname{Lat}(W_{\mathbf{c}}) \cong \operatorname{Lat}(T_z)$.

3. The Beurling type theorem for S_z

Let $\varphi(w)$ be a nonconstant inner function,

$$M_{\varphi} = [z - \varphi(w)]$$
 and $N_{\varphi} = H^2 \ominus M_{\varphi}$.

Let T_{φ} be the multiplication operator on $H^2(w)$ by $\varphi(w)$. Its adjoint operator T_{φ}^* is represented by $T_{\varphi}^*f = P_{H^2(w)}\overline{\varphi}f, f \in H^2(w)$. In [11], Yang and the first author showed that

$$N_{\varphi} = \left\{ \sum_{n=0}^{\infty} \oplus (T_{\varphi}^{*n} f(w)) z^{n} : f \in H^{2}(w), \sum_{n=0}^{\infty} \|T_{\varphi}^{*n} f\|^{2} < \infty \right\}.$$

Let

$$\sigma_n(z,w) = \frac{\sum_{i=0}^n z^i w^{n-i}}{\sqrt{n+1}}, \quad n \ge 0.$$

We note that $\sigma_0(z, w) = 1$. It is known that $\{\sigma_n\}_{n\geq 0}$ is an orthonormal basis of $N_w = H^2 \ominus [z - w]$, the special case $\varphi(w) = w$. If we define the operator $V : N_w \to L^2_a(z)$ by $V\sigma_n = \sigma_n(z, z)$, then V is a unitary operator and $S_z = S_w = V^* BV$.

Since T_{φ} is an isomerty on $H^2(w)$, by the Wold decomposition theorem we have

$$H^{2}(w) = \sum_{n=0}^{\infty} \oplus \varphi(w)^{n} (H^{2}(w) \oplus \varphi(w)H^{2}(w)).$$

Let $\{\lambda_k(w)\}_{k=0}^m$ be an orthonormal basis of $H^2(w) \ominus \varphi(w)H^2(w)$, where $0 \le m \le \infty$. Also let

$$E_{k,n}(z,w) = \lambda_k(w)\sigma_n(z,\varphi(w)) \in H^2, \quad 0 \le k \le m, n \ge 0.$$

In [12], Yang and the first author proved the following.

Lemma 3.1. The set $\{E_{k,n} : 0 \le k \le m, n \ge 0\}$ is an orthonormal basis of N_{φ} and

$$S_z E_{k,n} = \frac{\sqrt{n+1}}{\sqrt{n+2}} E_{k,n+1}.$$

We define the operator

$$U: N_{\varphi} \to \left(H^2(w) \ominus \varphi(w) H^2(w)\right) \otimes L^2_a(z)$$

by

$$UE_{k,n} = \lambda_k(w) \otimes e_n(z).$$

Then U is clearly a unitary operator, and by Lemma 3.1 one easily checks that

$$S_z = U^*(I \otimes B)U$$
 and $S_z^* = U^*(I \otimes B^*)U$.

By Corollary 2.3, we have the following theorem.

Theorem 3.2. The Beurling type theorem holds for the operator S_z on N_{φ} for every nonconstant inner function $\varphi(w)$.

Let $S_{\varphi} = P_{N_{\varphi}}T_{\varphi}|_{N_{\varphi}}$. Then $S_{\varphi}^* = P_{N_{\varphi}}T_{\varphi}^*|_{N_{\varphi}}$. Since $T_z^* = T_{\varphi}^*$ on N_{φ} , we have $S_z^* = S_{\varphi}^*$, so $S_z = S_{\varphi}$. By Theorem 3.2, we have the following.

Corollary 3.3. The Beurling type theorem holds for S_{φ} on N_{φ} for every nonconstant inner function $\varphi(w)$.

If $\varphi(w) \neq aw$, |a| = 1, then $S_z \neq S_w$. There are some differences between the operators S_z and S_w on N_{φ} .

Proposition 3.4. Let $\varphi(w) = w^2 \varphi_0(w)$ for an inner function $\varphi_0(w)$. Then $\|S_w f\|^2 + \|S_w^{*2} S_w f\|^2 > 2\|S_w^* S_w f\|^2$

for some $f \in N_{\varphi}$.

Proof. The set $\{1, \varphi_0(w), w\varphi_0(w)\}$ is contained in $H^2(w) \ominus \varphi(w)H^2(w)$. Let $f(w) = w\varphi_0(w) \in N_{\varphi}$. Then $wf(w) = \varphi(w)$. Let

$$r(w) \in H^2(w) \ominus \varphi(w) H^2(w)$$
 with $r(w) \perp 1$.

Then $\varphi(w) \perp r(w)\varphi(w)^n$, and by Lemma 3.1 $r(w)\sigma_n(z,\varphi(w)) \in N_{\varphi}$ for every $n \geq 0$. We have

$$\sigma_n(z,\varphi(w)) = \frac{\sum_{i=0}^n z^i \varphi(w)^{n-i}}{\sqrt{n+1}} \in N_{\varphi}$$

For every $n \ge 0$, we have

$$\left\langle wf(w), r(w)\sigma_n(z,\varphi(w)) \right\rangle = \frac{1}{\sqrt{n+1}} \left\langle \varphi(w), r(w) \sum_{i=0}^n z^i \varphi(w)^{n-i} \right\rangle$$
$$= \frac{1}{\sqrt{n+1}} \left\langle \varphi(w), r(w)\varphi(w)^n \right\rangle$$
$$= 0.$$

By Lemma 3.1, $\sigma_n(z, \varphi(w))$ and $\varphi_0(w)\sigma_0(z, \varphi(w)) = \varphi_0(w)$ are contained in N_{φ} . For $j \neq 1$, since $\varphi(0) = 0$ we have also

$$\langle wf(w), \sigma_j(z, \varphi(w)) \rangle = \frac{1}{\sqrt{j+1}} \langle \varphi(w), \varphi(w)^j \rangle = 0.$$

Hence

$$S_w f(w) = \langle w f(w), \sigma_1(z, \varphi(w)) \rangle \sigma_1(z, \varphi(w))$$
$$= \left\langle \varphi(w), \frac{\varphi(w) + z}{\sqrt{2}} \right\rangle \sigma_1(z, \varphi(w))$$
$$= \frac{1}{\sqrt{2}} \sigma_1(z, \varphi(w)).$$

We have

$$T_w^* S_w f(w) = \frac{1}{\sqrt{2}} T_w^* \left(\frac{\varphi(w) + z}{\sqrt{2}} \right) = \frac{1}{2} w \varphi_0(w) \in N_{\varphi}$$

Hence $S_w^* S_w f(w) = \frac{1}{2} w \varphi_0(w)$, so $S_w^{*2} S_w f(w) = \frac{1}{2} \varphi_0(w)$. Therefore

$$||S_w f(w)||^2 + ||S_w^{*2} S_w f(w)||^2 = \frac{1}{2} + \frac{1}{4} > \frac{1}{2} = 2||S_w^{*} S_w f(w)||^2. \qquad \Box$$

By Proposition 3.4, we may not apply Theorem A for S_w on N_{φ} . So we do not know whether or not the Beurling type theorem holds for the operator S_w on N_{φ} .

4. The fringe operators

Let M be a nonzero invariant subspace of the Hardy space H^2 and $N = H^2 \ominus M$. One easily checks the following.

Lemma 4.1. For $f \in M$, $f \in M \ominus zM$ if and only if $T_z^* f \in N$.

We define the fringe operators F_w on $M \ominus zM$ by

$$F_w = P_{M \ominus zM} T_w |_{M \ominus zM}$$

and F_z on $M \ominus wM$ by $F_z = P_{M \ominus wM} T_z|_{M \ominus wM}$. Let $\varphi(w)$ be a nonconstant inner function. We use the same notations as the ones given in Section 3. Let $\{\lambda_k(w)\}_{k=0}^m$ be an orthonormal basis of $H^2(w) \ominus \varphi(w) H^2(w)$. Let

$$E_n = \frac{z\sigma_n(z,\varphi(w)) - \sqrt{n+1}\varphi(w)^{n+1}}{\sqrt{n+2}}, \quad n \ge 0.$$

Then we may verify the following lemma (see [12]).

Lemma 4.2. The set $\{\lambda_k(w)E_n : 0 \leq k \leq m, n \geq 0\}$ is an orthonormal basis of $M_{\varphi} \ominus zM_{\varphi}$.

Theorem 4.3. The Beurling type theorem holds for the fringe operator F_w on $[z - w] \ominus z[z - w]$. Moreover, $\dim(M \ominus F_w M) = 1$ for every invariant subspace M for F_w .

Proof. Let

$$X_n = \frac{1}{\sqrt{n+2}} \left(\frac{\sum_{i=0}^n z^{i+1} w^{n-i}}{\sqrt{n+1}} - \sqrt{n+1} w^{n+1} \right)$$

for every $n \ge 0$. By Lemma 4.2, $\{X_n\}_{n\ge 0}$ is an orthonormal basis of $[z - w] \ominus z[z - w]$ (see also [6, 17, 18]). It is not difficult to see that $wX_n \perp X_j$ for $j \ne n + 1$. Hence

$$F_w X_n = \langle w X_n, X_{n+1} \rangle X_{n+1}$$

= $\left\langle \frac{1}{\sqrt{n+2}} \left(\frac{\sum_{i=0}^n z^{i+1} w^{n+1-i}}{\sqrt{n+1}} - \sqrt{n+1} w^{n+2} \right), \frac{1}{\sqrt{n+3}} \left(\frac{\sum_{i=0}^{n+1} z^{i+1} w^{n+1-i}}{\sqrt{n+2}} - \sqrt{n+2} w^{n+2} \right) \right\rangle X_{n+1}$
= $\frac{1}{\sqrt{n+2}\sqrt{n+3}} \left(\frac{n+1}{\sqrt{n+1}\sqrt{n+2}} + \sqrt{n+1}\sqrt{n+2} \right) X_{n+1}$
= $\frac{\sqrt{n+1}\sqrt{n+3}}{n+2} X_{n+1}.$

Let

$$c_n = \frac{\sqrt{n+1}\sqrt{n+3}}{n+2}.$$

Then $c_0 = \sqrt{3}/2$, so $1/\sqrt{2} < c_0$, and $c_n < 1$ for every $n \ge 0$. It is not difficult to check $c_n^2(2 - c_{n-1}^2) \ge 1$. By Theorem 2.1, we get the first assertion. We have

$$\prod_{n=0}^{k} c_n = \frac{\sqrt{3}}{2} \frac{\sqrt{2}\sqrt{4}}{3} \frac{\sqrt{3}\sqrt{5}}{4} \cdots \frac{\sqrt{k+1}\sqrt{k+3}}{k+2} = \frac{1}{\sqrt{2}} \frac{\sqrt{k+3}}{\sqrt{k+2}}$$

Hence $\prod_{n=0}^{\infty} c_n = 1/\sqrt{2}$. By Theorem 2.5, we get the second assertion. \Box

Since

$$T_z^* X_n = \frac{1}{\sqrt{n+2}} \sigma_n(z, w),$$

 $T_z^*([z-w] \ominus z[z-w])$ is dense in $H^2 \ominus [z-w]$. As mentioned in the introduction, S_w on $H^2 \ominus [z-w]$ is unitary equivalent to the Bergman shift B on $L_a^2(\mathbb{D})$. We note that the dimension of wandering subspaces of invariant subspaces in $L_a^2(z)$ for B ranges from 1 to ∞ .

Proposition 4.4. Let $\varphi(w) = w^2 \varphi_0(w)$ for an inner function $\varphi_0(w)$. Then $\|F_w f\|^2 + \|F_w^{*2} F_w f\|^2 > 2\|F_w^* F_w f\|^2$

for some $f \in M_{\varphi} \ominus zM_{\varphi}$.

Proof. We have

$$\{1,\varphi_0(w),w\varphi_0(w)\} \subset H^2(w) \ominus \varphi(w)H^2(w)$$

By Lemma 4.2, $E_n, \varphi_0(w)E_n, w\varphi_0(w)E_n$ are contained in $M_{\varphi} \ominus zM_{\varphi}$ for every $n \ge 0$. Let $f = w\varphi_0(w)E_0$. Then

$$wf = \varphi(w)E_0 = rac{\varphi(w)z - \varphi(w)^2}{\sqrt{2}}.$$

Let

$$r(w) \in H^2(w) \ominus \varphi(w) H^2(w)$$
 with $r(w) \perp 1$.

Then $\varphi(w) \perp r(w)\varphi(w)^n$, and by Lemma 4.2 we have $r(w)E_n \in M_{\varphi} \ominus zM_{\varphi}$ for $n \geq 0$. Hence for every $n \geq 0$, we have

$$\langle wf, r(w)E_n \rangle = \frac{1}{\sqrt{2}\sqrt{n+2}} \left\langle \varphi(w)z - \varphi(w)^2, \\ r(w)\frac{\sum_{i=0}^n z^{i+1}\varphi(w)^{n-i}}{\sqrt{n+1}} - \sqrt{n+1}r(w)\varphi(w)^{n+1} \right\rangle$$
$$= \frac{1}{\sqrt{2}\sqrt{n+2}} \left(\frac{\langle \varphi(w), r(w)\varphi(w)^n \rangle}{\sqrt{n+1}} \\ + \sqrt{n+1} \langle \varphi(w)^2, r(w)\varphi(w)^{n+1} \rangle \right)$$
$$= 0.$$

For $j \neq 1$, since $\varphi(0) = 0$ we have also

$$\langle wf, E_j \rangle = \frac{1}{\sqrt{2}\sqrt{j+2}} \left(\frac{\langle \varphi(w), \varphi(w)^j \rangle}{\sqrt{j+1}} + \sqrt{j+1} \langle \varphi(w)^2, \varphi(w)^{j+1} \rangle \right)$$
$$= 0.$$

Hence

$$F_w f = \langle wf, E_1 \rangle E_1 = \frac{1}{\sqrt{2}\sqrt{3}} \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right) E_1 = \frac{\sqrt{3}}{2} E_1$$

We have

$$T_w^* F_w f = \frac{\sqrt{3}}{2} T_w^* \left(\frac{1}{\sqrt{3}} \left(\frac{\varphi(w)z + z^2}{\sqrt{2}} - \sqrt{2}\varphi(w)^2 \right) \right)$$
$$= \frac{1}{2} \left(\frac{w\varphi_0(w)z}{\sqrt{2}} - \sqrt{2}w\varphi_0(w)\varphi(w) \right).$$

Let

$$r_1(w) \in H^2(w) \ominus \varphi(w) H^2(w)$$
 with $r_1(w) \perp w\varphi_0(w)$.

Then $w\varphi_0(w) \perp r_1(w)\varphi(w)^n$ for $n \ge 0$. Hence for every $n \ge 0$, we have

$$\langle T_w^* F_w f, r_1(w) E_n \rangle = \frac{1}{2\sqrt{n+2}} \left\langle \frac{w\varphi_0(w)z}{\sqrt{2}} - \sqrt{2}w\varphi_0(w)\varphi(w), \\ r_1(w) \frac{\sum_{i=0}^n z^{i+1}\varphi(w)^{n-i}}{\sqrt{n+1}} - \sqrt{n+1}r_1(w)\varphi(w)^{n+1} \right\rangle$$
$$= \frac{1}{2\sqrt{n+2}} \left(\frac{1}{\sqrt{2}\sqrt{n+1}} \langle w\varphi_0(w), r_1(w)\varphi(w)^n \rangle \\ + \sqrt{2}\sqrt{n+1} \langle w\varphi_0(w), r_1(w)\varphi(w)^n \rangle \right)$$
$$= 0.$$

For j > 0, since $\varphi(0) = 0$ we have

$$\begin{split} \langle T_w^* F_w f, w\varphi_0(w) E_j \rangle &= \frac{1}{2\sqrt{j+2}} \bigg(\frac{1}{\sqrt{2}\sqrt{j+1}} \langle w\varphi_0(w), w\varphi_0(w)\varphi(w)^j \rangle \\ &+ \sqrt{2}\sqrt{j+1} \langle w\varphi_0(w), w\varphi_0(w)\varphi(w)^j \rangle \bigg) \\ &= 0. \end{split}$$

Hence

$$F_w^* F_w f = \langle T_w^* F_w f, w\varphi_0(w) E_0 \rangle w\varphi_0(w) E_0$$

= $\frac{1}{2\sqrt{2}} \left(\frac{1}{\sqrt{2}} \langle w\varphi_0(w), w\varphi_0(w) \rangle \right)$
+ $\sqrt{2} \langle w\varphi_0(w), w\varphi_0(w) \rangle \right) w\varphi_0(w) E_0$
= $\frac{1}{2\sqrt{2}} \left(\frac{1}{\sqrt{2}} + \sqrt{2} \right) w\varphi_0(w) E_0$
= $\frac{3}{4} w\varphi_0(w) E_0.$

Since

$$T_w^*F_w^*F_wf = \frac{3}{4}\varphi_0(w)E_0 \in M_\varphi \ominus zM_\varphi,$$

we have $F_w^{*2}F_wf = \frac{3}{4}\varphi_0(w)E_0$. Therefore

$$||F_w f||^2 + ||F_w^{*2} F_w f||^2 = \frac{3}{4} + \left(\frac{3}{4}\right)^2 > 2\left(\frac{3}{4}\right)^2 = 2||F_w^* F_w f||^2. \qquad \Box$$

By Proposition 4.4, we may not apply Theorem A for the operator F_w on $M_{\varphi} \ominus z M_{\varphi}$. So we do not know whether or not the Beurling type theorem holds for the operator F_w on $M_{\varphi} \ominus z M_{\varphi}$.

By the symmetry of variables in [z - w] and Theorem 4.3, the Beurling type theorem holds for the operator F_z on $[z - w] \ominus w[z - w]$. We may generalize this fact as follows.

Theorem 4.5. Let $\varphi(w)$ be an inner function with $\varphi(0) = 0$. Then the fringe operator F_z on $M_{\varphi} \ominus w M_{\varphi}$ is unitarily equivlent to the fringe operator F_w on $[z - w] \ominus z[z - w]$, and the Beurling type theorem holds for F_z and $\dim(M \ominus F_z M) = 1$ for every invariant subspace M of $M_{\varphi} \ominus w M_{\varphi}$ for F_z .

To prove this, we need some lemmas. Let $\varphi(w)$ be an inner function with $\varphi(0) = 0$. One easily checks the following lemma.

Lemma 4.6. We have $T_w^*\varphi(w) \in H^2(w) \ominus \varphi(w)H^2(w)$, and if $\lambda(w) \in H^2(w) \ominus \varphi(w)H^2(w)$ and $\lambda(w) \perp T_w^*\varphi(w)$, then

$$T_w\lambda(w)\in H^2(w)\ominus arphi(w)H^2(w).$$

By Lemma 3.1, N_{φ} coincides with the closed linear span of

$$\big\{\lambda(w)\sigma_n(z,\varphi(w)):\lambda(w)\in H^2(w)\ominus\varphi(w)H^2(w),n\geq 0\big\}.$$

By Lemma 4.6, $(T_w\lambda(w))\sigma_n(z,\varphi(w)) \in N_{\varphi}$ for every

$$\lambda(w) \in \left(H^2(w) \ominus \varphi(w) H^2(w)\right) \ominus \mathbb{C} \cdot T^*_w \varphi(w)$$

and $n \ge 0$. Let

$$N_{\varphi,0} = \{ f \in N_{\varphi} : T_w f \in N_{\varphi} \}.$$

Since $\varphi(0) = 0$, $T_w(T_w^*\varphi(w)) = \varphi(w)$ and $\varphi(w)\sigma_n(z,\varphi(w)) \notin N_{\varphi}$ for every $n \ge 0$. Hence the space $N_{\varphi} \ominus N_{\varphi,0}$ coincides with the closed linear span of $\{(T_w^*\varphi(w))\sigma_n(z,\varphi(w)): n \ge 0\}$. By Lemma 3.1, we have that

$$(T_w^*\varphi(w))\sigma_n(z,\varphi(w)) \perp (T_w^*\varphi(w))\sigma_j(z,\varphi(w)) \text{ for } n \neq j,$$

and $||(T_w^*\varphi(w))\sigma_n(z,\varphi(w))|| = 1$. So

$$\left\{ (T_w^*\varphi(w))(w)\sigma_n(z,\varphi(w)) : n \ge 0 \right\}$$

is an orthonormal basis of $N_{\varphi} \ominus N_{\varphi,0}$.

One easily sees that $T_w^*(M_{\varphi} \ominus wM_{\varphi}) \perp N_{\varphi,0}$. Therefore by Lemma 4.1, we have the following.

Lemma 4.7. Let $g \in M_{\varphi} \ominus wM_{\varphi}$. Then we may write

$$T_w^*g = \sum_{n=0}^{\infty} a_n(T_w^*\varphi(w))\sigma_n(z,\varphi(w)), \quad \sum_{n=0}^{\infty} |a_n|^2 < \infty.$$

Let

$$Y_n = \frac{1}{\sqrt{n+2}} \Big(\varphi(w)\sigma_n(z,\varphi(w)) - \sqrt{n+1}z^{n+1}\Big), \quad n \ge 0.$$

Lemma 4.8. Let $\varphi(w)$ be an inner function with $\varphi(0) = 0$. Then $\{Y_n\}_{n \ge 0}$ is an orthonormal basis of $M_{\varphi} \ominus w M_{\varphi}$.

Proof. We have

$$\sqrt{n+1}\sqrt{n+2}Y_n = \varphi(w)\left(z^n + z^{n-1}\varphi(w) + \dots + \varphi(w)^n\right)$$
$$- (n+1)z^{n+1}.$$

Letting n = 0, we have

$$\sqrt{2}Y_0 = \varphi(w) - z \in M_{\varphi}.$$

By induction, we shall show that $Y_n \in M_{\varphi}$ for every $n \ge 0$. Suppose that

$$\sqrt{k+1}\sqrt{k+2}Y_k = \varphi(w)\left(z^k + z^{k-1}\varphi(w) + \dots + \varphi(w)^k\right) - (k+1)z^{k+1} \in M_{\varphi}.$$

We have

$$\sqrt{k+1}\sqrt{k+2}\varphi(w)Y_k = \varphi(w)^2 \left(z^k + z^{k-1}\varphi(w) + \dots + \varphi(w)^k\right) - (k+1)z^{k+1}\varphi(w) \in M_{\varphi}.$$

Then

$$\varphi(w)^{k+2} = \sqrt{k+1}\sqrt{k+2}\varphi(w)Y_k + (k+1)z^{k+1}\varphi(w)$$
$$- \left(z^k\varphi(w)^2 + z^{k-1}\varphi(w)^3 + \dots + z\varphi(w)^{k+1}\right).$$

Hence

$$\begin{split} \sqrt{k+2}\sqrt{k+3}Y_{k+1} &= \varphi(w)\big(z^{k+1}+z^k\varphi(w)+\dots+\varphi(w)^{k+1}\big) - (k+2)z^{k+2} \\ &= \sqrt{k+1}\sqrt{k+2}\varphi(w)Y_k + (k+1)z^{k+1}\varphi(w) \\ &- \big(z^k\varphi(w)^2+z^{k-1}\varphi(w)^3+\dots+z\varphi(w)^{k+1}\big) \\ &+ z^{k+1}\varphi(w)+z^k\varphi(w)^2+\dots+z\varphi(w)^{k+1} - (k+2)z^{k+2} \\ &= \sqrt{k+1}\sqrt{k+2}\varphi(w)Y_k + (k+2)z^{k+1}(\varphi(w)-z) \in M_{\varphi}. \end{split}$$

This completes the induction. Thus we get $Y_n \in M_{\varphi}$ for every $n \ge 0$. We have also

$$T_w^* Y_n = \frac{1}{\sqrt{n+2}} T_w^* (\varphi(w) \sigma_n(z, \varphi(w)))$$

= $\frac{1}{\sqrt{n+2}} (T_w^* \varphi(w)) \sigma_n(z, \varphi(w))$ because $\varphi(0) = 0$
 $\in N_{\varphi}$ by Lemmas 3.1 and 4.6.

Hence by Lemma 4.1, $Y_n \in M_{\varphi} \ominus w M_{\varphi}$ for $n \ge 0$. Since $\varphi(0) = 0$ and $\|\varphi(w)\sigma_n(z,\varphi(w))\| = 1$, it is not difficult to show that $\|Y_n\| = 1$ for $n \ge 0$. Let $0 \le n < j$. Then

$$\left\langle \varphi(w)\sigma_n(z,\varphi(w)) - \sqrt{n+1}z^{n+1}, z^{j+1} \right\rangle = 0$$

and $\left\langle z^{n}, \varphi(w)\sigma_{j}(z,\varphi(w))\right\rangle = 0.$ So

$$\begin{split} \langle Y_n, Y_j \rangle &= \frac{1}{\sqrt{n+2}\sqrt{j+2}} \langle \varphi(w)\sigma_n(z,\varphi(w)), \varphi(w)\sigma_j(z,\varphi(w)) \rangle \\ &= \frac{1}{\sqrt{n+2}\sqrt{j+2}} \langle \sigma_n(z,\varphi(w)), \sigma_j(z,\varphi(w)) \rangle \\ &= \frac{1}{\sqrt{n+1}\sqrt{n+2}\sqrt{j+1}} \langle \sum_{i=0}^n z^i \varphi(w)^{n-i}, \sum_{\ell=0}^j z^\ell \varphi(w)^{j-\ell} \rangle \\ &= \frac{1}{\sqrt{n+1}\sqrt{n+2}\sqrt{j+1}\sqrt{j+2}} \sum_{i=0}^n \langle \varphi(w)^{n-i}, \varphi(w)^{j-i} \rangle \\ &= 0 \quad \text{because } \varphi(0) = 0 \text{ and } n < j. \end{split}$$

Hence $\{Y_n\}_{n\geq 0}$ is an orthonormal system in $M_{\varphi} \ominus w M_{\varphi}$. Let $g \in M_{\varphi} \ominus w M_{\varphi}$. By Lemma 4.7, we may write

$$T_w^*g = \sum_{n=0}^{\infty} a_n(T_w^*\varphi(w))\sigma_n(z,\varphi(w))$$

for some $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. We have

$$g(z,w) = w \left(\sum_{n=0}^{\infty} a_n(T_w^*\varphi(w))\sigma_n(z,\varphi(w)) \right) + g(z,0)$$
$$= \left(\sum_{n=0}^{\infty} a_n\varphi(w)\sigma_n(z,\varphi(w)) \right) + g(z,0).$$

Since $g \in [z - \varphi(w)]$, $g(\varphi(\zeta), \zeta) = 0$ for every $\zeta \in \mathbb{D}$. Then

$$g(\varphi(\zeta), 0) = -\sum_{n=0}^{\infty} a_n \varphi(\zeta) \sigma_n(\varphi(\zeta), \varphi(\zeta))$$
$$= -\sum_{n=0}^{\infty} \sqrt{n+1} a_n \varphi(\zeta)^{n+1}.$$

Hence

$$g(z,0) = -\sum_{n=0}^{\infty} \sqrt{n+1} a_n z^{n+1}, \quad z \in \mathbb{D}.$$

Therefore for $(z, w) \in \mathbb{D}^2$ we get

$$g(z,w) = \sum_{n=0}^{\infty} a_n (\varphi(w)\sigma_n(z,\varphi(w)) - \sqrt{n+1}z^{n+1})$$
$$= \sum_{n=0}^{\infty} \sqrt{n+2}a_n Y_n$$

and

$$\sum_{n=0}^{\infty} (n+2)|a_n|^2 < \infty.$$

Thus we get the assertion.

Remark 4.9. By the last paragraph of the proof of Lemma 4.8, we have

$$T_w^*(M_\varphi \ominus wM_\varphi) = \left\{ \sum_{n=0}^\infty a_n(T_w^*\varphi(w))\sigma_n(z,\varphi(w)) : \sum_{n=0}^\infty (n+2)|a_n|^2 < \infty \right\}.$$

Remark 4.10. If $\varphi(0) \neq 0$, we can prove that

$$Z_n := (\varphi(w) - \varphi(0))\sigma_n(z,\varphi(w)) - \sqrt{n+1}(z-\varphi(0))z^n \in M_\varphi \ominus wM_\varphi$$

for every $n \ge 0$. But in this case, $Z_n \not\perp Z_j$ for $n \ne j$.

Proof of Theorem 4.5. We note that

$$Y_n = \frac{1}{\sqrt{n+2}} \left(\frac{\sum_{i=0}^n z^i \varphi(w)^{n+1-i}}{\sqrt{n+1}} - \sqrt{n+1} z^{n+1} \right), \quad n \ge 0.$$

We have $T_z Y_n \perp Y_j$ for $j \neq n+1$. For, we have

$$\begin{split} \langle T_z Y_n, Y_j \rangle \\ &= \frac{1}{\sqrt{n+2}\sqrt{j+2}} \left\langle z\varphi(w)\sigma_n(z,\varphi(w)), \varphi(w)\sigma_j(z,\varphi(w)) \right\rangle \end{split}$$

because $\varphi(0) = 0$

$$= \frac{1}{\sqrt{n+2}\sqrt{j+2}} \left\langle \frac{\sum_{i=0}^{n} z^{i+1} \varphi(w)^{n+1-i}}{\sqrt{n+1}}, \frac{\sum_{\ell=0}^{j} z^{\ell} \varphi(w)^{j+1-\ell}}{\sqrt{j+1}} \right\rangle$$
$$= \frac{1}{\sqrt{n+1}\sqrt{n+2}\sqrt{j+1}\sqrt{j+2}} \sum_{i=0}^{n} \sum_{\ell=0}^{j} \langle \varphi(w)^{n-i}, \varphi(w)^{j-l} \rangle \langle z^{i+1}, z^{\ell} \rangle.$$

If either $n - i \neq j - \ell$ or $i + 1 \neq \ell$, then

$$\langle \varphi(w)^{n-i}, \varphi(w)^{j-l} \rangle \langle z^{i+1}, z^{\ell} \rangle = 0$$

because $\varphi(0) = 0$. If $n - i = j - \ell$ and $i + 1 = \ell$, then j = n + 1. Thus $T_z Y_n \perp Y_j$ for $j \neq n + 1$.

Hence we get

By the proof of Theorem 4.3, F_z on $M_{\varphi} \ominus w M_{\varphi}$ is unitarily equivalent to F_w on $[z - w] \ominus z[z - w]$. By Theorem 4.3, we get the assertion.

References

- ALEMAN, A.; RICHTER, S.; SUNDBERG, C. Beurling's theorem for the Bergman space. Acta Math. 117 (1996) 275–310. MR1440934 (98a:46034), Zbl 0886.30026.
- [2] APOSTOL, C.; BERCOVICI, H.; FOIAS, C.; PEARCY, C. Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I. J. Funct. Anal. 63 (1985) 369–404. MR0808268 (87i:47004a), Zbl 0608.47005.
- [3] BEURLING, ARNE. On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1949) 239–255. MR0027954 (10,381e), Zbl 0033.37701.
- [4] CHEN, XIAOMAN; GUO, KUNYU. Analytic Hilbert modules. Chapman & Hall/CRC Research Notes in Mathematics, 433. Chapman & Hall/CRC, Boca Raton, FL, 2003. viii+201 pp. ISBN: 1-58488-399-5. MR1988884 (2004d:47024), Zbl 1048.46005.
- [5] DUREN, PETER; SCHUSTER, ALEXANDER. Bergman spaces. Mathematical Surveys and Monographs, 100. American Mathematical Society, Providence, RI, 2004. x+318 pp. ISBN: 0-8218-0810-9. MR2033762 (2005c:30053), Zbl 1059.30001.
- [6] GUO, KUNYU; SUN, SHUNHUA; ZHENG, DECHAO; ZHONG, CHANGYONG. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. reine angew. Math. 628 (2009) 129–168. MR2503238 (2010e:46024), Zbl pre05541581.
- [7] HEDENMALM, PER JAN HÅKAN. An invariant subspace of the Bergman space having the codimension two property. J. reine angew. Math. 443 (1993) 1–9. MR1241125 (94k:30092).
- [8] HEDENMALM, HÅKAN; KORENBLUM, BORIS; ZHU, KEHE. Theory of Bergman spaces. Graduate Texts in Mathematics, 199. Springer-Verlag, New York, 2000. x+286 pp. ISBN: 0-387-98791-6. MR1758653 (2001c:46043), Zbl 0955.32003.
- HEDENMALM, HÅKAN; RICHTER, STEFAN; SEIP, KRISTIAN. Interpolating sequences and invariant subspaces of given index in the Bergman spaces. J. reine angew. Math. 477 (1996) 13–30. MR1405310 (97i:46044), Zbl 0895.46023.
- [10] IZUCHI, KEI JI; IZUCHI, KOU HEI; IZUCHI, YUKO. Wandering subspaces and the Beurling type theorem. I. Archiv der Math., to appear.

- [11] IZUCHI, KEIJI; YANG, RONGWEI. Strictly contractive compression on backward shift invariant subspaces over the torus Acta Sci. Math. (Szeged) 70 (2004) 147–165. MR2072696 (2005e:47019), Zbl 1062.47017.
- [12] IZUCHI, KEIJI; YANG, RONGWEI. N_{φ} -type quotient modules on the torus. New York J. Math. 14 (2008), 431–457. MR2443982 (2009):47018), Zbl 1175.47007.
- [13] MCCULLOUGH, SCOTT; RICHTER, STEFAN. Bergman-type reproducing kernels, contractive divisors, and dilations. J. Funct. Anal. 190 (2002) 447–480. MR1899491 (2003c:47043), Zbl 1038.46021.
- [14] OLOFSSON, ANDERS. Wandering subspace theorems. Integr. Eq. Op. Theory 51 (2005) 395–409. MR2126818 (2005k:47019), Zbl 1079.47015.
- [15] RUDIN, WALTER. Function theory in polydiscs. W. A. Benjamin, Inc., New York-Amsterdam, 1969. vii+188 pp. MR0255841 (41 #501), Zbl 0177.34101.
- [16] SHIMORIN, SERGEI. Wold-type decompositions and wandering subspaces for operators close to isometries. J. reine angew. Math. 531 (2001) 147–189. MR1810120 (2002c:47018), Zbl 0974.47014.
- [17] SUN, SHUNHUA; ZHENG, DECHAO. Beurling type theorem on the Bergman space via the Hardy space of the bidisk. *Sci. China Ser. A* 52 (2009) 2517–2529. MR2566663, Zbl 1191.47007.
- [18] SUN, SHUNHUA; ZHENG, DECHAO; ZHONG, CHANGYONG. Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk. *Canad. J. Math.* **62** (2010) 415–438. MR2643050, Zbl 1185.47030.
- [19] YANG, RONGWEI. Hardy modules. Ph.D. thesis, State Univ. New York at Stony Brook, 1998.
- [20] YANG, RONGWEI. The Berger–Shaw theorem in the Hardy module over the bidisk. J. Operator Theory 42 (1999) 379–404. MR1717024 (2000h:47040), Zbl 0991.47015.
- [21] YANG, RONGWEI. Operator theory in the Hardy space over the bidisk. (III). J. Funct. Anal. 186 (2001) 521–545. MR1864831 (2002m:47008), Zbl 1049.47501.
- [22] YANG, RONGWEI. Operator theory in the Hardy space over the bidisk. (II). Integral Equations Operator Theory 42 (2002) 99–124. MR1866878 (2002m:47007), Zbl 1002.47012.
- [23] YANG, RONGWEI. The core operator and congruent submodules. J. Funct. Anal. 228 (2005) 459–489. MR175415 (2006e:47015), Zbl 1094.47007.
- [24] YANG, RONGWEI. Hilbert–Schmidt submodules and issues of unitary equivalence. J. Operator Theory 53 (2005) 169–184. MR2132692 (2006d:47014), Zbl 1098.46020.

DEPARTMENT OF MATHEMATICS, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN izuchi@m.sc.niigata-u.ac.jp

DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-701, KOREA kh.izuchi@gmail.com

AOYAMA-SHINMACHI 18-6-301, NIIGATA 950-2006, JAPAN yfd10198@nifty.com

This paper is available via http://nyjm.albany.edu/j/2010/16-20.html.