Wandering subspaces and the Beurling type theorem. II

Kei Ji Izuchi, Kou Hei Izuchi and Yuko Izuchi

Abstract

Let H^{2} be the Hardy space over the bidisk. Let $\varphi(w)$ be a nonconstant inner function. We denote by $[z-\varphi(w)]$ the smallest invariant subspace for both operators T_{z} and T_{w} containing the function $z-\varphi(w)$. Aleman, Richter and Sundberg showed that the Beurling type theorem holds for the Bergman shift on the Bergman space. It is known that the compression operator S_{z} on $H^{2} \ominus[z-w]$ is unitarily equivalent to the Bergman shift, so the Beurling type theorem holds for S_{z} on $H^{2} \ominus[z-w]$. As a generalization, we shall show that the Beurling type theorem holds for S_{z} on $H^{2} \ominus[z-\varphi(w)]$. Also we shall prove that the Beurling type theorem holds for the fringe operator F_{w} on $[z-w] \ominus z[z-w]$ and for F_{z} on $[z-\varphi(w)] \ominus w[z-\varphi(w)]$ if $\varphi(0)=0$.

Contents

1. Introduction 489
2. Wandering subspaces 491
3. The Beurling type theorem for S_{z} 494
4. The fringe operators 496
References 504

1. Introduction

Let T be a bounded linear operator on a Hilbert space H. For a subset E of H, we denote by $[E]$ the smallest invariant subspace for T containing E. Let $M \subset H$ be an invariant subspace for T. We denote by $M \ominus T M$ the orthogonal complement of $T M$ in M. The space $M \ominus T M$ is called a wandering subspace of M for the operator T. We have $[M \ominus T M] \subset M$. We say that the Beurling type theorem holds for T if $[M \ominus T M]=M$ for all invariant subspaces M of H for T. Our basic problem is to find operators for which the Beurling type theorem holds.

[^0]Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C}. We denote by $H^{2}(z)$ the Hardy space on \mathbb{D} with variable z. Let T_{z} be the multiplication operator on $H^{2}(z)$ by the coordinate function z. The Beurling theorem [3] says that $M=\left[M \ominus T_{z} M\right]$ holds for all invariant subspaces M of $H^{2}(z)$ for T_{z}. Let $L_{a}^{2}(z)$, the Bergman space, be the Hilbert space consisting of square integrable analytic functions on \mathbb{D} with respect to the normalized Lebesgue measure on \mathbb{D}. Let B be the Bergman shift on $L_{a}^{2}(z)$, that is, $B f(z)=z f(z)$ for $f \in L_{a}^{2}(z)$. It is known that the dimension of wandering subspaces of invariant subspaces in $L_{a}^{2}(z)$ for B ranges from 1 to ∞ (see [2, 7, 9]). In [1], Aleman, Richter and Sundberg proved that the Beurling type theorem holds for the Bergman shift B. In [16], Shimorin showed that if $T: H \rightarrow H$ satisfies the following conditions:
(a) $\|T x+y\|^{2} \leq 2\left(\|x\|^{2}+\|T y\|^{2}\right), \quad x, y \in H$;
(b) $\cap\left\{T^{n} H: n \geq 0\right\}=\{0\}$;
then the Beurling type theorem holds for T. As an application of this theorem, Shimorin gave a simpler proof of the Aleman, Richter and Sundberg theorem. Later, different proofs of the the Beurling type theorem are given in $[13,14,17]$. Recently, the authors [10] proved the following.

Theorem A. Suppose $T: H \rightarrow H$ satisfies the following conditions:
(i) $\|T x\|^{2}+\left\|T^{* 2} T x\right\|^{2} \leq 2\left\|T^{*} T x\right\|^{2}, \quad x \in H$;
(ii) T is bounded below, i.e., there is $c>0$ satisfying that $\|T x\| \geq c\|x\|$ for every $x \in H$;
(iii) $\left\|T^{* n} x\right\| \rightarrow 0$ as $n \rightarrow \infty$ for every $x \in H$.

Then the Beurling type theorem holds for T.
Also it was pointed out that conditions (i), (ii) and (iii) in Theorem A are equivalent to conditions (a) and (b) in Shimorin's theorem.

Let $H^{2}=H^{2}\left(\mathbb{D}^{2}\right)$ be the Hardy space over the bidisk \mathbb{D}^{2}. We identify a function in H^{2} with its boundary function on the distinguished boundary Γ^{2} of \mathbb{D}^{2}, so we think of H^{2} as a closed subspace of the Lebesgue space $L^{2}\left(\Gamma^{2}\right)$. We use z, w as variables in \mathbb{D}^{2}. We note that the Hardy space H^{2} coincides with the closed tensor product $H^{2}(z) \otimes H^{2}(w)$. Let T_{z} and T_{w} be multiplication operators on H^{2} by z and w. A closed subspace M of H^{2} is called invariant if $T_{z} M \subset M$ and $T_{w} M \subset M$. For a subset E of H^{2}, we denote by $[E]$ the smallest invariant subspace of H^{2} containing E. For a subspace E of H^{2}, we denote by P_{E} the orthogonal projection from $L^{2}\left(\Gamma^{2}\right)$ onto E. See books $[4,15]$ for the study of the Hardy space H^{2}.

Let M be an invariant subspace of H^{2}. Since T_{z} is an isometry on M, by the Wold decomposition theorem we have

$$
M=\sum_{n=0}^{\infty} \oplus(M \ominus z M) z^{n}
$$

So many properties of the invariant subspace M are considered to be encoded in $M \ominus z M$. To study $M \ominus z M$, Yang defined the fringe operator F_{w} on
$M \ominus z M$ by

$$
F_{w} f=P_{M \ominus z M} T_{w} f, \quad f \in M \ominus z M,
$$

and studied the properties of F_{w} (see [21, 23, 24]). Similarly, we may define the fringe operator F_{z} on $M \ominus w M$.

Let $N=H^{2} \ominus M$. Then $T_{z}^{*} N \subset N$ and $T_{w}^{*} N \subset N$. Let S_{z} and S_{w} be the compression operators on N defined by

$$
S_{z} f=P_{N} T_{z} f \quad \text { and } \quad S_{w} f=P_{N} T_{w} f, \quad f \in N
$$

We note that $S_{z}^{*}=\left.T_{z}^{*}\right|_{N}$ and $S_{w}^{*}=\left.T_{w}^{*}\right|_{N}$.
One of the most interesting invariant subspaces of H^{2} is $[z-w]$. It is known that $S_{z}=S_{w}$ on $H^{2} \ominus[z-w]$ and S_{z} is unitarily equivalent to the Bergman shift on $L_{a}^{2}(\mathbb{D})$ (see $\left.[6,12,17,18,19,20,22]\right)$. So by the Aleman, Richter and Sundberg theorem, the Beurling type theorem holds for the operators S_{z} and S_{w} on $H^{2} \ominus[z-w]$.

As generalized spaces of $[z-w]$, we have invariant subspaces $M_{\varphi}:=$ [$z-\varphi(w)]$ for nonconstant inner functions $\varphi(w)$. We put $N_{\varphi}=H^{2} \ominus$ M_{φ}. The space N_{φ} has been studied by Yang and the first author in [11, 12]. In Section 2, as an application of Theorem A we shall prove that the Beurling type theorem holds for some other unilateral operators. And we give a sufficient condition on unilateral weighted shifts $W_{\mathbf{c}}$ for which $\operatorname{dim}\left(M \ominus W_{\mathbf{c}} M\right)=1$ for every invariant subspace for $W_{\mathbf{c}}$. In Section 3, as an application of Section 2 we shall prove that the Beurling type theorem holds for the operator S_{z} on N_{φ}. In Section 4, we prove that the Beurling type theorem holds for the fringe operator F_{w} on $[z-w] \ominus z[z-w]$. And also the Beurling type theorem holds for the fringe operator F_{z} on $M_{\varphi} \ominus$ $w M_{\varphi}$ for every inner function $\varphi(w)$ with $\varphi(0)=0$. In this case, we have $\operatorname{dim}\left(M \ominus F_{z} M\right)=1$ for every invariant subspace M of $M_{\varphi} \ominus w M_{\varphi}$ for F_{z}.

2. Wandering subspaces

Let B be the Bergman shift on $L_{a}^{2}(z)$. We put

$$
e_{n}(z)=\sqrt{n+1} z^{n}, \quad n \geq 0
$$

Then $\left\{e_{n}(z)\right\}_{n \geq 0}$ is an orthonormal basis of $L_{a}^{2}(z)$. We have $B^{*} e_{0}(z)=0$,

$$
B e_{n}(z)=\frac{\sqrt{n+1}}{\sqrt{n+2}} e_{n+1}(z) \quad \text { and } \quad B^{*} e_{n}(z)=\frac{\sqrt{n}}{\sqrt{n+1}} e_{n-1}(z), \quad n \geq 1
$$

Hence

$$
B^{*} B e_{n}(z)=\frac{n+1}{n+2} e_{n}(z)
$$

and

$$
B^{* 2} B e_{n}(z)=\frac{\sqrt{n} \sqrt{n+1}}{n+2} e_{n-1}(z), \quad n \geq 1
$$

By these equalities, we have

$$
\|B f\|^{2}+\left\|B^{* 2} B f\right\|^{2}=2\left\|B^{*} B f\right\|^{2}
$$

for every $f(z) \in L_{a}^{2}(z)$ (see [10]). Books [5, 8] are nice references for the study of the Bergman space.

Let H be a separable Hilbert space with an orthonormal basis $\left\{\tau_{n}\right\}_{n \geq 0}$. Let $\mathbf{c}=\left\{c_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers with $\sup _{n} c_{n}<\infty$. Let $W_{\mathbf{c}}$ be a unilateral weighted shift on H defined by $W_{\mathbf{c}} \tau_{n}=c_{n} \tau_{n+1}$ for $n \geq 0$. We have $W_{\mathbf{c}}^{*} \tau_{0}=0$ and $W_{\mathbf{c}}^{*} \tau_{n}=c_{n-1} \tau_{n-1}$ for $n \geq 1$. We note that $\left\{W_{\mathbf{c}} \tau_{n}: n \geq 0\right\}$ and $\left\{W_{\mathbf{c}}^{*} \tau_{n}: n \geq 1\right\}$ are orthogonal systems. For $x \in H$ and $x=\sum_{n=0}^{\infty} a_{n} \tau_{n}$, we have

$$
\left\|W_{\mathbf{c}} x\right\|^{2}=\left\|\sum_{n=0}^{\infty} a_{n} c_{n} \tau_{n+1}\right\|^{2}=\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} c_{n}^{2}
$$

Then $W_{\mathbf{c}}$ is a bounded linear operator on H and $W_{\mathbf{c}}$ is bounded below if and only if $\inf _{n} c_{n}>0$.

Theorem 2.1. For another Hilbert space E, let $E \otimes H$ be the tensor product of E and H. We define a bounded linear operator $T=I \otimes W_{\mathrm{c}}$ on $E \otimes H$ by $T\left(x \otimes \tau_{n}\right)=x \otimes W_{\mathbf{c}} \tau_{n}$ for $x \in E$ and $n \geq 0$. If $1 / \sqrt{2} \leq c_{0} \leq 1$ and $1 \leq c_{n}^{2}\left(2-c_{n-1}^{2}\right)$ for every $n \geq 1$, then the Beurling type theorem holds for T.

Proof. First, we prove that $c_{n} \leq 1$ for every $n \geq 0$. To prove this, suppose that $c_{m}>1$ for some $m \geq 1$. Since $1 \leq c_{m+1}^{2}\left(2-c_{m}^{2}\right)$, we have $c_{m}^{2}<2$. Since $0<c_{m}^{4}-2 c_{m}^{2}+1$, we have $c_{m}^{2}<1 /\left(2-c_{m}^{2}\right) \leq c_{m+1}^{2}$. Thus we get $c_{m}<c_{m+1}<c_{m+2}<\cdots$. Since $\sup _{n} c_{n}<\infty, c_{n} \rightarrow \alpha$ as $n \rightarrow \infty$ for some $0<\alpha<\infty$. Then $1 /\left(2-\alpha^{2}\right)=\alpha^{2}$, so $\alpha=1$. This contradicts with $1<c_{m}<\alpha$.

Since $1 \leq c_{n}^{2}\left(2-c_{n-1}^{2}\right)$, we have $1 / \sqrt{2} \leq c_{n}$ for every $n \geq 0$. Let $f \in E \otimes H$. We may write $f=\sum_{n=0}^{\infty} x_{n} \otimes \tau_{n}$ for some $x_{n} \in E$ with $\|f\|^{2}=\sum_{n=0}^{\infty}\left\|x_{n}\right\|^{2}<$ ∞. Since $W_{\mathbf{c}} \tau_{n} \perp W_{\mathbf{c}} \tau_{k}$ for $n \neq k$, we have $\|T f\|^{2}=\sum_{n=0}^{\infty}\left\|x_{n}\right\|^{2}\left\|W_{\mathbf{c}} \tau_{n}\right\|^{2}$, so $\|f\|^{2} / 2 \leq\|T f\|^{2} \leq\|f\|^{2}$. Then T is bounded below. We have

$$
\begin{aligned}
\left\|T^{* k} f\right\|^{2} & =\left\|\sum_{n=k}^{\infty} x_{n} \otimes W_{\mathbf{c}}^{* k} \tau_{n}\right\|^{2} \\
& =\left\|\sum_{n=k}^{\infty} x_{n} \otimes\left(c_{n-1} c_{n-2} \cdots c_{n-k}\right) \tau_{n-k}\right\|^{2} \\
& \leq \sum_{n=k}^{\infty}\left\|x_{n}\right\|^{2} \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

We have also

$$
T f=\sum_{n=0}^{\infty} c_{n}\left(x_{n} \otimes \tau_{n+1}\right), \quad T^{*} T f=\sum_{n=0}^{\infty} c_{n}^{2}\left(x_{n} \otimes \tau_{n}\right)
$$

and

$$
T^{* 2} T f=\sum_{n=1}^{\infty} c_{n}^{2} c_{n-1}\left(x_{n} \otimes \tau_{n-1}\right)
$$

Hence

$$
\|T f\|^{2}+\left\|T^{* 2} T f\right\|^{2}=c_{0}^{2}\left\|x_{0}\right\|^{2}+\sum_{n=1}^{\infty} c_{n}^{2}\left(1+c_{n}^{2} c_{n-1}^{2}\right)\left\|x_{n}\right\|^{2}
$$

and

$$
2\left\|T^{*} T f\right\|^{2}=\sum_{n=0}^{\infty} 2 c_{n}^{4}\left\|x_{n}\right\|^{2}
$$

Therefore

$$
\begin{aligned}
& 2\left\|T^{*} T f\right\|^{2}-\left(\|T f\|^{2}+\left\|T^{* 2} T f\right\|^{2}\right) \\
& =c_{0}^{2}\left(2 c_{0}^{2}-1\right)\left\|x_{0}\right\|^{2}+\sum_{n=1}^{\infty} c_{n}^{2}\left(c_{n}^{2}\left(2-c_{n-1}^{2}\right)-1\right)\left\|x_{n}\right\|^{2}
\end{aligned}
$$

$$
\geq 0 \quad \text { by the assumption. }
$$

Applying Theorem A, we get the assertion.
Remark 2.2. Let $E=\mathbb{C}$. We shall consider the extremal case of conditions $1 / \sqrt{2} \leq c_{0} \leq 1$ and $1 \leq c_{n}^{2}\left(2-c_{n-1}^{2}\right)$. Take $c_{0}=1$ and inductively we take c_{n} such that $1=c_{n}^{2}\left(2-c_{n-1}^{2}\right)$. Then we have $c_{n}=1$ for every $n \geq 0$. In this case, we may think that $H=H^{2}(z), W_{\mathbf{c}}=T_{z}$, and $\prod_{i=0}^{\infty} c_{i}=1>0$.

Take $c_{0}=1 / \sqrt{2}$ and inductively we take c_{n} such that $1=c_{n}^{2}\left(2-c_{n-1}^{2}\right)$. We have $c_{n}=\sqrt{n+1} / \sqrt{n+2}$ for every $n \geq 0$. In this case, we may think that $H=L_{a}^{2}(z), W_{\mathbf{c}}=B$, and $\prod_{i=0}^{n} c_{i}=1 / \sqrt{n+2} \rightarrow 0$ as $n \rightarrow \infty$.

Corollary 2.3. Let E be a Hilbert space. Then the Beurling type theorem holds for $I \otimes B$ on $E \otimes L_{a}^{2}(z)$.

We shall give a sufficient condition on $\mathbf{c}=\left\{c_{n}\right\}_{n \geq 0}$ for which

$$
\operatorname{dim}\left(M \ominus W_{\mathbf{c}} M\right)=1
$$

for every invariant subspace M of H for $W_{\mathbf{c}}$. Let $\left\{\alpha_{n}\right\}_{n \geq 0}$ be a sequence of positive numbers and $\alpha_{0}=1$. We define a linear map

$$
V: \operatorname{span}\left\{z^{n}: n \geq 0\right\} \rightarrow H
$$

by $V z^{n}=\alpha_{n} \tau_{n}$ for every $n \geq 0$.
Lemma 2.4. We have that $V T_{z}=W_{\mathbf{c}} V$ on $\operatorname{span}\left\{z^{n}: n \geq 0\right\}$ if and only if $\alpha_{n+1}=\prod_{i=0}^{n} c_{i}$ for every $n \geq 0$. In this case, if $0<\prod_{i=0}^{\infty} c_{i}<\infty$, then V has a bounded linear extension $\widetilde{V}: H^{2}(z) \rightarrow H$ satisfying that \widetilde{V} is invertible and $\tilde{V} T_{z}=W_{\mathbf{c}} \widetilde{V}$.

Proof. We have $V T_{z} z^{n}=W_{\mathrm{c}} V z^{n}$ if and only if $\alpha_{n+1} \tau_{n+1}=\alpha_{n} c_{n} \tau_{n+1}$. Hence $V T_{z}=W_{\mathbf{c}} V$ on $\operatorname{span}\left\{z^{n}: n \geq 0\right\}$ if and only if $\alpha_{n+1}=\prod_{i=0}^{n} c_{i}$ for every $n \geq 0$. In this case, moreover suppose that $0<\prod_{i=0}^{\infty} c_{i}<\infty$. Then V is bounded and bounded below on $\operatorname{span}\left\{z^{n}: n \geq 0\right\}$. Hence V has a bounded linear extension $\widetilde{V}: H^{2}(z) \rightarrow H$. It is easy to see that \widetilde{V} is invertible and $\widetilde{V} T_{z}=W_{\mathbf{c}} \widetilde{V}$.

We denote by $\operatorname{Lat}\left(W_{\mathbf{c}}\right)$ and $\operatorname{Lat}\left(T_{z}\right)$ the lattice of invariant subspaces for $W_{\text {c }}$ on H and T_{z} on $H^{2}(z)$, respectively. We $\operatorname{write} \operatorname{Lat}\left(W_{\mathbf{c}}\right) \cong \operatorname{Lat}\left(T_{z}\right)$ if $\operatorname{Lat}\left(W_{\mathbf{c}}\right)$ and $\operatorname{Lat}\left(T_{z}\right)$ have the same lattice structure.

Theorem 2.5. If $0<\prod_{i=0}^{\infty} c_{i}<\infty$, then $\operatorname{dim}\left(M \ominus W_{\mathbf{c}} M\right)=1$ for every invariant subspace M for $W_{\mathbf{c}}$. Moreover we have $\operatorname{Lat}\left(W_{\mathbf{c}}\right) \cong \operatorname{Lat}\left(T_{z}\right)$.

Proof. Let M be a nonzero invariant subspace M for $W_{\mathbf{c}}$. Let $\alpha_{0}=1$ and $\alpha_{n}=\prod_{i=0}^{n-1} c_{i}$ for $n \geq 1$. By Lemma 2.4, there is a bounded linear operator $\widetilde{V}: H^{2}(z) \rightarrow H$ satisfying $\widetilde{V} z^{n}=\alpha_{n} \tau_{n}$ for every $n \geq 0, \widetilde{V}$ is invertible and $\widetilde{V} T_{z}=W_{\mathbf{c}} \widetilde{V}$. Then we have

$$
T_{z} \tilde{V}^{-1} M=\tilde{V}^{-1} W_{\mathbf{c}} M \subset \tilde{V}^{-1} M
$$

Hence $\widetilde{V}^{-1} M$ is an invariant subspace for T_{z}. By the Beurling theorem, $\widetilde{V}^{-1} M=\theta(z) H^{2}(z)$ for an inner function $\theta(z)$, so $M=\widetilde{V} \theta(z) H^{2}(z)$. Since $\widetilde{V} T_{z}=W_{\mathbf{c}} \widetilde{V}, M$ is an invariant subspace for $W_{\mathbf{c}}$ generated by $\widetilde{V} \theta(z)$. Therefore we get $\operatorname{dim}\left(M \ominus W_{\mathbf{c}} M\right)=1$.

For an inner function $\theta_{1}(z), \widetilde{V} \theta_{1}(z) H^{2}(z)$ is an invariant subspace for $W_{\mathbf{c}}$. Thus $\operatorname{Lat}\left(W_{\mathbf{c}}\right) \cong \operatorname{Lat}\left(T_{z}\right)$.

3. The Beurling type theorem for S_{z}

Let $\varphi(w)$ be a nonconstant inner function,

$$
M_{\varphi}=[z-\varphi(w)] \quad \text { and } \quad N_{\varphi}=H^{2} \ominus M_{\varphi} .
$$

Let T_{φ} be the multiplication operator on $H^{2}(w)$ by $\varphi(w)$. Its adjoint operator T_{φ}^{*} is represented by $T_{\varphi}^{*} f=P_{H^{2}(w)} \bar{\varphi} f, f \in H^{2}(w)$. In [11], Yang and the first author showed that

$$
N_{\varphi}=\left\{\sum_{n=0}^{\infty} \oplus\left(T_{\varphi}^{* n} f(w)\right) z^{n}: f \in H^{2}(w), \sum_{n=0}^{\infty}\left\|T_{\varphi}^{* n} f\right\|^{2}<\infty\right\} .
$$

Let

$$
\sigma_{n}(z, w)=\frac{\sum_{i=0}^{n} z^{i} w^{n-i}}{\sqrt{n+1}}, \quad n \geq 0 .
$$

We note that $\sigma_{0}(z, w)=1$. It is known that $\left\{\sigma_{n}\right\}_{n \geq 0}$ is an orthonormal basis of $N_{w}=H^{2} \ominus[z-w]$, the special case $\varphi(w)=w$. If we define the operator $V: N_{w} \rightarrow L_{a}^{2}(z)$ by $V \sigma_{n}=\sigma_{n}(z, z)$, then V is a unitary operator and $S_{z}=S_{w}=V^{*} B V$.

Since T_{φ} is an isomerty on $H^{2}(w)$, by the Wold decomposition theorem we have

$$
H^{2}(w)=\sum_{n=0}^{\infty} \oplus \varphi(w)^{n}\left(H^{2}(w) \ominus \varphi(w) H^{2}(w)\right) .
$$

Let $\left\{\lambda_{k}(w)\right\}_{k=0}^{m}$ be an orthonormal basis of $H^{2}(w) \ominus \varphi(w) H^{2}(w)$, where $0 \leq m \leq \infty$. Also let

$$
E_{k, n}(z, w)=\lambda_{k}(w) \sigma_{n}(z, \varphi(w)) \in H^{2}, \quad 0 \leq k \leq m, n \geq 0
$$

In [12], Yang and the first author proved the following.
Lemma 3.1. The set $\left\{E_{k, n}: 0 \leq k \leq m, n \geq 0\right\}$ is an orthonormal basis of N_{φ} and

$$
S_{z} E_{k, n}=\frac{\sqrt{n+1}}{\sqrt{n+2}} E_{k, n+1}
$$

We define the operator

$$
U: N_{\varphi} \rightarrow\left(H^{2}(w) \ominus \varphi(w) H^{2}(w)\right) \otimes L_{a}^{2}(z)
$$

by

$$
U E_{k, n}=\lambda_{k}(w) \otimes e_{n}(z)
$$

Then U is clearly a unitary operator, and by Lemma 3.1 one easily checks that

$$
S_{z}=U^{*}(I \otimes B) U \quad \text { and } \quad S_{z}^{*}=U^{*}\left(I \otimes B^{*}\right) U
$$

By Corollary 2.3, we have the following theorem.
Theorem 3.2. The Beurling type theorem holds for the operator S_{z} on N_{φ} for every nonconstant inner function $\varphi(w)$.

Let $S_{\varphi}=\left.P_{N_{\varphi}} T_{\varphi}\right|_{N_{\varphi}}$. Then $S_{\varphi}^{*}=\left.P_{N_{\varphi}} T_{\varphi}^{*}\right|_{N_{\varphi}}$. Since $T_{z}^{*}=T_{\varphi}^{*}$ on N_{φ}, we have $S_{z}^{*}=S_{\varphi}^{*}$, so $S_{z}=S_{\varphi}$. By Theorem 3.2, we have the following.

Corollary 3.3. The Beurling type theorem holds for S_{φ} on N_{φ} for every nonconstant inner function $\varphi(w)$.

If $\varphi(w) \neq a w,|a|=1$, then $S_{z} \neq S_{w}$. There are some differences between the operators S_{z} and S_{w} on N_{φ}.
Proposition 3.4. Let $\varphi(w)=w^{2} \varphi_{0}(w)$ for an inner function $\varphi_{0}(w)$. Then

$$
\left\|S_{w} f\right\|^{2}+\left\|S_{w}^{* 2} S_{w} f\right\|^{2}>2\left\|S_{w}^{*} S_{w} f\right\|^{2}
$$

for some $f \in N_{\varphi}$.
Proof. The set $\left\{1, \varphi_{0}(w), w \varphi_{0}(w)\right\}$ is contained in $H^{2}(w) \ominus \varphi(w) H^{2}(w)$. Let $f(w)=w \varphi_{0}(w) \in N_{\varphi}$. Then $w f(w)=\varphi(w)$. Let

$$
r(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w) \quad \text { with } r(w) \perp 1
$$

Then $\varphi(w) \perp r(w) \varphi(w)^{n}$, and by Lemma $3.1 r(w) \sigma_{n}(z, \varphi(w)) \in N_{\varphi}$ for every $n \geq 0$. We have

$$
\sigma_{n}(z, \varphi(w))=\frac{\sum_{i=0}^{n} z^{i} \varphi(w)^{n-i}}{\sqrt{n+1}} \in N_{\varphi} .
$$

For every $n \geq 0$, we have

$$
\begin{aligned}
\left\langle w f(w), r(w) \sigma_{n}(z, \varphi(w))\right\rangle & =\frac{1}{\sqrt{n+1}}\left\langle\varphi(w), r(w) \sum_{i=0}^{n} z^{i} \varphi(w)^{n-i}\right\rangle \\
& =\frac{1}{\sqrt{n+1}}\left\langle\varphi(w), r(w) \varphi(w)^{n}\right\rangle \\
& =0
\end{aligned}
$$

By Lemma 3.1, $\sigma_{n}(z, \varphi(w))$ and $\varphi_{0}(w) \sigma_{0}(z, \varphi(w))=\varphi_{0}(w)$ are contained in N_{φ}. For $j \neq 1$, since $\varphi(0)=0$ we have also

$$
\left\langle w f(w), \sigma_{j}(z, \varphi(w))\right\rangle=\frac{1}{\sqrt{j+1}}\left\langle\varphi(w), \varphi(w)^{j}\right\rangle=0 .
$$

Hence

$$
\begin{aligned}
S_{w} f(w) & =\left\langle w f(w), \sigma_{1}(z, \varphi(w))\right\rangle \sigma_{1}(z, \varphi(w)) \\
& =\left\langle\varphi(w), \frac{\varphi(w)+z}{\sqrt{2}}\right\rangle \sigma_{1}(z, \varphi(w)) \\
& =\frac{1}{\sqrt{2}} \sigma_{1}(z, \varphi(w)) .
\end{aligned}
$$

We have

$$
T_{w}^{*} S_{w} f(w)=\frac{1}{\sqrt{2}} T_{w}^{*}\left(\frac{\varphi(w)+z}{\sqrt{2}}\right)=\frac{1}{2} w \varphi_{0}(w) \in N_{\varphi} .
$$

Hence $S_{w}^{*} S_{w} f(w)=\frac{1}{2} w \varphi_{0}(w)$, so $S_{w}^{* 2} S_{w} f(w)=\frac{1}{2} \varphi_{0}(w)$. Therefore

$$
\left\|S_{w} f(w)\right\|^{2}+\left\|S_{w}^{* 2} S_{w} f(w)\right\|^{2}=\frac{1}{2}+\frac{1}{4}>\frac{1}{2}=2\left\|S_{w}^{*} S_{w} f(w)\right\|^{2} .
$$

By Proposition 3.4, we may not apply Theorem A for S_{w} on N_{φ}. So we do not know whether or not the Beurling type theorem holds for the operator S_{w} on N_{φ}.

4. The fringe operators

Let M be a nonzero invariant subspace of the Hardy space H^{2} and $N=$ $H^{2} \ominus M$. One easily checks the following.
Lemma 4.1. For $f \in M, f \in M \ominus z M$ if and only if $T_{z}^{*} f \in N$.
We define the fringe operators F_{w} on $M \ominus z M$ by

$$
F_{w}=\left.P_{M \ominus z M} T_{w}\right|_{M \ominus z M}
$$

and F_{z} on $M \ominus w M$ by $F_{z}=\left.P_{M \ominus w M} T_{z}\right|_{M \ominus w M}$. Let $\varphi(w)$ be a nonconstant inner function. We use the same notations as the ones given in Section 3. Let $\left\{\lambda_{k}(w)\right\}_{k=0}^{m}$ be an orthonormal basis of $H^{2}(w) \ominus \varphi(w) H^{2}(w)$. Let

$$
E_{n}=\frac{z \sigma_{n}(z, \varphi(w))-\sqrt{n+1} \varphi(w)^{n+1}}{\sqrt{n+2}}, \quad n \geq 0 .
$$

Then we may verify the following lemma (see [12]).
Lemma 4.2. The set $\left\{\lambda_{k}(w) E_{n}: 0 \leq k \leq m, n \geq 0\right\}$ is an orthonormal basis of $M_{\varphi} \ominus z M_{\varphi}$.
Theorem 4.3. The Beurling type theorem holds for the fringe operator F_{w} on $[z-w] \ominus z[z-w]$. Moreover, $\operatorname{dim}\left(M \ominus F_{w} M\right)=1$ for every invariant subspace M for F_{w}.

Proof. Let

$$
X_{n}=\frac{1}{\sqrt{n+2}}\left(\frac{\sum_{i=0}^{n} z^{i+1} w^{n-i}}{\sqrt{n+1}}-\sqrt{n+1} w^{n+1}\right)
$$

for every $n \geq 0$. By Lemma 4.2, $\left\{X_{n}\right\}_{n \geq 0}$ is an orthonormal basis of $[z-$ $w] \ominus z[z-w]$ (see also $[6,17,18]$). It is not difficult to see that $w X_{n} \perp X_{j}$ for $j \neq n+1$. Hence

$$
\begin{aligned}
F_{w} X_{n}= & \left\langle w X_{n}, X_{n+1}\right\rangle X_{n+1} \\
= & \left\langle\frac{1}{\sqrt{n+2}}\left(\frac{\sum_{i=0}^{n} z^{i+1} w^{n+1-i}}{\sqrt{n+1}}-\sqrt{n+1} w^{n+2}\right),\right. \\
& \left.\frac{1}{\sqrt{n+3}}\left(\frac{\sum_{i=0}^{n+1} z^{i+1} w^{n+1-i}}{\sqrt{n+2}}-\sqrt{n+2} w^{n+2}\right)\right\rangle X_{n+1} \\
= & \frac{1}{\sqrt{n+2} \sqrt{n+3}}\left(\frac{n+1}{\sqrt{n+1} \sqrt{n+2}}+\sqrt{n+1} \sqrt{n+2}\right) X_{n+1} \\
= & \frac{\sqrt{n+1} \sqrt{n+3}}{n+2} X_{n+1} .
\end{aligned}
$$

Let

$$
c_{n}=\frac{\sqrt{n+1} \sqrt{n+3}}{n+2} .
$$

Then $c_{0}=\sqrt{3} / 2$, so $1 / \sqrt{2}<c_{0}$, and $c_{n}<1$ for every $n \geq 0$. It is not difficult to check $c_{n}^{2}\left(2-c_{n-1}^{2}\right) \geq 1$. By Theorem 2.1, we get the first assertion.

We have

$$
\prod_{n=0}^{k} c_{n}=\frac{\sqrt{3}}{2} \frac{\sqrt{2} \sqrt{4}}{3} \frac{\sqrt{3} \sqrt{5}}{4} \cdots \frac{\sqrt{k+1} \sqrt{k+3}}{k+2}=\frac{1}{\sqrt{2}} \frac{\sqrt{k+3}}{\sqrt{k+2}} .
$$

Hence $\prod_{n=0}^{\infty} c_{n}=1 / \sqrt{2}$. By Theorem 2.5, we get the second assertion.

Since

$$
T_{z}^{*} X_{n}=\frac{1}{\sqrt{n+2}} \sigma_{n}(z, w)
$$

$T_{z}^{*}([z-w] \ominus z[z-w])$ is dense in $H^{2} \ominus[z-w]$. As mentioned in the introduction, S_{w} on $H^{2} \ominus[z-w]$ is unitary equivalent to the Bergman shift B on $L_{a}^{2}(\mathbb{D})$. We note that the dimension of wandering subspaces of invariant subspaces in $L_{a}^{2}(z)$ for B ranges from 1 to ∞.
Proposition 4.4. Let $\varphi(w)=w^{2} \varphi_{0}(w)$ for an inner function $\varphi_{0}(w)$. Then

$$
\left\|F_{w} f\right\|^{2}+\left\|F_{w}^{* 2} F_{w} f\right\|^{2}>2\left\|F_{w}^{*} F_{w} f\right\|^{2}
$$

for some $f \in M_{\varphi} \ominus z M_{\varphi}$.
Proof. We have

$$
\left\{1, \varphi_{0}(w), w \varphi_{0}(w)\right\} \subset H^{2}(w) \ominus \varphi(w) H^{2}(w)
$$

By Lemma 4.2, $E_{n}, \varphi_{0}(w) E_{n}, w \varphi_{0}(w) E_{n}$ are contained in $M_{\varphi} \ominus z M_{\varphi}$ for every $n \geq 0$. Let $f=w \varphi_{0}(w) E_{0}$. Then

$$
w f=\varphi(w) E_{0}=\frac{\varphi(w) z-\varphi(w)^{2}}{\sqrt{2}}
$$

Let

$$
r(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w) \quad \text { with } r(w) \perp 1
$$

Then $\varphi(w) \perp r(w) \varphi(w)^{n}$, and by Lemma 4.2 we have $r(w) E_{n} \in M_{\varphi} \ominus z M_{\varphi}$ for $n \geq 0$. Hence for every $n \geq 0$, we have

$$
\begin{aligned}
\left\langle w f, r(w) E_{n}\right\rangle= & \frac{1}{\sqrt{2} \sqrt{n+2}}\left\langle\varphi(w) z-\varphi(w)^{2},\right. \\
& \left.r(w) \frac{\sum_{i=0}^{n} z^{i+1} \varphi(w)^{n-i}}{\sqrt{n+1}}-\sqrt{n+1} r(w) \varphi(w)^{n+1}\right\rangle \\
= & \frac{1}{\sqrt{2} \sqrt{n+2}}\left(\frac{\left\langle\varphi(w), r(w) \varphi(w)^{n}\right\rangle}{\sqrt{n+1}}\right. \\
& \left.+\sqrt{n+1}\left\langle\varphi(w)^{2}, r(w) \varphi(w)^{n+1}\right\rangle\right) \\
= & 0 .
\end{aligned}
$$

For $j \neq 1$, since $\varphi(0)=0$ we have also

$$
\begin{aligned}
\left\langle w f, E_{j}\right\rangle= & \frac{1}{\sqrt{2} \sqrt{j+2}}\left(\frac{\left\langle\varphi(w), \varphi(w)^{j}\right\rangle}{\sqrt{j+1}}\right. \\
& \left.+\sqrt{j+1}\left\langle\varphi(w)^{2}, \varphi(w)^{j+1}\right\rangle\right) \\
= & 0
\end{aligned}
$$

Hence

$$
F_{w} f=\left\langle w f, E_{1}\right\rangle E_{1}=\frac{1}{\sqrt{2} \sqrt{3}}\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right) E_{1}=\frac{\sqrt{3}}{2} E_{1}
$$

We have

$$
\begin{aligned}
T_{w}^{*} F_{w} f & =\frac{\sqrt{3}}{2} T_{w}^{*}\left(\frac{1}{\sqrt{3}}\left(\frac{\varphi(w) z+z^{2}}{\sqrt{2}}-\sqrt{2} \varphi(w)^{2}\right)\right) \\
& =\frac{1}{2}\left(\frac{w \varphi_{0}(w) z}{\sqrt{2}}-\sqrt{2} w \varphi_{0}(w) \varphi(w)\right)
\end{aligned}
$$

Let

$$
r_{1}(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w) \quad \text { with } r_{1}(w) \perp w \varphi_{0}(w) .
$$

Then $w \varphi_{0}(w) \perp r_{1}(w) \varphi(w)^{n}$ for $n \geq 0$. Hence for every $n \geq 0$, we have

$$
\begin{aligned}
\left\langle T_{w}^{*} F_{w} f, r_{1}(w) E_{n}\right\rangle= & \frac{1}{2 \sqrt{n+2}}\left\langle\frac{w \varphi_{0}(w) z}{\sqrt{2}}-\sqrt{2} w \varphi_{0}(w) \varphi(w)\right. \\
& \left.r_{1}(w) \frac{\sum_{i=0}^{n} z^{i+1} \varphi(w)^{n-i}}{\sqrt{n+1}}-\sqrt{n+1} r_{1}(w) \varphi(w)^{n+1}\right\rangle \\
= & \frac{1}{2 \sqrt{n+2}}\left(\frac{1}{\sqrt{2} \sqrt{n+1}}\left\langle w \varphi_{0}(w), r_{1}(w) \varphi(w)^{n}\right\rangle\right. \\
& \left.+\sqrt{2} \sqrt{n+1}\left\langle w \varphi_{0}(w), r_{1}(w) \varphi(w)^{n}\right\rangle\right) \\
= & 0
\end{aligned}
$$

For $j>0$, since $\varphi(0)=0$ we have

$$
\begin{aligned}
\left\langle T_{w}^{*} F_{w} f, w \varphi_{0}(w) E_{j}\right\rangle= & \frac{1}{2 \sqrt{j+2}}\left(\frac{1}{\sqrt{2} \sqrt{j+1}}\left\langle w \varphi_{0}(w), w \varphi_{0}(w) \varphi(w)^{j}\right\rangle\right. \\
& \left.\quad+\sqrt{2} \sqrt{j+1}\left\langle w \varphi_{0}(w), w \varphi_{0}(w) \varphi(w)^{j}\right\rangle\right) \\
= & 0
\end{aligned}
$$

Hence

$$
\begin{aligned}
F_{w}^{*} F_{w} f= & \left\langle T_{w}^{*} F_{w} f, w \varphi_{0}(w) E_{0}\right\rangle w \varphi_{0}(w) E_{0} \\
= & \frac{1}{2 \sqrt{2}}\left(\frac{1}{\sqrt{2}}\left\langle w \varphi_{0}(w), w \varphi_{0}(w)\right\rangle\right. \\
& \left.+\sqrt{2}\left\langle w \varphi_{0}(w), w \varphi_{0}(w)\right\rangle\right) w \varphi_{0}(w) E_{0} \\
= & \frac{1}{2 \sqrt{2}}\left(\frac{1}{\sqrt{2}}+\sqrt{2}\right) w \varphi_{0}(w) E_{0} \\
= & \frac{3}{4} w \varphi_{0}(w) E_{0}
\end{aligned}
$$

Since

$$
T_{w}^{*} F_{w}^{*} F_{w} f=\frac{3}{4} \varphi_{0}(w) E_{0} \in M_{\varphi} \ominus z M_{\varphi}
$$

we have $F_{w}^{* 2} F_{w} f=\frac{3}{4} \varphi_{0}(w) E_{0}$. Therefore

$$
\left\|F_{w} f\right\|^{2}+\left\|F_{w}^{* 2} F_{w} f\right\|^{2}=\frac{3}{4}+\left(\frac{3}{4}\right)^{2}>2\left(\frac{3}{4}\right)^{2}=2\left\|F_{w}^{*} F_{w} f\right\|^{2} .
$$

By Proposition 4.4, we may not apply Theorem A for the operator F_{w} on $M_{\varphi} \ominus z M_{\varphi}$. So we do not know whether or not the Beurling type theorem holds for the operator F_{w} on $M_{\varphi} \ominus z M_{\varphi}$.

By the symmetry of variables in $[z-w]$ and Theorem 4.3, the Beurling type theorem holds for the operator F_{z} on $[z-w] \ominus w[z-w]$. We may generalize this fact as follows.

Theorem 4.5. Let $\varphi(w)$ be an inner function with $\varphi(0)=0$. Then the fringe operator F_{z} on $M_{\varphi} \ominus w M_{\varphi}$ is unitarily equivlent to the fringe operator F_{w} on $[z-w] \ominus z[z-w]$, and the Beurling type theorem holds for F_{z} and $\operatorname{dim}\left(M \ominus F_{z} M\right)=1$ for every invariant subspace M of $M_{\varphi} \ominus w M_{\varphi}$ for F_{z}.

To prove this, we need some lemmas. Let $\varphi(w)$ be an inner function with $\varphi(0)=0$. One easily checks the following lemma.

Lemma 4.6. We have $T_{w}^{*} \varphi(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w)$, and if $\lambda(w) \in$ $H^{2}(w) \ominus \varphi(w) H^{2}(w)$ and $\lambda(w) \perp T_{w}^{*} \varphi(w)$, then

$$
T_{w} \lambda(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w) .
$$

By Lemma 3.1, N_{φ} coincides with the closed linear span of

$$
\left\{\lambda(w) \sigma_{n}(z, \varphi(w)): \lambda(w) \in H^{2}(w) \ominus \varphi(w) H^{2}(w), n \geq 0\right\} .
$$

By Lemma 4.6, $\left(T_{w} \lambda(w)\right) \sigma_{n}(z, \varphi(w)) \in N_{\varphi}$ for every

$$
\lambda(w) \in\left(H^{2}(w) \ominus \varphi(w) H^{2}(w)\right) \ominus \mathbb{C} \cdot T_{w}^{*} \varphi(w)
$$

and $n \geq 0$. Let

$$
N_{\varphi, 0}=\left\{f \in N_{\varphi}: T_{w} f \in N_{\varphi}\right\} .
$$

Since $\varphi(0)=0, T_{w}\left(T_{w}^{*} \varphi(w)\right)=\varphi(w)$ and $\varphi(w) \sigma_{n}(z, \varphi(w)) \notin N_{\varphi}$ for every $n \geq 0$. Hence the space $N_{\varphi} \ominus N_{\varphi, 0}$ coincides with the closed linear span of $\left\{\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w)): n \geq 0\right\}$. By Lemma 3.1, we have that

$$
\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w)) \perp\left(T_{w}^{*} \varphi(w)\right) \sigma_{j}(z, \varphi(w)) \quad \text { for } n \neq j
$$

and $\left\|\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w))\right\|=1$. So

$$
\left\{\left(T_{w}^{*} \varphi(w)\right)(w) \sigma_{n}(z, \varphi(w)): n \geq 0\right\}
$$

is an orthonormal basis of $N_{\varphi} \ominus N_{\varphi, 0}$.
One easily sees that $T_{w}^{*}\left(M_{\varphi} \ominus w M_{\varphi}\right) \perp N_{\varphi, 0}$. Therefore by Lemma 4.1, we have the following.
Lemma 4.7. Let $g \in M_{\varphi} \ominus w M_{\varphi}$. Then we may write

$$
T_{w}^{*} g=\sum_{n=0}^{\infty} a_{n}\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w)), \quad \sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty
$$

Let

$$
Y_{n}=\frac{1}{\sqrt{n+2}}\left(\varphi(w) \sigma_{n}(z, \varphi(w))-\sqrt{n+1} z^{n+1}\right), \quad n \geq 0
$$

Lemma 4.8. Let $\varphi(w)$ be an inner function with $\varphi(0)=0$. Then $\left\{Y_{n}\right\}_{n \geq 0}$ is an orthonormal basis of $M_{\varphi} \ominus w M_{\varphi}$.

Proof. We have

$$
\begin{aligned}
\sqrt{n+1} \sqrt{n+2} Y_{n}= & \varphi(w)\left(z^{n}+z^{n-1} \varphi(w)+\cdots+\varphi(w)^{n}\right) \\
& -(n+1) z^{n+1}
\end{aligned}
$$

Letting $n=0$, we have

$$
\sqrt{2} Y_{0}=\varphi(w)-z \in M_{\varphi} .
$$

By induction, we shall show that $Y_{n} \in M_{\varphi}$ for every $n \geq 0$. Suppose that

$$
\begin{aligned}
\sqrt{k+1} \sqrt{k+2} Y_{k}= & \varphi(w)\left(z^{k}+z^{k-1} \varphi(w)+\cdots+\varphi(w)^{k}\right) \\
& -(k+1) z^{k+1} \in M_{\varphi}
\end{aligned}
$$

We have

$$
\begin{aligned}
\sqrt{k+1} \sqrt{k+2} \varphi(w) Y_{k}= & \varphi(w)^{2}\left(z^{k}+z^{k-1} \varphi(w)+\cdots+\varphi(w)^{k}\right) \\
& -(k+1) z^{k+1} \varphi(w) \in M_{\varphi} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\varphi(w)^{k+2}= & \sqrt{k+1} \sqrt{k+2} \varphi(w) Y_{k}+(k+1) z^{k+1} \varphi(w) \\
& -\left(z^{k} \varphi(w)^{2}+z^{k-1} \varphi(w)^{3}+\cdots+z \varphi(w)^{k+1}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sqrt{k+2} \sqrt{k+3} Y_{k+1} \\
&= \varphi(w)\left(z^{k+1}+z^{k} \varphi(w)+\cdots+\varphi(w)^{k+1}\right)-(k+2) z^{k+2} \\
&= \sqrt{k+1} \sqrt{k+2} \varphi(w) Y_{k}+(k+1) z^{k+1} \varphi(w) \\
&-\left(z^{k} \varphi(w)^{2}+z^{k-1} \varphi(w)^{3}+\cdots+z \varphi(w)^{k+1}\right) \\
&+z^{k+1} \varphi(w)+z^{k} \varphi(w)^{2}+\cdots+z \varphi(w)^{k+1}-(k+2) z^{k+2} \\
&= \sqrt{k+1} \sqrt{k+2} \varphi(w) Y_{k}+(k+2) z^{k+1}(\varphi(w)-z) \in M_{\varphi} .
\end{aligned}
$$

This completes the induction. Thus we get $Y_{n} \in M_{\varphi}$ for every $n \geq 0$.
We have also

$$
\begin{aligned}
T_{w}^{*} Y_{n} & =\frac{1}{\sqrt{n+2}} T_{w}^{*}\left(\varphi(w) \sigma_{n}(z, \varphi(w))\right) & & \\
& =\frac{1}{\sqrt{n+2}}\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w)) & & \text { because } \varphi(0)=0 \\
& \in N_{\varphi} & & \text { by Lemmas 3.1 and 4.6. }
\end{aligned}
$$

Hence by Lemma 4.1, $Y_{n} \in M_{\varphi} \ominus w M_{\varphi}$ for $n \geq 0$. Since $\varphi(0)=0$ and $\left\|\varphi(w) \sigma_{n}(z, \varphi(w))\right\|=1$, it is not difficult to show that $\left\|Y_{n}\right\|=1$ for $n \geq 0$.

Let $0 \leq n<j$. Then

$$
\left\langle\varphi(w) \sigma_{n}(z, \varphi(w))-\sqrt{n+1} z^{n+1}, z^{j+1}\right\rangle=0
$$

and $\left\langle z^{n}, \varphi(w) \sigma_{j}(z, \varphi(w))\right\rangle=0$. So

$$
\begin{aligned}
\left\langle Y_{n}, Y_{j}\right\rangle & =\frac{1}{\sqrt{n+2} \sqrt{j+2}}\left\langle\varphi(w) \sigma_{n}(z, \varphi(w)), \varphi(w) \sigma_{j}(z, \varphi(w))\right\rangle \\
& =\frac{1}{\sqrt{n+2} \sqrt{j+2}}\left\langle\sigma_{n}(z, \varphi(w)), \sigma_{j}(z, \varphi(w))\right\rangle \\
& =\frac{1}{\sqrt{n+1} \sqrt{n+2} \sqrt{j+1} \sqrt{j+2}}\left\langle\sum_{i=0}^{n} z^{i} \varphi(w)^{n-i}, \sum_{\ell=0}^{j} z^{\ell} \varphi(w)^{j-\ell}\right\rangle \\
& =\frac{1}{\sqrt{n+1} \sqrt{n+2} \sqrt{j+1} \sqrt{j+2}} \sum_{i=0}^{n}\left\langle\varphi(w)^{n-i}, \varphi(w)^{j-i}\right\rangle \\
& =0 \quad \text { because } \varphi(0)=0 \text { and } n<j .
\end{aligned}
$$

Hence $\left\{Y_{n}\right\}_{n \geq 0}$ is an orthonormal system in $M_{\varphi} \ominus w M_{\varphi}$.
Let $g \in M_{\varphi} \ominus w M_{\varphi}$. By Lemma 4.7, we may write

$$
T_{w}^{*} g=\sum_{n=0}^{\infty} a_{n}\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w))
$$

for some $\sum_{n=0}^{\infty}\left|a_{n}\right|^{2}<\infty$. We have

$$
\begin{aligned}
g(z, w) & =w\left(\sum_{n=0}^{\infty} a_{n}\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w))\right)+g(z, 0) \\
& =\left(\sum_{n=0}^{\infty} a_{n} \varphi(w) \sigma_{n}(z, \varphi(w))\right)+g(z, 0) .
\end{aligned}
$$

Since $g \in[z-\varphi(w)], g(\varphi(\zeta), \zeta)=0$ for every $\zeta \in \mathbb{D}$. Then

$$
\begin{aligned}
g(\varphi(\zeta), 0) & =-\sum_{n=0}^{\infty} a_{n} \varphi(\zeta) \sigma_{n}(\varphi(\zeta), \varphi(\zeta)) \\
& =-\sum_{n=0}^{\infty} \sqrt{n+1} a_{n} \varphi(\zeta)^{n+1}
\end{aligned}
$$

Hence

$$
g(z, 0)=-\sum_{n=0}^{\infty} \sqrt{n+1} a_{n} z^{n+1}, \quad z \in \mathbb{D} .
$$

Therefore for $(z, w) \in \mathbb{D}^{2}$ we get

$$
\begin{aligned}
g(z, w) & =\sum_{n=0}^{\infty} a_{n}\left(\varphi(w) \sigma_{n}(z, \varphi(w))-\sqrt{n+1} z^{n+1}\right) \\
& =\sum_{n=0}^{\infty} \sqrt{n+2} a_{n} Y_{n}
\end{aligned}
$$

and

$$
\sum_{n=0}^{\infty}(n+2)\left|a_{n}\right|^{2}<\infty
$$

Thus we get the assertion.
Remark 4.9. By the last paragraph of the proof of Lemma 4.8, we have

$$
T_{w}^{*}\left(M_{\varphi} \ominus w M_{\varphi}\right)=\left\{\sum_{n=0}^{\infty} a_{n}\left(T_{w}^{*} \varphi(w)\right) \sigma_{n}(z, \varphi(w)): \sum_{n=0}^{\infty}(n+2)\left|a_{n}\right|^{2}<\infty\right\} .
$$

Remark 4.10. If $\varphi(0) \neq 0$, we can prove that

$$
Z_{n}:=(\varphi(w)-\varphi(0)) \sigma_{n}(z, \varphi(w))-\sqrt{n+1}(z-\varphi(0)) z^{n} \in M_{\varphi} \ominus w M_{\varphi}
$$

for every $n \geq 0$. But in this case, $Z_{n} \not \perp Z_{j}$ for $n \neq j$.
Proof of Theorem 4.5. We note that

$$
Y_{n}=\frac{1}{\sqrt{n+2}}\left(\frac{\sum_{i=0}^{n} z^{i} \varphi(w)^{n+1-i}}{\sqrt{n+1}}-\sqrt{n+1} z^{n+1}\right), \quad n \geq 0 .
$$

We have $T_{z} Y_{n} \perp Y_{j}$ for $j \neq n+1$. For, we have

$$
\begin{aligned}
& \left\langle T_{z} Y_{n}, Y_{j}\right\rangle \\
& \quad=\frac{1}{\sqrt{n+2} \sqrt{j+2}}\left\langle z \varphi(w) \sigma_{n}(z, \varphi(w)), \varphi(w) \sigma_{j}(z, \varphi(w))\right\rangle
\end{aligned}
$$

because $\varphi(0)=0$

$$
\begin{aligned}
& =\frac{1}{\sqrt{n+2} \sqrt{j+2}}\left\langle\frac{\sum_{i=0}^{n} z^{i+1} \varphi(w)^{n+1-i}}{\sqrt{n+1}}, \frac{\sum_{\ell=0}^{j} z^{\ell} \varphi(w)^{j+1-\ell}}{\sqrt{j+1}}\right\rangle \\
& =\frac{1}{\sqrt{n+1} \sqrt{n+2} \sqrt{j+1} \sqrt{j+2}} \sum_{i=0}^{n} \sum_{\ell=0}^{j}\left\langle\varphi(w)^{n-i}, \varphi(w)^{j-l}\right\rangle\left\langle z^{i+1}, z^{\ell}\right\rangle .
\end{aligned}
$$

If either $n-i \neq j-\ell$ or $i+1 \neq \ell$, then

$$
\left\langle\varphi(w)^{n-i}, \varphi(w)^{j-l}\right\rangle\left\langle z^{i+1}, z^{l}\right\rangle=0
$$

because $\varphi(0)=0$. If $n-i=j-\ell$ and $i+1=\ell$, then $j=n+1$. Thus $T_{z} Y_{n} \perp Y_{j}$ for $j \neq n+1$.

Hence we get

$$
\begin{aligned}
F_{z} Y_{n} & =\left\langle T_{z} Y_{n}, Y_{n+1}\right\rangle Y_{n+1} \\
& =\frac{1}{\sqrt{n+2} \sqrt{n+3}}\left(\frac { 1 } { \sqrt { n + 1 } \sqrt { n + 2 } } \left(\sum_{i=0}^{n} \sum_{\ell=0}^{n+1}\left\langle\varphi(w)^{n-i}, \varphi(w)^{n+1-\ell}\right\rangle\right.\right. \\
& =\frac{\left.\left.\left.1 z^{i+1}, z^{\ell}\right\rangle\right)+\sqrt{n+1} \sqrt{n+2}\right) Y_{n+1}}{\sqrt{n+2} \sqrt{n+3}}\left(\frac{\sqrt{n+1}}{\sqrt{n+2}}+\sqrt{n+1} \sqrt{n+2}\right) Y_{n+1} \\
& =\frac{\sqrt{n+1}}{\sqrt{n+3}}\left(\frac{1}{n+2}+1\right) Y_{n+1} \\
& =\frac{\sqrt{n+1} \sqrt{n+3}}{n+2} Y_{n+1}
\end{aligned}
$$

By the proof of Theorem 4.3, F_{z} on $M_{\varphi} \ominus w M_{\varphi}$ is unitarily equivalent to F_{w} on $[z-w] \ominus z[z-w]$. By Theorem 4.3, we get the assertion.

References

[1] Aleman, A.; Richter, S.; Sundberg, C. Beurling's theorem for the Bergman space. Acta Math. 117 (1996) 275-310. MR1440934 (98a:46034), Zbl 0886.30026.
[2] Apostol, C.; Bercovici, H.; Foias, C.; Pearcy, C. Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra. I. J. Funct. Anal. 63 (1985) 369-404. MR0808268 (87i:47004a), Zbl 0608.47005.
[3] Beurling, Arne. On two problems concerning linear transformations in Hilbert space. Acta Math. 81 (1949) 239-255. MR0027954 (10,381e), Zbl 0033.37701.
[4] Chen, Xiaoman; Guo, Kunyu. Analytic Hilbert modules. Chapman \& Hall/CRC Research Notes in Mathematics, 433. Chapman \& Hall/CRC, Boca Raton, FL, 2003. viii+201 pp. ISBN: 1-58488-399-5. MR1988884 (2004d:47024), Zbl 1048.46005.
[5] Duren, Peter; Schuster, Alexander. Bergman spaces. Mathematical Surveys and Monographs, 100. American Mathematical Society, Providence, RI, 2004. x+318 pp. ISBN: 0-8218-0810-9. MR2033762 (2005c:30053), Zbl 1059.30001.
[6] Guo, Kunyu; Sun, Shunhua; Zheng, Dechao; Zhong, Changyong. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. reine angew. Math. 628 (2009) 129-168. MR2503238 (2010e:46024), Zbl pre05541581.
[7] Hedenmalm, Per Jan Håkan. An invariant subspace of the Bergman space having the codimension two property. J. reine angew. Math. 443 (1993) 1-9. MR1241125 (94k:30092).
[8] Hedenmalm, Håkan; Korenblum, Boris; Zhu, Kehe. Theory of Bergman spaces. Graduate Texts in Mathematics, 199. Springer-Verlag, New York, 2000. x+286 pp. ISBN: 0-387-98791-6. MR1758653 (2001c:46043), Zbl 0955.32003.
[9] Hedenmalm, Håkan; Richter, Stefan; Seip, Kristian. Interpolating sequences and invariant subspaces of given index in the Bergman spaces. J. reine angew. Math. 477 (1996) 13-30. MR1405310 (97i:46044), Zbl 0895.46023.
[10] Izuchi, Kei Jı; Izuchi, Kou Hei; Izuchi, Yuko. Wandering subspaces and the Beurling type theorem. I. Archiv der Math., to appear.
[11] Izuchi, Keiji; Yang, Rongwei. Strictly contractive compression on backward shift invariant subspaces over the torus Acta Sci. Math. (Szeged) 70 (2004) 147-165. MR2072696 (2005e:47019), Zbl 1062.47017.
[12] Izuchi, Keiji; Yang, Rongwei. N_{φ}-type quotient modules on the torus. New York J. Math. 14 (2008), 431-457. MR2443982 (2009j:47018), Zbl 1175.47007.
[13] McCullough, Scott; Richter, Stefan. Bergman-type reproducing kernels, contractive divisors, and dilations. J. Funct. Anal. 190 (2002) 447-480. MR1899491 (2003c:47043), Zbl 1038.46021.
[14] Olofsson, Anders. Wandering subspace theorems. Integr. Eq. Op. Theory 51 (2005) 395-409. MR2126818 (2005k:47019), Zbl 1079.47015.
[15] Rudin, Walter. Function theory in polydiscs. W. A. Benjamin, Inc., New YorkAmsterdam, 1969. vii+188 pp. MR0255841 (41 \#501), Zbl 0177.34101.
[16] Shimorin, Sergei. Wold-type decompositions and wandering subspaces for operators close to isometries. J. reine angew. Math. 531 (2001) 147-189. MR1810120 (2002c:47018), Zbl 0974.47014.
[17] Sun, ShunHua; Zheng, DeChao. Beurling type theorem on the Bergman space via the Hardy space of the bidisk. Sci. China Ser. A 52 (2009) 2517-2529. MR2566663, Zbl 1191.47007.
[18] Sun, Shunhua; Zheng, Dechao; Zhong, Changyong. Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk. Canad. J. Math. 62 (2010) 415-438. MR2643050, Zbl 1185.47030.
[19] Yang, Rongwei. Hardy modules. Ph.D. thesis, State Univ. New York at Stony Brook, 1998.
[20] Yang, Rongwei. The Berger-Shaw theorem in the Hardy module over the bidisk. J. Operator Theory 42 (1999) 379-404. MR1717024 (2000h:47040), Zbl 0991.47015.
[21] Yang, Rongwei. Operator theory in the Hardy space over the bidisk. (III). J. Funct. Anal. 186 (2001) 521-545. MR1864831 (2002m:47008), Zbl 1049.47501.
[22] Yang, Rongwei. Operator theory in the Hardy space over the bidisk. (II). Integral Equations Operator Theory 42 (2002) 99-124. MR1866878 (2002m:47007), Zbl 1002.47012.
[23] Yang, Rongwei. The core operator and congruent submodules. J. Funct. Anal. 228 (2005) 459-489. MR175415 (2006e:47015), Zbl 1094.47007.
[24] Yang, Rongwei. Hilbert-Schmidt submodules and issues of unitary equivalence. J. Operator Theory 53 (2005) 169-184. MR2132692 (2006d:47014), Zbl 1098.46020.

Department of Mathematics, Niigata University, Niigata 950-2181, Japan
izuchi@m.sc.niigata-u.ac.jp
Department of Mathematics, Korea University, Seoul 136-701, Korea
kh.izuchi@gmail.com
Aoyama-shinmachi 18-6-301, Niigata 950-2006, Japan
yfd10198@nifty.com
This paper is available via http://nyjm.albany.edu/j/2010/16-20.html.

[^0]: Received July 26, 2010; revised October 24, 2010.
 2000 Mathematics Subject Classification. Primary 47A15, 32A35; Secondary 47B35.
 Key words and phrases. Beurling type theorem, Hardy space over the bidisk, invariant subspace, wandering subspace, fringe operator.

 The first author is partially supported by Grant-in-Aid for Scientific Research (No.21540166), Japan Society for the Promotion of Science.

