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The isolated ideal of a correspondence associated
with a topological quiver

Berndt Brenken

Abstract. For a general C*-correspondence E a canonical saturated invariant
ideal, on which the correspondence is not supported, is identified. The quotient
correspondence is formed and the Cuntz–Pimsner C*-algebra of it is identified
both as a relative Cuntz–Pimsner algebra for E, and as a quotient of the Cuntz–
Pimsner algebra for E. For the C*-correspondence arising from a topological
quiver this process amounts to restricting the base space of vertices to the
closed subspace supporting the space of edges.
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Introduction

Associated with a correspondence E over a C*-algebra A is the Cuntz–Pimsner
C*-algebra OE . This is a universal C*-algebra for representations of the correspon-
dence E subject to relations determined by an ideal of A. The algebra contains an
isomorphic copy of the algebra A even though the actual correspondence E may
only involve a part of A. In the following we form the Cuntz–Pimsner C*-algebra
associated with the correspondence restricted to the part of A on which E lives, and
show it is a relative Cuntz–Pimsner algebra for the correspondence E . Since this
relative Cuntz–Pimsner C*-algebra is a quotient of the Cuntz–Pimsner algebra OE
by the part of A independent of E , it is an algebra meriting consideration. Certainly
the algebra OE is not simple if E is not based on all of A. If the correspondence E
lives on all of A this relative Cuntz–Pimsner algebra is just the usual C*-algebra
OE . In the discrete case, namely when the correspondence E is associated with
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a directed graph, this relative Cuntz–Pimsner C*-algebra just ignores the abelian
C*-algebra summand generated by the isolated points of the graph.

The organization of the article is as follows. In Section 1, after some preliminary
definitions and concepts mainly following the literature, we introduce the ideal N
in A of isolated points for a correspondence E over A, intrinsically described as the
annihilating ideal of E , and show that restricting this correspondence yields a new
correspondence whose Cuntz–Pimsner algebra is a quotient of the Cuntz–Pimsner
algebra OE . This quotient algebra is seen to be a relative Cuntz–Pimsner algebra
of the correspondence E . The Cuntz–Pimsner algebra of the correspondence can
never be simple if there are isolated points and, in a sense, there is no dynamical
content for the part of the correspondence over this isolated ideal.

In the second section we apply this to the correspondence associated with a topo-
logical quiver ([MT]), or what could also be called a directed topological graph. The
new correspondence is then associated with an altered topological quiver, namely
one restricted over the topological space of nonisolated vertices. In [MT] two con-
ditions, (L) and (K), are introduced on topological quivers as analogues of these
conditions on graphs. The restricted topological quiver is then shown to satisfy
condition (L), or condition (K), if and only if the original topological quiver satis-
fies the same condition. Since these two conditions reflect representation theoretic
aspects of the correspondence this illustrates that restricting a correspondence to
ignore the isolated points does not affect these crucial properties. As is the case in
[MT], the topological constraints of the topological quiver context results in proofs
that can be intricate.

Notation. If D is a subset of a topological space Y then the closure of D is denoted
by ClY D, or if there is no ambiguity by D, while ∂Y D = D ∩ (Y �D) is the
boundary of D. The interior of D is IntY D. The algebra of continuous functions
on Y is C(Y ), while if Y is locally compact Hausdorff Cc(Y ) is the algebra of
continuous functions with compact support. Its closure in the uniform sup norm
is the algebra of continuous functions that vanish at infinity, C0(Y ). The supports
of a function f or of a measure λ are denoted supp(f) and supp(λ) respectively. If
f : Y → Z is a continuous map of topological spaces then dom(f) and ran(f) denote
the domain and range respectively of f , and the dual map f � : C(Z) → C(Y ) is
given by f �(h) = h ◦ f . By an ideal of a C*-algebra A we shall mean a closed two
sided ideal, and if B is a subset of a C*-algebra A then I(B) denotes the ideal of A
generated by B. For an ideal J of A, J⊥ denotes the ideal {a ∈ A | ab = 0, (b ∈ J)}.

1. The isolated ideal

For results and conventions on C*-modules we follow Lance [L]; so if A is a
C*-algebra a Hilbert A-module E is a Banach space which is a right A-module
with an A-valued inner product 〈, 〉A, denoted 〈, 〉 if the context is clear. The
norm on E is given by ‖x‖2 = ‖〈x, x〉‖, (x ∈ E); L(E) denotes the C*-algebra of
adjointable operators on E while K(E), in analogy with the case when A is the com-
plex numbers, is the closed two-sided ideal of compact operators span{θEx,y|x, y ∈ E}
where θEx,y(z) = x 〈y, z〉, (z ∈ E). If E is a Hilbert A-module the linear span of
{〈x, y〉 |x, y ∈ E}, denoted 〈E ,E〉, has closure a two-sided ideal of A. Note that
E 〈E ,E〉 is dense in E ([L]). The Hilbert module E is called full if 〈E ,E〉 is dense in
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A. If A is a C*-algebra then AA refers to the Hilbert module A over itself, where
〈a, b〉 = a∗b for a, b ∈ A.

Definition 1.1. If A is a C*-algebra then a C*-correspondence E over A is a
right Hilbert A-module E together with a left action of A on E defined by a ∗-
homomorphism φA : A → L(E), a · x = φ(a)x, for a ∈ A, x ∈ E , where just φ is
used if the context is clear. The correspondence is called faithful if φ is injective,
and nondegenerate (or essential [MT]) if span {φ(a)x | a ∈ A, x ∈ E} is dense in E .

In the literature a correspondence E over A is also commonly referred to as
a Hilbert bimodule over A, although this may also refer to a particular type of
correspondence. The identity correspondence A over A is A viewed as a Hilbert
module over itself with the left action given by left multiplication.

If E is a C*-correspondence over A, and B is a C*-algebra, we say (T, π) is a
representation of E in B, written (T, π) : E → B, if T : E → B is a linear map,
π : A → B a ∗-homomorphism with

(1) T ∗(x)T (y) = π(〈x, y〉),
(2) T (φ(a)x) = π(a)T (x),
(3) T (x · a) = T (x)π(a),

for all x, y ∈ E , a ∈ A.

The C*-subalgebra of B generated by T (E) ∪ π(A) is denoted C∗(T, π). Note
that the first condition ensures that T is an isometry not only if π is injective as
is usually noted in the literature, but also if only the restriction of π to the ideal
〈E ,E〉 of A is injective, since ‖T (x)‖2 = ‖π 〈x, x〉‖ = ‖〈x, x〉‖ = ‖x‖2, (x ∈ E). If
ρ : B → C is a ∗-homomorphism of C*-algebras then (ρ◦T, ρ◦π) is a representation
of E in C, denoted ρ◦(T, π). If E , F are correspondences over A, B respectively then
a morphism from E to F is a pair (T, Π) with Π a ∗-homomorphism from A to B, T :
E → F a linear map with 〈Tx, Ty〉B = Π(〈x, y〉A) and φF (Π(a))T (x) = T (φE(a)x)
for x, y ∈ E , a ∈ A. Thus a representation (T, π) of E is a morphism from E to the
identity correspondence of B over B. A morphism (T, Π) from E to F yields a ∗-
homomorphism ΨT : K(E) → K(F) by ΨT (θx,y) = θT (x),T (y) for x, y ∈ E ([KPW]),
so using the identification of K(B) with B, a representation (T, π) of E in a C*-
algebra B yields a ∗-homomorphism ΨT : K(E) → B given by θx,y → T (x)T ∗(y).
The argument of Lemma 2.2 [KPW] showing that ΨT is injective if π is injective
also serves to show that ΨT is injective if only the restriction of π to the ideal 〈E ,E〉
of A is injective.

For E a C*-correspondence over A use J(E) to denote the ideal φ−1(K(E)) of A
and JE to denote the ideal J(E) ∩ (ker φ)⊥.

Definition 1.2. For E a C*-correspondence over A, K an ideal in J(E), a repre-
sentation (T, π) of E in a C*-algebra B is coisometric on K if ΨT (φ(a)) = π(a) for
all a ∈ K.

Given a C*-correspondence E over A and K an ideal in J(E) there is a representa-
tion (TE , πE) of E which is coisometric on K and universal among all such represen-
tations ([FMR]), in the sense that if (T, π) is a representation of E in a C*-algebra
B which is coisometric on K then there is a ∗-homomorphism ρ : C∗(TE , πE) → B
with (T, π) = ρ ◦ (TE , πE). The C*-algebra C∗(TE , πE) is called the relative Cuntz–
Pimsner algebra of E determined by K and denoted O(K, E). When K = 0 the
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C*-algebra O(K, E) is denoted T (E) and called the universal Toeplitz C*-algebra
for E .

For C*-correspondences Pimsner ([P]) originally introduced the (augmented)
C*-algebra OE , where φ was injective, as O(J(E), E). The algebra O(J(E), E) was
then used as the Cuntz–Pimsner algebra of a correspondence with general φ (Re-
mark 2.14 of [MT]). The coisometric condition on the smaller ideal JE first arose in
Theorem 1.1 of (the preprint of) [B1], where the graph C*-algebra C∗(E) for a gen-
eral directed graph E — with any (countable) number of edges, sources, sinks, and
isolated vertices — was obtained as a relative Cuntz–Pimsner C*-algebra using JE .
In [K1] the ideal JE was viewed as the maximal ideal on which φ is an injection into
K(E), and the C*-algebra O(JE , E) was investigated as the appropriate analogue of
the Cuntz–Pimsner algebra for general C*-correspondences E . In this paper we in-
vestigate a relative Cuntz–Pimsner algebra of a general C*-correspondence, where
the ideal used to define a universal C*-algebra for coisometric representations is
in general larger than the ideal JE ; thus, since π(a) = ΨT (φ(a)) = ΨT (0) = 0 for
those a in this larger ideal of coisometry satisfying φ(a) = 0, the representation of
E into this universal C*-algebra will not be injective in general. What this amounts
to, for a general C*-correspondence E over A, is to view the parts of A that E is not
supported on as superfluous to the Cuntz–Pimsner algebra of the correspondence.

Definition 1.3 ([MT]). For E a C*-correspondence over A, an ideal I in A is
E-invariant if φ(I)E ⊆ EI . Such an invariant ideal is called E-saturated if

{a ∈ JE | φ(a)E ⊆ EI} ⊆ I.

Proposition 1.4. Let N ⊆ A and E be a C*-correspondence over A.
(1) N satisfies NE = 0 if and only if N ⊆ ker φ. If N is an ideal then it is

E-invariant.
(2) EN = 0 if and only if N ⊆ 〈E , E〉⊥. In this case if N is an invariant ideal

then it is E-saturated.
The ideal N = ker(φ) ∩ 〈E,E〉⊥ is E-invariant and E-saturated.

Proof. Part (1) is clear. If EN = 0 and n ∈ N then fn = 0, (f ∈ E), so 0 =
〈e, fn〉 = 〈e, f〉n for all e, f ∈ E , and thus n ∈ 〈E , E〉⊥. Conversely, let N ⊆ 〈E , E〉⊥.
Then E 〈E ,E〉N = 0, and since E 〈E ,E〉 is dense in E it follows that EN = 0. If
EN = 0 then {a ∈ JE | φ(a)E ⊆ EN} ⊆ JE ∩ ker(φ) ⊆ ker(φ)⊥ ∩ ker(φ) = 0 which
is contained in N , so N is E-saturated. �

Corollary 1.5. Let E be a C*-correspondence over A. The maximal ideal N of A

satisfying NE = EN = 0 is ker(φ)∩ 〈E,E〉⊥, and N is E-invariant and E-saturated.

For nontrivial E , so for E �= 0, the nonzero ideal 〈E , E〉 is contained in N⊥, so N
is never an essential ideal in A. It is worth noticing that in many examples N = 0;
indeed the point of view taken is that if N �= 0 then we should consider a new
correspondence where N = 0, cf. Proposition 1.9. If α is an automorphism of a C*-
algebra A the correspondence associated with this ([P]) is given by the left action
A on the Hilbert module AA where φ(a)b = α(a)b for a, b ∈ A. Clearly kerφ = 0 so
N = 0. If α is an endomorphism of A the correspondence is E = α(A)A, where the
closure is taken in A, with the same inner product as before and with φ(a)b = α(a)b
for a ∈ A, b ∈ E ([MS1]). Here kerφ = ker α, a closed α-invariant ideal of A. Since
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it is usually the case that one only considers injective endomorphisms, N = 0 here
also. The correspondence giving rise to the Cuntz algebra also has N = 0, as will
soon be clear.

Let qN : A → A/N (or just q) denote the quotient map. With the E-invariant
ideal N of A, and the fact, noted above, that EN = 0, we may form the new C*-
correspondence E/EN = E over the C*-algebra A/N where φA/N : A/N → L(E)
given by φA/N ◦ q = φ is clearly well-defined since N ⊂ ker φ. The right action of
A/N on E is given by x · q(a) = xa, and 〈x, y〉A/N = q(〈x, y〉A) for x, y ∈ E and
a ∈ A.

Definition 1.6. For E a C*-correspondence over A let N (or N(E) if required)
denote the ideal ker(φA)∩ 〈E ,E〉⊥ of A and EN denote the C*-correspondence over
A/N .

The pair (I, q) is a morphism of the correspondence E over A to the correspon-
dence EN over A/N , where I is the identity map on E .

We have q−1
N φ−1

A/N (K(E)) = φ−1(K(E)) and q−1
N (ker φA/N ) = kerφ so, since qN

is a surjection, kerφA/N = qN (ker φ) and qN (J(E)) = J(EN ). In general if I is
an ideal of a C*-algebra A and q : A → B is a surjective ∗-homomorphism then
q(I) is an ideal of B and q(I⊥) ⊆ q(I)⊥. With this observation it is clear that
qN (JE) ⊆ [ker φA/N ]⊥ ∩ φ−1

A/N (K(E)) = JEN
.

Proposition 1.7. (1) If I is an ideal in A then I is E-invariant if and only if
qN (I) is EN -invariant.

(2) If H is an ideal in A/N and H is EN -saturated then q−1
N (H) is E-saturated.

Proof. By definition q(I) is EN -invariant if and only if φN (q(I))E ⊆ Eq(I). Since
φ(I)E = φN (q(I))E and Eq(I) = EI the first part follows.

Given a ∈ JE with φ(a)E ⊆ Eq−1(H) we need to show that a ∈ q−1(H). How-
ever q(a) ∈ q(JE) ⊆ JEN

by the preceding comment and φN (q(a))E = φ(a)E ⊆
Eq−1(H) = EH, and since H is EN -saturated we have q(a) ∈ H . Thus a ∈
q−1(H). �

Definition 1.8. For E a C*-correspondence over A and EN the correspondence
over A/N with N = N(E) let J(N) denote the ideal q−1

N (JEN
) of A. Let (TE , πE)

be the universal representation of E coisometric on J(N).

The comments preceding the previous proposition show JE ⊆ J(N) ⊆ J(E). The
later inclusion is crucial as it allows us to define the C*-algebra O(J(N), E), the
relative Cuntz–Pimsner algebra generated by the images of TE and πE . If N = 0
then EN = E and J(N) = JE∩(ker φ)⊥ = JE , so O(J(N), E) is the usual C*-algebra
OE = O(JE , E) characterized in [K2].

Proposition 1.9. If E is a C*-correspondence over A and EN the correspondence
over A/N then the ideal N(EN ) of A/N is zero and so

O(J(N(EN )), EN ) = O(JEN
, EN ).

Proof. The ideal N(EN ) = ker(φA/N ) ∩ 〈E ,E〉⊥A/N where N = ker(φA) ∩ 〈E ,E〉⊥.
Since ker φA/N = qN (ker φ) it is enough to show that if a ∈ ker(φ) with qN (a) ∈
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(〈E ,E〉A/N )⊥ then a ∈ 〈E ,E〉⊥. Now (〈E ,E〉A/N )⊥ = (qN 〈E ,E〉)⊥, so for such el-

ements a we have qN (a 〈E ,E〉) = 0. Thus a 〈E ,E〉 ⊆ ker qN = N ⊆ 〈E ,E〉⊥, so
a(〈E ,E〉 〈E ,E〉) = 0 from which it follows that a(〈E ,E〉) = 0, i.e., a ∈ 〈E ,E〉⊥. �

For K an ideal of A contained in J(E) and (T, π) a universal covariant represen-
tation of E in O(K, E) coisometric on K there is a ∗-homomorphism δ (= δ(T,π)) :
J(E) → O(K, E) defined by δ(a) = π(a) − ΨT (φ(a)), (a ∈ J(E)) ([MT]). Since
JE ⊆ J(N), the representation (TE , πE) of E is also coisometric on JE and the
universal property yields a surjective ∗-homomorphism τ : O(JE , E) → O(J(N), E)
satisfying τ ◦ (T, π) = (TE , πE) where (T, π) is a universal representation of E in
O(JE , E) coisometric on JE . The kernel of τ is the ideal in O(JE , E) generated by
δ(J(N)) where δ = δ(T,π) (Lemma 8.21 of [MT]).

The observations that N ⊆ q−1(JEN
) = J(N) , that the equality πE = ΨTE ◦ φ

holds on J(N), and that N ⊆ ker(φ), together imply that N ⊆ ker πE and so
π(N) ⊆ ker τ . Since π is injective on A it follows that ker τ �= 0 and O(JE , E) can
never be simple if N �= 0.

Theorem 1.10. If E is a C*-correspondence over A and EN the correspondence
over A/N then the relative Cuntz–Pimsner C*-algebra O(J(N), E), which is a quo-
tient of the Cuntz–Pimsner C*-algebra O(JE , E) of E, is isomorphic to the Cuntz–
Pimsner C*-algebra O(JEN

, EN ) of EN .

Proof. If (T, π) is a representation of the C*-correspondence EN over A/N in a C*-
algebra B then (T, π◦q) is a representation of the C*-correspondence E over A in B.
Furthermore if (T, π) is coisometric on an ideal J with JEN

⊆ J ⊆ φ−1
EN

(K(EN )) then
(T, π ◦ q) is coisometric on q−1(J). Applying this to the universal representation
(T, π) of EN coisometric on JEN

and using the universal representation (TE , πE) of E
coisometric on J(N) yields a ∗-homomorphism ρ : O(J(N), E) → O(JEN

, EN ) with
ρ ◦ TE = T and ρ ◦ πE = π ◦ q.

Since N ⊆ ker πE there is a well-defined map π0 : A/N → O(J(N), E) with
πE = π0 ◦ q. It is straightforward to check that (TE , π0) is a representation of
the C*-correspondence EN coisometric on JEN

, so there is a ∗-homomorphism σ :
O(JEN

, EN ) → O(J(N), E) with σ ◦ T = TE and σ ◦ π = π0. By checking that ρ ◦ σ
is the identity on the images of T and π, and similarly that σ ◦ ρ is the identity on
the images of TE and πE , we see that ρ = σ−1. �

Note that [K2] has some general conditions under which a relative Cuntz–
Pimsner C*-algebra is itself the Cuntz–Pimsner C*-algebra for another correspon-
dence, however it is not clear how to apply this here. At the very least one would
need to apply several results from [K2] and also prove, for example, that the ‘O-
pair (N, J(N))’ is the same as the ‘O-pair ω(π, t)’ where (π, t) is the universal
representation of O(J(N), E).

Theorem 1.11. Let E be a C*-correspondence over A and K an ideal of A con-
tained in J(E). If (TK , πK) is a universal covariant representation of E coisometric
on K then πK(N) is an ideal in the relative Cuntz–Pimsner C*-algebra O(K, E)
and the quotient C*-algebra O(K, E)/πK(N) is isomorphic to O(q(K), EN ). In par-
ticular the Toeplitz C*-algebra T (EN ) is isomorphic to the quotient of T (E) by the
ideal N .
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Proof. Since N is an ideal in A, πK(N) is an ideal in πK(A). Also φ(N)E =
EN = 0 implies that πK(N)TK(E) = TK(E)πK(N) = 0 and so πK(N) is an ideal
in C∗(TK , πK).

Let qE : O(K, E) → O(K, E)/πK(N) denote the canonical quotient map and
define T0 = qE ◦TK and π0 : A/N → O(K, E)/πK(N) the well-defined map sending
q(a) to qEπK(a), (a ∈ A). One can check that (T0, π0) is a covariant representation
of the correspondence EN in the C*-algebra O(K, E)/π(N) and that qE ◦δ(TK ,πK) =
δ(T0,π0) ◦ q. Since (TK , πK) is coisometric on K we have δ(TK ,πK)(K) = 0, so
δ(T0,π0)q(K) = 0 and therefore (T0, π0) is coisometric on q(K).

For (Tu, πu) a universal representation of EN coisometric on q(K) the universal
property yields a surjective ∗-homomorphism ρ : O(q(K), EN ) → O(K, E)/π(N)
with ρ ◦ (Tu, πu) = (T0, π0). Since (Tu, πu ◦ q) is a covariant representation of E
coisometric on K, the universal property yields a ∗-homomorphism

σ : O(K, E) → O(q(K), EN )

with (Tu, πu ◦ q) = σ ◦ (TK , πK). Thus σ contains π(N) in its kernel and therefore
defines a ∗-homomorphism σ̃ : O(K, E)/π(N) → O(q(K), EN ) satisfying

(Tu, πu ◦ q) = σ̃ ◦ qE ◦ (TK , πK).

We see that σ̃ ◦ ρ is the identity map on O(q(K), EN ) by checking that

σ̃ ◦ ρ(Tu(x)) = σ̃(T0(x)) = σ̃(qE ◦ TK(x)) = σ(TK(x)) = Tu(x)

and that

σ̃ ◦ ρ(πu(q(a))) = σ̃(π0(q(a))) = σ̃(qEπK(a)) = σ(πK(a)) = πu(q(a)),

(x ∈ E , a ∈ A). This implies that ρ is injective, and so an isomorphism. Thus
(T0, π0) is a universal representation of EN coisometric on q(K).

When K = 0, πK is injective and the last statement follows. �

Note that if πK is injective then π0 is injective.
To see that the map ρ in the above proof is an isomorphism one could conceivably

have applied the relative gauge invariant uniqueness theorem of [K2] since it is clear
that there is a gauge action on O(K, E)/πK(N). However, it is not straightforward
to verify the second condition of this result in our context, so a self contained
approach was used.

Recall the surjective ∗-homomorphism τ : O(JE , E) → O(J(N), E) described
after Proposition 1.9.

Corollary 1.12. If E is a C*-correspondence over A and (T, π) a universal rep-
resentation of E coisometric on JE then π(N) is an ideal in O(JE , E) contained
in ker τ . The quotient C*-algebra O(JE , E)/π(N) is isomorphic to O(q(JE), EN ).
Furthermore, JE = 0 if and only if q(JE) = 0.

Proof. N is an ideal of J(N) and δ = δ(T,π) is a ∗-homomorphism so δ(N) is an
ideal in δ(J(N)). Now N ⊆ ker φ so δ = π on N , and I(π(N)) = I(δ(N)) is an
ideal in I(δ(J(N))) = ker τ . However π(N) = I(π(N)).

Apply the previous theorem with K = JE , so (T, π) = (TK , πK). Here (T0, π0) is
now a universal representation of EN coisometric on q(JE). Note that π0 is injective
since π is injective.
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Since N ⊆ ker φ we have JE ⊆ (ker φ)⊥ ⊆ N⊥, so q is injective on JE . It follows
that q(JE) = 0 implies JE = 0. �

It is worth pointing out that the map T0 in the corollary is an isometry. To see
this first note that the map q restricted to the ideal 〈E , E〉 is injective so an isometry,

since 〈E , E〉 ∩ N ⊆ 〈E , E〉 ∩ 〈E , E〉⊥ = 0. For (T, π) a covariant representation of
a correspondence we had noted above that T is an isometry as long as π|〈E,E〉 is
injective. Since q(〈E , E〉) = 〈E , E〉A/N it follows that T0 = qE ◦ T must also be an
isometry.

The C*-algebra O(J(N), E), which is isomorphic to the quotient of O(JE , E) by
ker τ = I(δ(J(N))), is therefore isomorphic to the quotient of O(JE , E)/π(N) by the
ideal generated by δ(J(N))/π(N) where δ = δ(T,π), so by the ideal qEI(δ(J(N))) =
I(δ(T0,π0)q(J(N))) = I(δ(T0,π0)(JEN

)). Since (T, π) is coisometric on JE , we have
δ(JE) = 0, so q(JE) ⊆ ker δ(T0,π0) and δ(T0,π0)(JEN

) = δ(T0,π0)(JEN
\q(JE)). Note

that there is a well-defined map δ̃(T0,π0) from the quotient space φ−1
N (K)/q(JE) to

O(JE , E)/π(N ) with δ̃(T0,π0)([a]) = δ(T0,π0)(a), a ∈ φ−1
N (K).

Corollary 1.13. O(JEN
, EN ) is isomorphic to the quotient of O(JE , E)/π(N) by

the ideal generated by δ(T0,π0)(JEN
\q(JE)) = δ̃(T0,π0)(JEN

/q(JE)). In particular
O(JEN

, EN ) is isomorphic to O(JE , E)/π(N) if q(JE) = JEN
.

Proof. The C*-algebra O(JEN
, EN ) is isomorphic to O(JE , E)/π(N) if and only if

δ(T0,π0)(JEN
\q(JE)) = 0. �

One condition that ensures q(JE) = JEN
is if A = N ⊕ M as a direct sum

of C*-algebras. In this case the ideal M = N⊥, and since N ⊆ ker φ we have
JE ⊆ (ker φ)⊥ ⊆ N⊥ = M . For any ideal J of A we have J = (N ∩ J) ⊕ (M ∩ J);
for if a ∈ J with a = n + m, n ∈ N, m ∈ M then for eλ an approximate unit of
N , eλa = eλn + eλm = eλn → n . However, eλa ∈ J so n ∈ J , and m ∈ J also.
Identifying M with A/N , the ∗-homomorphism φN becomes the restriction of φ to
M , and so φ−1

N (K) = M ∩φ−1(K), (kerφN )⊥ = M ∩ (ker φ)⊥, and JEN
= φ−1

N (K)∩
(ker φN )⊥ = M ∩ JE = JE . Thus O(JEN

, EN ) is isomorphic to O(JE , E)/π(N) if
A = N ⊕ M .

Corollary 1.14. If A = N ⊕ M as a direct sum of C*-algebras then

O(JE , E) ∼= N ⊕O(JEN
, EN ).

Proof. Let (T, π) denote a universal covariant representation of E coisometric on
JE . Note again that π is injective on A. Theorem 1.11 applied with K = JE noted
that the covariant representation (T0, π0) of EN is coisometric on q(JE) which is
equal to JEN

under our hypothesis. One can check that (T0, π|N ⊕ π0) is then
a covariant representation of E in the C*-algebra π(N) ⊕ O(JEN

, EN ) which is
coisometric on JE . Since this representation admits a gauge action, and since
π|N⊕π0 is injective on N⊕M = A, the surjection of O(JE , E) to π(N)⊕O(JEN

, EN )
given by the universal property is, by the gauge invariant uniqueness theorem ([K3]),
actually an injection. �
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2. Topological quivers

In [MT] the authors show that a certain topological condition, called Condition
(K), on a topological quiver implies that the Cuntz–Pimsner C*-algebra of the topo-
logical quiver has only gauge invariant ideals ([MT, Theorem 9.10]). Furthermore,
the Cuntz–Pimsner C*-algebra enjoys the Cuntz–Krieger uniqueness property if the
topological quiver satisfies Condition (L) ([MT, Theorem 6.16]). We show that the
restricted topological quiver satisfies Condition (K), or Condition (L), if and only
if the original topological quiver does.

Following [MT], G = (X, E, r, s, λ) is a topological quiver when X, E are a pair
of second countable locally compact Hausdorff spaces, r : E → X and s : E → X a
pair of continuous maps (the range and source maps) with r open, and λ a family
{λx | x ∈ X} of Radon measures on E with

(1) supp(λx) = r−1(x), (x ∈ X),
(2) x →

∫
E

f(α)dλx(α) ∈ Cc(X) for f ∈ Cc(X).

A topological quiver G defines a C*-correspondence E (or E(G)) over the C*-
algebra A = C0(X) as follows: for f, g ∈ Cc(E) an A-valued inner product given
by

〈f, g〉 (x) =
∫

r−1(x)

f(α)g(α)dλx(α), (x ∈ X),

defines a norm on Cc(E) with completion E , a Hilbert module over C0(X). The
left action coming from a ∗-homomorphism φ : A → L(E) and the right action of
A on an element h of Cc(E) are given by

h · g = h(r �(g))

φ(g)h = (s �(g))h,

for g ∈ A.
We briefly include some comments regarding ideals in an abelian C*-algebra.

If D is a closed subset of a compact space Y then D is compact in the subspace
topology and the dual i � of the inclusion i : D → Y is a surjective ∗-homomorphism
i � : C(Y ) → C(D) with kernel the ideal ID = {f ∈ C(Y )| f |D = 0} determined
by D. We obtain the exact sequence

0 → C0(Y �D) → C(Y ) i �

→ C(D) → 0.

For the situation that D is closed in a locally compact space Y , thus locally
compact in the subspace topology, then Y �D is open in Y and also in its one point
compactification Y{∞}. Thus Y{∞}�D = D ∪ {∞} is closed, so compact in Y{∞}
and may be identified with the one point compactification of the locally compact
space D, since Y �D = Y{∞}�D{∞}. Now 0 → C0(D) → C(D{∞}) → C → 0 is
exact for any locally compact space D, so applying this to the spaces Y �D, Y , and
D, and arranging these exact sequences in an array we obtain via the 5-lemma the
exact sequence

0 → C0(Y �D) → C0(Y ) i �

→ C0(D) → 0.
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In [MT], Xsink denotes the open set of X with kerφ ∼= C0(Xsink) and it is shown
that Xsink = X�s(E), or equivalently that s(E) = {x ∈ X | f(x) = 0, (f ∈ ker φ)},
so ker φ =

{
f ∈ C0(X) | f |s(E) ≡ 0

}
. Recall that 〈E ,E〉 is an ideal of A.

Proposition 2.1. The ideal 〈E,E〉 of A is {f ∈ A | f ≡ 0 on X�r(E)}.

Proof. Since r is an open map, X�r(E) is closed. If x ∈ X with r−1(x) = φ then
〈f, g〉 (x) = 0 for f, g ∈ Cc(E), a dense subspace of E . Thus

X�r(E) ⊆
{

x ∈ X | f(x) = 0, (f ∈ 〈E ,E〉)
}

.

To show the reverse inclusion it is enough to show that given x ∈ r(E) there is
h ∈ Cc(E) with 〈h, h〉 (x) �= 0 . Since supp(λx) = r−1(x) �= φ there is a positive
g ∈ C(r−1(x)) with λx(|g|2) � 0. If K is the compact support of g in r−1(x), then
K must also be compact in E, so by Urysohn’s Lemma there is an f ∈ Cc(E)
with f |K ≡ 1 . By Tietze’s Extension Theorem there is a continuous function
l : supp(f) → R with l|K = g. Setting h to be the element of Cc(E) which is l · f
on supp(f) and 0 on E�supp(f) we have

〈h, h〉 (x) =
∫

r−1(x)

|l|2 (α)dλx(α)

≥
∫

r−1(x)∩K

|l|2 (α)dλx(α)

=
∫

r−1(x)∩K

|g|2 (α)dλx(α)

=
∫

r−1(x)

|g|2 (α)dλx(α) � 0. �

In general for U ⊆ X an open set and I =
{
f ∈ C0(X) | f |X�U ≡ 0

}
the ideal

C0(U) of C0(X) determined by the closed set X�U we have that the ideal I⊥ is
determined by the closed set U . Thus the ideal [〈E ,E〉]⊥of A is determined by the
closed set r(E). The next proposition follows.

Proposition 2.2. For (X, E, r, s, λ) a topological quiver and E the associated cor-
respondence over A = C0(X), the ideal N = ker(φ)∩ [〈E,E〉]⊥ of A is determined
by the closed set s(E) ∪ r(E); namely

N =
{

f ∈ C0(X) | f |
s(E)∪r(E)

≡ 0
}

.

Recall the terminology from [MT], where Xfin and Xreg = Xfin�Xsink are open
sets so that the ideals C0(Xfin) and C0(Xreg) of A are equal to J(E) = φ−1(K(E))
and JE = φ−1(K(E)) ∩ (ker φ)⊥ respectively.

Definition 2.3. Let Xsource be the open set X�r(E), so C0(Xsource) is isomorphic
to the ideal {

f ∈ C0(X) | f |
r(E)

≡ 0
}

= [〈E ,E〉]⊥.

Define Xisol = Xsource∩Xsink = X�s(E) ∪ r(E). and set D (or DG) = s(E) ∪ r(E).
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Since ker φ = C0(Xsink) and Xsink = X�s(E), [kerφ]⊥ = C0(Int(s(E))). From
the definitions we have C0(Xreg) = JE ⊆ [ker φ]⊥, so it follows that Xreg ⊆
Int(s(E)). In particular Xreg is contained in the closed set D = s(E) ∪ r(E).

If E is the C*-correspondence over A = C0(X) associated with the topological
quiver G = (X, E, r, s, λ) and N = ker φ∩ [〈E ,E〉]⊥ is the ideal C0(Xisol) of A, form
the correspondence EN over A/N ∼= C0(X)/C0(Xisol) = C0(D) as in Section 1.
The correspondence EN over A/N is the same as the correspondence associated
with the restricted topological quiver GN = (D, E, r, s, λ) where we continue to
use r and s to denote the appropriate maps, now viewed with ranges in D. The
natural quotient map q : A → A/N is the map i� : C0(X) → C0(D) where i :
D → X is the inclusion of the closed subset D in X . We have φN ◦ q = φ
where φ : C0(X) → L(E) and φN : C0(D) → L(E) define the left actions of
A and C0(D) respectively on E . This implies that q(ker φ) = kerφN . Similarly
q(f) ∈ φ−1

N (K(E)) if and only if f ∈ φ−1(K(E)), so q(φ−1(K(E))) = φ−1
N (K(E)).

For any ideal I =
{
f ∈ C0(X) | f |X�U ≡ 0

}
of C0(X) where U ⊆ X is open, so

I = C0(U), the ideal q(I) =
{
g ∈ C0(D) | f |D ≡ g, f |D∩(X�U) ≡ 0

}
= C0(D ∩ U)

since D�D∩(X�U) = D∩U . It follows that Dfin = Xfin∩D and Dsink = Xsink∩D.
Recall that the ideal JE = φ−1(K(E)) ∩ [ker φ]⊥ of A = C0(X) is contained in

the ideal J(N) = q−1(JEN
) . In the present situation JE = C0(Xreg) and JEN

=
C0(Dreg). Thus the inclusion q(JE) ⊆ JEN

is equivalent to i�(C0(Xreg)) ⊆ C0(Dreg).
Since i�(C0(Xreg)) = C0(D ∩Xreg), the above inclusion of ideals yields D ∩Xreg ⊆
Dreg. However we have already seen that Xreg ⊆ D, so we have that Xreg ⊆ Dreg,
where both are open subsets of D.

Apply the results of the first section to A = C0(X) and N = C0(X\D), and
view the restriction of the map q = i� : A → A/N to domain JE = C0(Xreg) and
codomain JEN

= C0(Dreg) as the natural inclusion of C0(Xreg) in C0(Dreg). Then

JEN
/q(JE) = C0(Dreg)/C0(Xreg) ∼= C0(Dreg\Xreg)

and the C*-algebra O(C0(Dreg), EN ) is isomorphic to the quotient of

O(C0(Xreg), E)/C0(X\D)

by the ideal generated by δ̃(T0,π0)(C0(Dreg\Xreg)), where E is the correspondence
over A associated with a topological quiver, or in fact any correspondence over A.

We briefly recall some terminology from [MT].

Definition 2.4. If G = (X, E, r, s, λ) is a topological quiver, a path (of length n) in
G is a finite sequence α := α1...αn with αk ∈ E and r(αk) = s(αk+1) for 1 ≤ k � n.
Denote the paths of length n by En , viewed as a subspace of ΠE and extend r, s
to En by rn : En → X, sn : En → X where rn(α) = r(αn) and sn(α) = s(α1). A
path α ∈ En is a loop if s(α1) = r(αn) with base point sn(α). A loop α ∈ En has
an exit if there is a β ∈ E and a k ∈ {1, ..., n} with s(β) = s(αk) and β �= αk. We
say G satisfies condition (L) if the set of base points of loops in G with no exits has
empty interior. Let B = {x ∈ X | x is a base point of a loop in G with no exits}
and BN =

{
x ∈ D | x is a base point of a loop in GN with no exits

}
.

Theorem 2.5. The topological quiver G = (X, E, r, s, λ) satisfies condition (L) if
and only if the restricted topological quiver GN = (D, E, r, s, λ) satisfies condition
(L).
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Proof. We show that IntXB = IntDB using that D is closed in X and that r
is an open map. In general ClDB = D ∩ ClXB ⊆ ClXB for any B ⊆ D, so
∂DB = ClDB ∩ ClD(D�B) ⊆ ClXB ∩ ClX(D�B) ⊆ ClXB ∩ ClX(X�B) = ∂XB.
Now D is closed in X and since B ⊆ D, ClXB is contained in D and ClDB = ClXB.
Thus IntXB = ClXB�∂XB = ClDB�∂XB ⊆ ClDB�∂DB = IntDB.

To see the other inclusion first note that base points of loops lie in r(E), so
B ⊆ r(E). Also r(E) is open in X, so open in D. Thus B ⊆ IntXD. If z ∈ IntDB
then there is a neighbourhood Nz of z in X with (Nz ∩ D) ⊆ B ⊆ IntXD. Thus
Nz ∩ IntXD ⊆ B ∩ IntXD ⊆ IntXD. Since z ∈ B ⊆ IntXD, the set Nz ∩ IntXD is
an open subset of B containing z and so z ∈ IntXB. �

In order to discuss condition (K) on topological quivers we first recall some
material from [MT]. If G = (X, E, r, s, λ) is a topological quiver and U ⊆ X is
open, U is called hereditary (for G) if r−1(s(u)) ⊆ U . A hereditary (open) set
U is called saturated (for G) if

{
v ∈ Xreg | r(s−1(v)) ⊆ U

}
⊆ U . If E is the C*-

correspondence over A = C0(X) associated with the topological quiver G, then U
is hereditary if and only if the ideal I = C0(U) is E-invariant. In this case, the
new C*-correspondence E = E/EI over the C*-algebra A/I is the correspondence
associated with the topological quiver GU = (X�U, E�r−1(U), rU , sU , λU ), where
rU , sU , and λU are just the respective restrictions of r, s, to E�r−1(U) and λ to
X�U . Note also ([MT]) that U is saturated for G is equivalent to C0(U) being an
E-saturated ideal of A. The topological quiver G is said to satisfy condition (K) if
the topological quiver GU satisfies condition (L) for all open, hereditary, saturated
sets U in X.

Clearly a union or finite intersection of open hereditary subsets of X is open and
hereditary. Since N = C0(X�D) is an invariant saturated ideal in E(G), X�D
is an open hereditary subset of X. Therefore, if U is an open hereditary set for
G = (X, E, r, s, λ) then so is U ∪ (X�D). In this case, if U is also saturated
for G then, since r(s−1(v)) ⊆ U if and only if r(s−1(v)) ⊆ U ∪ (X�D), and
Xreg ∩ (X�D) = φ, we see that U ∪ (X�D) is also saturated.

Lemma 2.6. Let V ⊆ X be open and VD = D ∩ V . Then:
(1) VD is hereditary in GN if and only if V is hereditary in G.
(2) If VD is saturated in GN then V is saturated in G.

Proof. The first part follows from Proposition 1.4. Suppose V is saturated in GN .
To show V is saturated in G we need to show that if v ∈ X with r(s−1(v)) ⊆ V
then v ∈ V . However Xreg ⊆ Dreg, so v is in Dreg, and r(s−1(v)) = r(s−1(v))∩D ⊆
V ∩ D = VD. Since VD is saturated in GN we have v ∈ VD ⊆ V . �
Lemma 2.7. If z ∈ Dreg�Xreg, then:

(1) z ∈ ∂Xs(E)�[r(E) ∩ Xsink].
(2) There is a neighbourhood Nz of z such that Nz ∩ IntXs(E) ⊆ Xreg and

Nz ∩ r(E) = φ.

Proof. Since D is closed we see that ClD(A) = ClX(A) for any subset A of D. If z ∈
Dreg = Dfin�Dsink then z ∈ Dfin = Xfin ∩ D ⊆ Xfin. Since z /∈ Xreg = Xfin�Xsink

then z must be in Xsink. However z /∈ Xsink since z /∈ Dsink = Xsink ∩ D. Thus
z ∈ ∂X(Xsink) = ∂X(s(E)). Since Dsink = Xsink ∩D = Xsink ∩ r(E) and z /∈ Dsink,
statement (1) follows.
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We noted that z ∈ Xfin which is open, so there is a neighbourhood N of z with
N ⊆ Xfin. Since z ∈ ∂X(s(E)) we have N ∩ IntXs(E) is a nonempty open subset
in Xfin. Since IntXs(E) ∩ Xsink = φ this open subset is in Xreg = Xfin�Xsink. To
show that N can be chosen disjoint from r(E) it is enough to see that z /∈ r(E), or
since z ∈ ∂Xs(E), that z /∈ r(E)∩∂Xs(E) = r(E)∩∂X(Xsink). However, the latter
is a subset of [Xsink ∩ r(E)] since any neighbourhood of a point in r(E)∩∂X(Xsink)
meets both Xsink and r(E). By (1) we are done. �

Lemma 2.8. Let V ⊆ X be open, VD = V ∩ D, and

BV = {z ∈ Dreg�Xreg | r(s−1(z)) ⊆ V }.

For z ∈ BV there is a neighbourhood Mz of z with r(s−1(Mz)) ⊆ V , Mz∩ r(E) = φ.

Proof. Let Mk, k ∈ N be a decreasing countable neighbourhood base of z. We may
choose Mk ∩ r(E) = φ by Lemma 2.7. By Proposition 3.15 of [MT], since z ∈ Dfin,
there is a neighbourhood W of Z with both W ∩ D and s−1(W ∩ D) compact in D,
and r|s−1(W∩D) a local homeomorphism. Suppose rs−1(Mk) = rs−1(Mk ∩D) � V

for all k. Then for each k there is an αk ∈ s−1(Mk) with r(αk) /∈ V . There is
k0 such that W ∩ D ⊇ Mk ∩ D for k ≥ k0, so αk ∈ s−1(W ∩ D) for k ≥ k0. By
compactness there is α ∈ s−1(W ∩ D) an accumulation point of αk, so αkj → α.
By continuity s(αkj ) → s(α). Since s(αkj ) ∈ Mkj for all j, s(αkj ) → z also, and
so z = s(α) i.e., α ∈ s−1(z). Since z ∈ BV , r(α) ∈ V . Now by the choice of αk,
r(αkj ) ∈ X�V , so r(α) = lim r(αkj ) ∈ X�V , a contradiction. �

Definition 2.9. Let G = (X, E, r, s, λ) be a topological quiver and

D = r(E) ∪ s(E).

For V an open hereditary subset of X define Ṽ = V ∪ {∪{Mz | z ∈ BV }} where
Mz is chosen as in the previous lemma.

Lemma 2.10. If V is hereditary then Ṽ is also; if V is saturated then Ṽ is also.

Proof. First suppose V is hereditary. If α ∈ s−1(Ṽ ) then α ∈ s−1(V ) or α ∈
s−1(Mz) for some z ∈ BV . In the case that α ∈ s−1(V ) we have r(α) ∈ V ⊆ Ṽ since
V is hereditary. For α ∈ s−1(Mz) with z ∈ BV then r(α) ∈ rs−1(Mz) ⊆ V ⊆ Ṽ .
Thus rs−1(Ṽ ) ⊆ Ṽ . To show the remaining claim it is enough, by Lemma 2.6,
to show that Ṽ ∩ D is saturated in GN = (D, E, r, s, λ). Suppose v ∈ Dreg and
r(s−1(v)) ⊆ Ṽ ∩D. We need to show that v ∈ Ṽ ∩D. Since the sets Mz added to V

are all disjoint from r(E) the condition r(s−1(v)) ⊆ Ṽ ∩ D implies r(s−1(v)) ⊆ V .
We consider two cases; v /∈ Xreg and v ∈ Xreg. In the first case v ∈ Dreg�Xreg.
Since r(s−1(v)) ⊆ V we have v ∈ BV , and so v ∈ Ṽ ∩ D. On the other hand if
v ∈ Xreg , then since r(s−1(v)) ⊆ V and V is saturated, we have v ∈ V ; and since
v ∈ D we have v ∈ Ṽ ∩ D. �

Theorem 2.11. The topological quiver G = (X, E, r, s, λ) satisfies condition (K) if
and only if the restricted topological quiver GN = (D, E, r, s, λ) satisfies condition
(K).
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Proof. First assume G satisfies condition (K). Let V ⊆ D be an arbitrary open,
hereditary, saturated set. If W ⊆ X open with W ∩ D = V , then W ∪ (X�D) =
Ṽ ⊆ X is open with Ṽ ∩ D = V . We have

GṼ = (X�Ṽ , E�r−1(Ṽ ), rṼ , sṼ , λṼ ) = (D�V, E�r−1(V ), rV , sV , λV ) = (GN )V .

Since Ṽ is saturated and hereditary by Lemma 2.6, GṼ , and therefore also (GN )V

satisfies condition (L). Since V was arbitrary, GN satisfies condition (K).
Now suppose GN satisfies condition (K). For V ⊆ X open, hereditary, and

saturated for G, we need to show GV has condition (L); namely

IntX�V {v a base point for a loop in G with no exit} = φ.

By Lemma 2.10 Ṽ is open, hereditary, and saturated, so by Lemma 2.6 Ṽ ∩ D

is open and hereditary. The proof of Lemma 2.10 showed Ṽ ∩ D is saturated for
GN . Since GN satisfies condition (K), GN

Ṽ ∩D
satisfies condition (L). We note that

GN
Ṽ ∩D

= GṼ ∪(X�D), where, by the comments preceding Lemma 2.6, Ṽ ∪ (X�D)
is open, hereditary, and saturated; so GṼ ∪(X�D) also satisfies condition (L). Thus

IntX�(Ṽ ∪(X�D))

{
v a base point for a loop in GṼ ∪(X�D) with no exit

}
= φ.

However, since X�D and the sets Mz are disjoint from r(E), r−1(Ṽ ∪ (X�D)) =
r−1(V ) and E�r−1(Ṽ ∪ (X�D)) = E�r−1(V ), so any edge under consideration
in GṼ ∪(X�D) is also under consideration in G, and

{
v a base point for an exitless loop in GṼ ∪(X�D)

}
= {v a base point for an exitless loop in GV }.

In general the interior of a set decreases if we take the interior with respect to a
larger set, so

IntX�V {v a base point for an exitless loop in GV } = φ. �

The following example illustrates some of the concepts above. The quiver G
we consider is basically a discrete topological graph where the base space has been
enlarged to have a nondiscrete component. For E the C*-correspondence associated
with G, the two C*-algebras O(JE , E) and O(JEN

, EN ) are compared.
Let X be a nondiscrete second countable locally compact Hausdorff space with

p0, p1 ∈ X, X = {p0} ∪ B, and p0 /∈ B, p1 ∈ B. The edge space E is the singleton
{e} with r and s continuous maps from E to X defined by r(e) = p0, s(e) = p1.
Note that the map r is open. Set λx = 0 for x ∈ X� {p0}, and λp0 a probability
measure concentrated at {e}. Then G = (X, E, r, s, λ) is a topological quiver, in
fact a topological relation defined by a function ([B2]) since E may be viewed as the
subset {(p0, p1)} of X×X. The correspondence E = C ·δe over C0(X) is described as
follows: the map φ : C(X) → L(E) giving the left action is defined by multiplication
by the scalar f(p1), while the right action of C0(X) on E is given by multiplication
by the scalar f(p0), f ∈ C0(X). We have 〈δe, δe〉 = δp0 , so the element δe ⊗ δe

of K(E) is the identity map of E . Thus φ(f) = f(p1)δe ⊗ δe for f ∈ C0(X),
φ−1(K(E)) = C0(X), and Xfin = X. Since kerφ = {f ∈ C0(X) | f(p1) = 0} we
have Xsink = X� {p1}. Thus Xsink = X and Xreg = φ; the ideal JE = 0.
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The closed subset D = r(E) ∪ s(E) of X is {p0, p1}, so the correspondence EN

over C0(D) = C(D) is the same as the correspondence associated with the discrete
graph given by a single directed edge from the vertex p1 to the vertex p0. We also
note that Dsink = {p0} , Dfin = D, Dreg = {p1}. Thus the C*-algebra O(JEN

, EN ) is
the universal C*-algebra generated by a partial isometry S with orthogonal initial
and final ranges which sum up to the identity.

Since JE = 0 the coisometric condition on the universal representation van-
ishes and the Cuntz–Pimsner C*-algebra O(JE , E) is just T (E) the Toeplitz C*-
algebra for E . This is the universal C*-algebra generated by a partial isometry
T (= T (e)) and the abelian C*-algebra C0(X) with the initial space T ∗T equal
to the projection δp0of C0(X) and f · T = f(p1)T for f ∈ C0(X). We have
T ∗TT = (δp0) ·T = δp0(p1)T = 0, so the final space of T is orthogonal to the initial
space T ∗T . The quotient C*-algebra T (E)/C0(D) is the Toeplitz C*-algebra T (EN )
for the correspondence EN , so for the discrete directed graph, while its quotient by
the ideal generated by δ̃(T0,π0)(C0(Dreg)) is the C*-algebra O(JEN

, EN ), namely the
C*-algebra of this discrete directed graph. Since Co(Dreg) = C({p1}) = Cδp1 and
φN (δp1) = δe ⊗ δe we see that δ̃(T0,π0)(δp1) = δp1 − TT ∗.

A very special case of a topological quiver occurs within the context of a function
f : dom(f) → X where dom(f) is a subspace of a locally compact space X. If π1

and π2: X ×X → X denote the canonical continuous projections onto the first and
second coordinates respectively, set r = π1|graph(f) and s = π2|graph(f), continuous
maps of the subspace graph(f) of X × X to X.

Proposition 2.12. Let X be a locally compact Hausdorff space. The map r :
graph(f) → X is open if and only if f : dom(f) → X is continuous and dom(f) is
open in X. In this case dom(f) is homeomorphic with graph(f), and graph(f) is
locally compact in X × X.

Proof. First note that for A, B open subsets of X then

graph(f) ∩ (A × B) =
{
(x, f(x)) | x ∈ A ∩ f−1(B)

}
, so

r(graph(f) ∩ (A × B)) = A ∩ f−1(B) = A ∩ f−1(B) ∩ dom(f).

If f is continuous then f−1(B) is open in dom(f) and r is an open map to the
subspace dom(f) of X ; since r is continuous, one to one, and onto dom(f), r is
a homeomorphism of graph(f) with the subspace dom(f) of X. If, in addition,
dom(f) is open in X, then r is an open map to X . Since dom(f) is open in X it is
also locally compact. Thus graph(f) must also be locally compact in X × X, so is
therefore the intersection of a closed and open set in X × X. In fact one can show
directly that graph(f) is the intersection of the closure of graph(f) with the open
set dom(f) × X.

Conversely, if r : graph(f) → X is open, then r(graph(f)) = dom(f), so
dom(f) is open in X and therefore locally compact. If B is open in X, f−1(B) =
r(graph(f)∩ (X ×B)) which is open in X and a subset of dom(f), so also open in
dom(f). Thus f is continuous. �

Thus (cf. [B2]), for f : dom(f) → X a continuous function with dom(f) open in
X we may form the topological quiver (X, graph(f), r, s, μ), or, using the homeo-
morphism r : graph(f) → dom(f), G = (X, dom(f), i, f, λ) where i is the inclusion
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of dom(f) in X and λ is the normalized measure on X with support {f(x)}. Here
the restricted topological quiver GN = (D, E, r, s, λ) where D = dom(f) ∪ ran(f).
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