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Perturbation theory for random walk in
asymmetric random environment

Joseph G. Conlon

Abstract. In this paper the author continues his investigation into the scaling
limit of a partial difference equation on the d-dimensional integer lattice Zd,
corresponding to a translation invariant random walk perturbed by a random
vector field. In a previous paper he obtained a formula for the effective diffusion
constant. It is shown here that for the nearest neighbor walk in dimension
d ≥ 3 this effective diffusion constant is finite to all orders of perturbation
theory. The proof uses Tutte’s decomposition theorem for 2-connected graphs
into 3-blocks.
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1. Introduction

In this paper we continue the study of the homogenization problem for random
walk in asymmetric random environment which was begun in [4]. Let (Ω,F , µ) be
a probability space and b : Ω → R be a bounded measurable function with mean
0. We assume that Zd acts on Ω by translation operators τx : Ω → Ω, x ∈ Zd,
which are measure preserving and satisfy the properties τxτy = τx+y, x, y ∈ Zd,
τ0 = identity. For i = 1, . . . , d, let ei ∈ Zd be the element with entry 1 in the ith
position and 0 in the other positions. Suppose γ ∈ C and f : Rd → R is a C∞

function with compact support. We shall be interested in solutions to the equation
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on the ε scaled integer lattice Zd
ε = εZd given by

uε(x, ω) −
d∑

i=1

1
2d

[uε(x + εei, ω) + uε(x − εei, ω)](1.1)

− γ b(τx/ε ω) [uε(x + εe1, ω) − uε(x − εe1, ω)] + ε2uε(x, ω)

= ε2 f(x), x ∈ Zd
ε , ω ∈ Ω.

In Theorem 1.3 of [4] it was shown that if supω∈Ω |b(ω)| ≤ 1 and γ < ε/
√

2d then
(1.1) has a unique solution uε(x, ω) in L2(Zd

ε) which is also analytic in γ.
Let Yx, x ∈ Zd, be i.i.d. Bernoulli variables, Yx = ±1 with equal probability. We

now take the function b(ω) in (1.1) to be defined by b(τx ω) = Yx, x ∈ Zd. In that
case Theorem 1.3 of [4] gives an identity for the expectation value of the Fourier
transform of the solution uε(x, ω) of (1.1). For an absolutely summable function
g : Zd

ε → C we define its Fourier transform ĝ(ξ), ξ ∈ [−π/ε, π/ε]d, by

ĝ(ξ) =
∑

x∈Zd
ε

εdg(x)eix·ξ.(1.2)

Note that if f̂ε(ξ) is the Fourier transform of the function f : Rd → R restricted
to Zd

ε then limε→0 f̂ε(ξ) = f̂(ξ), ξ ∈ Rd, where f̂(ξ) is the Fourier transform of
f . For ζ ∈ Rd let e(ζ) be the d-dimensional vector e(ζ) = (e1(ζ), . . . , ed(ζ)) with
ek(ζ) = 1 − eiek·ζ , k = 1, . . . , d. Denote by ûε(ξ) the Fourier transform of the
expectation of the solution uε(x, ω), x ∈ Zd

ε , to (1.1). Theorem 1.3 of [4] states
that there is a d × d matrix qγ,ε(ζ) ζ ∈ Rd, which is periodic on [−π, π], such that

ûε(ξ)
[
1 +

1
2dε2

|e(εξ)|2 − ε−2e(εξ)qγ,ε(εξ)e(−εξ)
]

= f̂ε(ξ),(1.3)

ξ ∈ [−π/ε, π/ε]d.

The matrix qγ,ε(ζ) is analytic in γ for γ < ε/
√

2d and hence can be written as a
convergent power series in this region. By Theorem 1.4 of [4] we may write

qγ,ε(ζ) =
∞∑

m=2

γ2mqm,ε(ζ).(1.4)

In [4] it was also shown that in dimension d = 1 the functions qm,ε converge as
ε → 0 in the sense that for any compact set K ⊂ R then εm qm,ε(ε ξ) converges
uniformly for ξ ∈ K to a function qm(ξ) as ε → 0. This limit is related to the limits
obtained by Sinai [16] and Kesten [10] for one dimensional random walk in random
environment.

In this paper we investigate the convergence properties of the matrices qm,ε(ζ)
as ε → 0 in dimension d > 1. In particular we prove the following:

Theorem 1.1. For d ≥ 3 there is a constant Cd depending only on d such that

|qm,ε(ζ)| ≤ Cm
d m!, 0 < ε < 1, ζ ∈ Rd.

Furthermore, the matrix qm,ε(ζ) converges uniformly for ζ ∈ [−π, π]d as ε → 0 to
a matrix qm(ζ).
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In [4] it was shown that the matrix qm(ζ) = [qm,k,k′(ζ)], 1 ≤ k, k′ ≤ d, has only
one nonzero entry qm,1,1(0) for ζ = 0. Hence taking the formal limit of (1.3) as
ε → 0 we obtain the effective homogenized equation for (1.1) in dimension d ≥ 3,

û(ξ)

[
1 +

|ξ|2
2d

− (e1 · ξ)2
∞∑

m=2

γ2mqm,1,1(0)

]
= f̂(ξ), ξ ∈ Rd.(1.5)

Theorem 1.1 shows that at the level of formal perturbation theory random walk in
asymmetric environment is diffusive at large time for dimension d ≥ 3, in agreement
with the predictions of Fisher [9] and Derrida–Luck [6] . One should note here that
since Theorem 1.1 gives only a factorial bound on the coefficients in the series
(1.5) it does not imply that a homogenized limit even exists. The existence of
the homogenized limit has been rigorously proven for small values of γ in [3, 19].
Nonperturbative arguments play a crucial role in the proof and it is unlikely that
a proof can be given based on perturbation theory alone.

In contrast to this situation perturbation theory based proofs of the existence
of homogenized limits can be given for random walks which satisfy some type of
symmetry condition. This is the case for random walks in a symmetric environ-
ment [1] and for reversible random walks [5, 11]. In these situations one needs some
restrictions on the strength of the environment noise. Otherwise one also has to
use nonperturbative arguments, as for example in [2, 12, 13] which prove homoge-
nization for symmetric walks without the smallness restriction on the environment
noise of [1].

A distinguishing feature of the random walk in asymmetric environment is that
its large time behavior depends on dimension. For dimension d = 1 Sinai [16]
has shown that the large time behavior is subdiffusive. There has also been more
recent rigorous work [2, 14, 17, 18] on (1.1) under the assumption 〈b(·)〉 	= 0. This
situation is very different to the situation studied in Theorem 1.1 since one expects
now the drift to dominate diffusion. The methods used in [17, 18] are related to
methods used to prove Anderson localisation for the random Schrödinger equation.

The proof of Theorem 1.1 follows a similar strategy to that used to show pertur-
bative renormalization in Euclidean field theories [15]. First one shows by a simple
multiscale decomposition that a large class of Feynman graphs are completely con-
vergent. This is the content of Lemma 2.6 and Corollary 2.1. The basic argument
here goes back to Weinberg [21]. The paper of Feldman et al. [7] proves a very
general version of Weinberg’s theorem. Next one bounds an arbitrary Feynman
graph by subdividing the graph into pieces which are completely convergent and
then using the cancelation properties of the propagator. This is analogous to the
renormalization procedure in Euclidean field theory [8, 15].

The graph subdivision in this paper is implemented by applying Tutte’s decom-
position theorem for 2-connected graphs into 3-blocks which is described in Chapter
IV of [20]. Tutte’s theorem does not appear to have been previously used to prove
finiteness of Feynman graphs. In this paper we shall use the terminology of [20].
In particular the graphs we consider are multigraphs with multiple edges but no
loops.
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2. Proof of Theorem 1.1

For η > 0, x ∈ Zd, let Gη(x) be the Green’s function which satisfies the equation,

Gη(x) − 1
2d

d∑
i=1

[Gη(x + ei) + Gη(x − ei)] + η Gη(x) = δ(x), x ∈ Zd,

where δ is the Kronecker δ function, δ(x) = 0, x 	= 0, δ(0) = 1. If Ĝη(ζ), ζ ∈
[−π, π]d, denotes the Fourier transform of Gη(x) as defined by (1.2) with ε = 1
then we have

Ĝη(ζ) = 1/[η + |e(ζ)|2/2d], ζ ∈ [−π, π]d.(2.1)

Lemma 2.1. Let h : Zd → C be an exponentially decreasing function with Fourier
transform ĥ. Suppose further there is an α satisfying 0 < α ≤ 1 such that

|∇kĥ(ζ)| ≤ 1
/|ζ|k+1, 0 ≤ k ≤ d − 1, ζ ∈ [−π, π]d,(2.2)

|∇d−1ĥ(ζ + δ) −∇d−1ĥ(ζ)| ≤ |δ|α/|ζ|d+α, |δ| < |ζ|/2, ζ ∈ [−π, π]d.

Then there is a constant Cd,α depending only on d, α such that

|h(x)| ≤ Cd,α

/ [
1 + |x|d−1

]
, x ∈ Zd.(2.3)

Proof. Since we are assuming h is exponentially decreasing it follows that ĥ is C∞

and h is given by the formula

h(x) =
1

(2π)d

∫
[−π,π]d

ĥ(ζ)e−ix·ζdζ, x ∈ Zd.(2.4)

From (2.4) and (2.2) with k = 0 we see that (2.3) holds if |x| ≤ 1, whence we shall
assume |x| > 1. We write

h(x) =
∫

|ζ|<1/|x|

+
∫

|ζ|>1/|x|

.(2.5)

It follows again from (2.2) with k = 0 that∣∣∣∣
∫

|ζ|<1/|x|

∣∣∣∣ ≤ C ′
d

/ [
1 + |x|d−1

]
,

for some constant C ′
d depending only on d. We estimate the second term on the

RHS of (2.5) by integrating by parts d − 1 times. We may assume wlog that
x = (x1, . . . , xd) satisfies |x1| ≥ |x|/√d. We have then that∫

|ζ|>1/|x|

=
1

(2π)dxd−1
1

∫
|ζ|>1/|x|

ĥ(ζ)
(

i
∂

∂ζ1

)d−1

e−ix·ζdζ

=
1

(2π)dxd−1
1

[ ∫
|ζ|>1/|x|

(
−i

∂

∂ζ1

)d−1

ĥ(ζ)e−ix·ζdζ

+
d−2∑
r=0

∫
|ζ|=1/|x|

i

(
−i

∂

∂ζ1

)r

ĥ(ζ)
(

i
∂

∂ζ1

)d−2−r

e−ix·ζn1dζ

]
,
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where n = (n1, . . . , nd) is the inward pointing unit normal on the sphere |ζ| = 1/|x|.
From (2.2) with k = 0, . . . , d−2 it follows that the surface integral on {|ζ| = 1/|x|} in
the last expression is bounded by the RHS of (2.3). We are left then to estimate the
volume integral on {|ζ| > 1/|x|}. From (2.2) with k = d−1 we obtain a bound which
is logarithmically larger than the RHS of (2.3). We use the second inequality of (2.2)
to improve this. For δ ∈ Rd let Sδ = {ζ ∈ Rd : ζ + δ ∈ [−π, π]d, |ζ + δ| > |x|−1}.
Evidently we have that∫

|ζ|>1/|x|

(
−i

∂

∂ζ1

)d−1

ĥ(ζ)e−ix·ζdζ =
∫

Sδ

(
−i

∂

∂ζ1

)d−1

ĥ(ζ + δ)e−ix·(ζ+δ)dζ,(2.6)

for any δ ∈ Rd. We take δ = (δ1, · · · , δd) with δ1 = π/x1, δj = 0, j 	= 1. Then the
LHS of (2.6) is given by

1
2

∫
S0∩Sδ

(
−i

∂

∂ζ1

)d−1 [
ĥ(ζ) − ĥ(ζ + δ)

]
e−ix·ζdζ(2.7)

+
1
2

∫
S0\Sδ

(
−i

∂

∂ζ1

)d−1

ĥ(ζ)e−ix·ζdζ

− 1
2

∫
Sδ\S0

(
−i

∂

∂ζ1

)d−1

ĥ(ζ + δ)e−ix·ζdζ.

From (2.2) with k = d− 1 the last two integrals in (2.7) are bounded by a constant
Cd depending only on d. From the second inequality of (2.2) the first integral in
(2.7) is bounded by a constant Cd,α depending only on d, α. �

Lemma 2.2. For η > 0 let Kη(x) be the function

Kη(x) = Gη(x − e1) − Gη(x + e1), x ∈ Zd.

Suppose gk : Zd → C, k = 1, . . . , n are exponentially decreasing functions which
satisfy gk(x) = −gk(−x), |gk(x)| ≤ 1/[1 + |x|d−1]3, x ∈ Zd, 1 ≤ k ≤ n. Let
h : Zd → C be the convolution,

h = Kη ∗ g1 ∗ Kη ∗ g2 ∗ · · · ∗ Kη ∗ gn ∗ Kη.

Then h is exponentially decreasing and satisfies

h(x) = −h(−x), |h(x)| ≤ Cn
d /[1 + |x|d−1], x ∈ Zd,

for some constant Cd depending only on d.

Proof. It is evident that h is exponentially decreasing and that h(x) = −h(−x).
To obtain the bound on |h(x)| we use Lemma 2.1. We have that

ĥ(ζ) = K̂η(ζ)n+1
n∏

k=1

ĝk(ζ).

From (2.1) we have that

K̂η(ζ) = 2i sin ζ1/[η + |e(ζ)|2/2d].

Since gk is an odd function we have

ĝk(ζ) = i
∑

x∈Zd

gk(x) sin(x · ζ).
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Hence if d > 3 there is a constant Cd depending only on d such that

|∇k ĥ(ζ)| ≤ Cn
d /|ζ|k+1, 0 ≤ k ≤ d.

The bound on |h(x)| follows now from Lemma 2.1 if d > 3. For d = 3 the first
inequality of (2.2) holds. The second inequality of (2.2) also holds for α < 1 by
observing that ∣∣∣∣∣

∑
x∈Z3

|x|2gk(x) [sin(x · ζ + x · δ) − sin x · ζ]

∣∣∣∣∣ ≤ Cα|δ|α,

where Cα depends only on α. �

By Theorem 1.4 of [4] the d×d matrix qm,ε(ζ) = [qm,ε,k′,k(ζ)] defined by (1.4) has
nonzero entries only for k′ = 1, 1 ≤ k ≤ d. If ζ = 0 then there is just one nonzero
entry, qm,ε,1,1(0). The function qm,ε,1,k(ζ) is a sum of terms Kε,k(G, e, ζ) where G
is a connected graph with 2m edges, at most m vertices, and e is a distinguished
edge of G. Denoting by V [G] the set of vertices of G and E[G] the set of edges,
then Kε,k(G, e, ζ) is given by the formula,

(2.8) Kε,k(G, e, ζ) =
∑

{yv∈Zd:v∈V [G]}
(ye− · ek)δ(ye+)

∏
e′∈E[G], e′ �=e

Kε2

(
ye′

+
− ye′

−

)
∫ 1

0

exp[−itye− · ζ] dt

/ ∫ 1

0

exp[−itek · ζ] dt.

In (2.8) to each vertex v ∈ V [G] there is attached a variable yv ∈ Zd which is
summed over. The notations f+ and f− are used for the vertices of an edge f ∈
E[G]. The Kronecker delta function is defined as usual by δ(y) = 0, y 	= 0, δ(0) = 1.
The formula (2.8) generalizes Lemma 5.4 of [4]. The graphs G which occur have
the property that the degree of every vertex is divisible by 4. The simplest such
graph that can occur in (2.8) is therefore the graph G on 2 vertices with 4 edges,
yielding an expression for ζ = 0,

Kε,1(G, e, 0) = −
∑

y∈Zd

(y.e1) Kε2(y)3 .

The simplest such graph on 3 vertices has 6 edges, yielding an expression for ζ = 0,

Kε,1(G, e, 0) = −
∑

y,y′∈Zd

(y.e1) Kε2(y) Kε2(y − y′)2 Kε2(y′)2 .

The following proposition is the main step in proving Theorem 1.1.

Proposition 2.1. Let G be a connected graph such that the degree of every vertex
is divisible by 4. Then there is a constant, Cd depending only on d, such that

|Kε,k(G, e, ζ)| ≤ C
|E[G]|
d , 0 < ε ≤ 1, ζ ∈ C,(2.9)

lim
ε→0

Kε,k(G, e, ζ) exists uniformly for ζ ∈ C.(2.10)

We shall prove Proposition 2.1 in a series of lemmas. Our first goal will be to
show that we may assume wlog that G is 2-connected. To do this we need an
elementary result from graph theory.
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Lemma 2.3. Let G be a connected graph and suppose that the degree of all but one
vertex of G is divisible by 4. Then all vertices of G have even degree and G has an
odd number of edges.

Proof. For v ∈ V [G] let d(v) be the degree of the vertex v. Then there is the
identity ∑

v∈V [G]

d(v) = 2|E[G]|.(2.11)

The result easily follows. �
Lemma 2.4. Let G be a connected graph such that the degree of every vertex is
divisible by 4. Let B be a block of the decomposition of G into 2-connected compo-
nents. If Kε(G, e) 	= 0 then the degree of every vertex of B is divisible by 4.

Proof. We shall use induction on the number of blocks in the block decomposition
of G. We may assume wlog that G has at least 2 blocks in which case there is
an endblock B0 which does not contain the distinguished edge e ∈ E[G]. Let
v0 ∈ V [B0] be the cut vertex of B0 in G and Kε(B0) be given by

Kε(B0) =
∑

{yv∈Zd:v∈V [B0]}
δ(yv0)

∏
e′∈E[B0]

Kε2

(
ye′

+
− ye′

−

)
.

Then it is clear that Kε(G, e) = Kε(G\B0, e)Kε(B0). Since Kε(G, e) 	= 0 it follows
that Kε(B0) 	= 0 and Kε(G\B0, e) 	= 0. If B0 has an odd number of edges then
Kε(B0) = 0 since Kη(x) = −Kη(−x), x ∈ Zd. Hence B0 has an even number of
edges and it also has the property that the degree of every vertex other than v0 is
divisible by 4. It follows then from Lemma 2.1 that the degree of v0 ∈ V [B0] is
divisible by 4 whence the degree of v0 ∈ V [G\B0] is also divisible by 4. �

Next we show that if G is 3-edge connected then the result of Proposition 2.1
holds.

Lemma 2.5. Suppose the graph G is 3-edge connected, the degree of each vertex
of G is even and at least 4. Let G′ be the graph obtained from G by the contraction
of 2 vertices. Then G′ is also 3-edge connected and the degree of each vertex of G′

is even and at least 4.

Proof. Obvious. �

Lemma 2.6. Suppose the graph G is 3-edge connected, the degree of each vertex of
G is even and at least 4. Let e ∈ E[G] and for each edge e′ ∈ E[G]\{e} let ne′ be
an arbitrary nonnegative integer. Then there is a constant Cd depending only on d
such that there is the inequality,

∑
{yv∈Zd:v∈V [G]}

|ye− |δ(ye+)
∏

e′∈E[G], e′ �=e

2−ne′ d/2 exp
[
−2−ne′ |ye′

+
− ye′

− |
]
≤ C

|V [G]|
d .

(2.12)

Proof. The set {ne′ : e′ ∈ E[G]\{e}} = {N1, N2, . . . , Nk} with 0 ≤ N1 < N2 <
· · · < Nk. Let G1 = G and consider the graph G′

1 with edges e′ ∈ E[G]\{e}
satisfying ne′ = N1. Contract each of the connected components of G′

1 to a single
vertex. Thus we obtain a graph G2 from G1 by the contraction process. By
Lemma 2.5 the graph G2 is 3-edge connected, the degree of each vertex of G2 is even
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and at least 4. Next we consider the subgraph G′
2 of G2 corresponding to the edges

e′ ∈ E[G]\{e} satisfying ne′ = N2. We contract each of the connected components
of G′

2 to a single vertex, whence we obtain a graph G3 from G2. Proceeding in
this manner we construct graphs G1, . . . , Gk and graphs G′

1, . . . G
′
k where G′

j is a
subgraph of Gj , 1 ≤ j ≤ k. Note that each edge of G′

k corresponds to an edge
e′ ∈ E[G]\{e} with ne′ = Nk. Since Gk is 3-edge connected and G′

k differs from
Gk by at most one edge corresponding to e it follows that G′

k is connected.
Next we construct a spanning tree T for the graph G. First let Tk be a spanning

tree for G′
k. Now for each component of G′

k−1 we can form a spanning tree. The
graph Gk−1 is obtained from Gk by splitting certain vertices into the components
of G′

k−1. Thus the spanning trees for each component of G′
k−1 together with Tk

yield a spanning tree Tk−1 for Gk−1. Similarly we obtain spanning trees Tj for
Gj , 1 ≤ j ≤ k. We put T = T1.

For a subgraph H of G and j = 1, . . . , k let

EH [Nj ] = {e′ ∈ E[H]\{e} : ne′ = Nj}.
We define an integer k0, 1 ≤ k0 ≤ k as follows: let e− and e+ be the vertices of the
distinguished edge e ∈ E[G]. If e− and e+ correspond to different vertices of Gk in
the contraction process then k0 = k. If they correspond to the same vertex of Gk

there is a k0 < k such that they correspond to the same vertex of Gj for j > k0

but to different vertices of Gk0 . This defines k0 uniquely.
We obtain inequalities relating the number of edges in ET [Nj ] to the number of

edges in EG[Nj ]. It is easy to see in fact that

2
k∑

j=r

|ET [Nj ]| + 2 ≤
k∑

j=r

|EG[Nj ]|, r > k0 ,(2.13)

2
k∑

j=r

|ET [Nj ]| + 1 ≤
k∑

j=r

|EG[Nj ]|, r ≤ k0 .

Now there exists a path P in T from e− to e+ such that every edge of the path is
in EG[Nj ] for some j ≤ k0. It follows then from (2.13) that the LHS of (2.12) is
bounded by∑

f∈E[P ]

∑
{yv∈Zd, v∈V [T ]}

δ(ye+)|yf+ − yf− |2−3nf d/2

exp
[−2−nf |yf+ − yf− |

] ∏
f ′∈E[T ]\{f}

2−nf′d exp
[
−2−nf′ |yf ′

+
− yf ′

− |
]
.

It is easy to see that the last expression is bounded by C
|V [T ]|
d for some constant

Cd. �
Corollary 2.1. Suppose the graph G is 3-edge connected, the degree of each vertex
of G is even and at least 4. Let e ∈ E[G] and for each edge e′ ∈ E[G]\{e} let
Ke′ : Zd → R be a function which satisfies the inequality,

|Ke′(x)| ≤ 1
/ [

1 + |x|d−1
]
, x ∈ Zd.(2.14)

Then there is a constant Cd depending only on d such that∑
{y∈Zd:v∈V [G]}

|ye− |δ(ye+)
∏

e′∈E[G]\{e}

∣∣∣Ke′
(
ye′

+
− ye′

−

)∣∣∣ ≤ C
|E[G]|
d .
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Proof. From (2.14) one sees there is a constant Cd depending only on d such that

|Ke′(x)| ≤ Cd

∞∑
n=0

2−n(d−1) exp
[−2−n|x|] , x ∈ Zd.

The result follows from Lemma 2.6 since d − 1 > d/2 for d > 2. �

Next we prove a more general result than Corollary 2.1.

Lemma 2.7. Let G be a graph as in Corollary 2.1 with associated functions Ke′ ,
e′ ∈ E[G]\{e} which satisfy (2.14). Then there is a constant Cd depending only on
d such that

(2.15)
∑

{yv∈Zd, v∈V [G]}
δ(ye− − x)δ(y+)

∏
e′∈E[G]\{e}

|Ke′(ye′
+
− ye′

−)|

≤ C
|E[G]|
d

/ [
1 + |x|d−1

]3
, x ∈ Zd.

Proof. The result follows from a generalization of Lemma 2.6 in the same way as
Corollary 2.1. Using the notation of Lemma 2.6 we need to show that for some
constant Cd depending only on d, there is the inequality,

(2.16) ∑
{yv∈Zd, v∈V [G]}

δ(ye− − x)δ(y+)
∏

e′∈E[G]\{e}
2−ne′ d/2 exp

[
−2−ne′ |ye′

+
− ye′

− |
]

≤ C
|V [G]|
d 2−3Nk0 d/2 exp

[
−2−(Nk0+1)|x|

]
, x ∈ Zd.

The inequality (2.16) is obtained by summing out all variables except those attached
to vertices along the path P in T from e− to e+. Now for e′ ∈ E[P ] we have
ne′ ≤ Nk0 and at least one e′ has ne′ = Nk0 . Now (2.16) follows by first taking out
the exponential factor exp[−2−(Nk0+1)|x|] using the fact that

exp


− ∑

e′∈E[P ]

2−(ne′+1)|ye′
+
− ye′

− |

 ≤ exp[−2−(Nk0+1)|x|].

Then we remove an edge e′ satisfying ne′ = Nk0 and sum over the remaining
variables. To finish the proof of (2.15) we simply observe that from (2.16) the LHS
of (2.15) is bounded above by

C
|E[G]|
d

∑
{e1,e2,e3∈E[G]\{e}}


 ∏

e′∈E[G]\{e}

∞∑
ne′=0




∏
e′∈E[G]\{e,e1,e2,e3}

2−ne′ (d−1 − d/2)
3∏

i=1

2−nei
(d−1) exp

[
−2−(nei

+3)|x|
]
,

where Cd depends only on d and the sum over e1, e2, e3 is over all distinct sets of
edges {e1, e2, e3} ⊂ E[G]\{e}. �

We turn to the proof of Proposition 2.1 in the general case where by Lemma 2.4
we may assume that G is 2-connected. We also assume that G is not 3-connected
since in that case Proposition 2.1 already follows from Corollary 2.1. Hence G has
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a nontrivial Tutte decomposition [20] into 3-blocks. The 3-blocks of G are either
3-connected graphs, n-linkages with n ≥ 3 or cycles. The following lemma shows
that if there are no 3-blocks which are cycles then G is 3-edge connected whence
Proposition 2.1 follows from Corollary 2.1.

Lemma 2.8. Let G be a graph, T a tree graph and Wt, t ∈ V [T ], be a system of
subgraphs of G with the properties:

(a)
⋃

t∈V [T ] Wt = G.
(b) Every edge of G belongs to exactly one Wt.
(c) If t, t′ ∈ T are adjacent then Wt ∩ Wt′ consists of precisely 2 vertices. If

t, t′′ ∈ T are not adjacent then Wt ∩ Wt′′ ⊂ Wt ∩ Wt′ where t′ is the vertex
adjacent to t which lies on the path in T from t′′ to t.

For t ∈ T let W ∗
t be the graph obtained from Wt by adding an edge joining the pair

of vertices in Wt ∩Wt′ for all t′ ∈ T adjacent to t. Suppose that the graphs W ∗
t are

3-edge connected for all t ∈ T . Then G is 3-edge connected.

Proof. It is easy to see that G is 3-edge connected if T has just 2 vertices. More
generally the result follows by induction on contraction of an edge of T . �
Proof of Proposition 2.1. If G has no 3-blocks which are cycles then the result
follows from Lemma 2.6 and Corollary 2.1. Suppose then G has exactly one 3-block
which is a cycle. Let T be the tree graph corresponding to the Tutte decomposition
which has 3-blocks of G as its vertices. Let t0 ∈ V [T ] be the vertex corresponding to
the 3-block which is a cycle. Since the degree of every vertex of G is at least 4, the
vertex t0 cannot be an end vertex of T , whence T\{t0} has at least 2 components.
Suppose T\{t0} has m components T1, . . . , Tm. These correspond to m virtual
edges f1, . . . , fm of the cycle, which we assume are in order on the cycle with fj+1

following fj , 1 ≤ j ≤ m − 1. Note that the fj , 1 ≤ j ≤ m, do not necessarily
constitute all edges of the cycle since there can be edges which belong to G. Using
the notation of Lemma 2.8 we put H ′

j = ∪t∈Tj
Wj , 1 ≤ j ≤ m. Let Hj be the graph

consisting of the union of H ′
j and the edge fj , 1 ≤ j ≤ m. By Lemma 2.8 Hj is

3-edge connected. Suppose now that the cycle has m edges whence G = ∪m
j=1H

′
j .

Since each Hj is 3-edge connected it is clear that G is 3-edge connected whence the
result follows from Corollary 2.1. Alternatively let us assume that the cycle has
more than m edges. Then the graph with edges f1, . . . , fm has k ≤ m components
F1, . . . , Fk and each component Fi is a simple path with 2 vertices of degree 1 which
we denote by F+

i and F−
i , 1 ≤ i ≤ k. We put G′

i =
⋃

fj∈Fi
H ′

j , 1 ≤ i ≤ k, and let
Gi be the graph which is the union of G′

i and the edge F−
i F+

i , 1 ≤ i ≤ k. Since
each Hj is 3-edge connected it follows that Gi is 3-edge connected, 1 ≤ i ≤ k. One
also easily sees that the degree of every vertex of Gi is divisible by 4.

We consider how to write Kε,k(G, e, ζ) in terms of a convolution of functions
defined by the graphs Gi, 1 ≤ i ≤ k. For 1 < i ≤ k we define functions gi(x), x ∈
Zd, by

gi(x) =
∑

{yv∈Zd, v∈V [Gi]}
δ
(
yF−

i
− x

)
δ
(
yF+

i

) ∏
e′∈E[G′

i]

Kε2

(
ye′

+
− ye′

−

)
.

It is evident that gi(−x) = −gi(x). By Lemma 2.7 one also has that

|gi(x)| ≤ C
|E[Gi]|
d

/ [
1 + |x|d−1

]3
, x ∈ Zd.
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First we consider the case when e is an edge of the cycle. We may assume e+ =
F−

k , e− = F+
1 . Let h be the function,

h(x) = g1 ∗ Kε2 ∗ g2 ∗ · · · ∗ Kε2 ∗ gk(x), x ∈ Zd.

Then there is the identity,∫ 1

0

exp[−itek · ζ] dt Kε,k(G, e, ζ) =
∫ 1

0

i
∂ĥ

∂ζk
(tζ) dt.

By the argument of Lemma 2.2 there is a constant Cd depending only on d such
that

|∇ĥ(ζ)| ≤ C
|E[G]|
d , ζ ∈ C.

Hence the inequality (2.9) of Proposition 2.1 holds. Next we consider the case
when e is not an edge of the cycle so we may wlog assume that e ∈ E[G1]. Now
for e′ ∈ E[G1], e′ 	= e, F−

1 F+
1 we have Ke′(x) = Kε2(x), x ∈ Zd. We define now

Kf (x) for f = F−
1 F+

1 by

Kf (x) = Kε2 ∗ g2 ∗ Kε2 ∗ g3 ∗ · · · ∗ Kε2 ∗ gk ∗ Kε2(x), x ∈ Zd.(2.17)

By Lemma 2.2 we have that Kf (x) = −Kf (−x), x ∈ Zd and

|Kf (x)| ≤ C
|E[G]|\|E[G1]|
d

/ [
1 + |x|d−1

]
, x ∈ Zd,

for some constant Cd depending only on d. Hence by Corollary 2.1 applied to the
graph G1 with distinguished edge e the inequality (2.9) of Proposition 2.1 follows.

Next we consider the situation where the Tutte decomposition of G has more
than one 3-block which is a cycle. Letting T be the tree graph corresponding to
the Tutte decomposition of G, we can easily see that there exists a vertex t0 ∈ T
which has the properties:

(a) t0 corresponds to a 3-block which is a cycle.
(b) Exactly one component of T\{t0} contains all 3-blocks which are cycles.
(c) The edge e belongs to a 3-block which is contained in the unique component

defined in (b).
Now we proceed exactly as before to eliminate t0 and thus reducing the number of
3 blocks which are cycles, whence (2.9) follows by induction.

We finally prove that the limit (2.10) exists. Since for d ≥ 2 limε→0 Kε2(x) =
K0(x), x ∈ Zd, (2.10) follows from Corollary 2.1 in the case G is 3-edge connected.
Consider the situation when G has exactly one 3-block which is a cycle. We denote
the kernel Kf of (2.17) by Kf,ε to denote the dependence on ε. It is clear from
the proof of Lemma 2.2 that limε→0 Kf,ε(x) = Kf,0(x). Hence (2.10) follows as
before. A similar argument gives (2.10) when G has more than one 3-block which
is a cycle. �

Proof of Theorem 1.1. From Lemma 5.3 and 5.4 of [4] it follows that there is a
universal constant C > 1 such that qm,ε(ζ) is a sum of less than Cm m! terms each
of which has the form (2.8) and such that the number of edges of the graph is 2m.
The result follows now from Proposition 2.1. �
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clidean Feynman graphs, Commun. Math. Phys. 98 (1985), 273–288, MR0786579 (86i:81049).

[8] J. Feldman, J. Magnen, V. Rivasseau and R. Sénéor, Bounds on renormalized Feynman
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