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Multiple tilings of Z with long periods, and tiles

with many-generated level semigroups

John P. Steinberger

Abstract. We consider multiple tilings of Z by translates of a finite multiset

A of integers (called a tile). We say that a set of integers T is an A-tiling

of level d if each integer can be written in exactly d ways as the sum of an

element of T and an element of A. We find new exponential lower bounds on

the longest period of A-tiling as a function of the diameter of A, which rejoin

the exponential upper bounds given by Ruzsa (preprint, 2002) and Kolountza-

kis (2003). We also show the existence of tiles whose level semigroups have

arbitrarily many generators (where the level semigroup of a tile A is the set of

integers d such that A admits a tiling of level d).
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Introduction

Let A be a finite multiset of integers (which we shall call a tile) and let d be
a nonnegative integer. Another multiset T of integers is said to be an A-tiling of
level d if every integer can be written in exactly d ways as the sum of an element
of T and an element of A. If we encode A and T as power series:

A(x) =
∑
i∈Z

A[i]xi, T (x) =
∑
i∈Z

T [i]xi
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where A[i], T [i] stand for the number of times i appears in the multisets A and T

respectively, then T is an A-tiling of level d if and only if

T (x)A(x) = d
∑
i∈Z

xi.(1)

One can thus view T as a set of translation positions of the set A such that the
union of all the translates of A covers the integers exactly d times. Tilings of this
kind have been discussed many places [2, 4, 5, 6, 8, 9, 13, 14, 15, 19, 20, 21], though
most of the literature focuses on the case d = 1.

The purpose of this paper is to exhibit tiles and tilings with various interesting
properties. More precisely we show how to construct tilings where the minimal
period of T is exponentially long compared to the diameter of the tile A (it is
known that T is always periodic; see discussion below) and how to find tiles A

whose level semigroups have arbitrarily many generators.
We start by clarifying the latter statement. The “level semigroup” L(A) of a

tile A is the set of integers d such that A admits a tiling of level d. It is obvious
that L(A) is closed under addition, whence the “semigroup” terminology (in fact,
since 0 ∈ L(A) for any tile A (as T = ∅ is an A-tiling of level 0 regardless of
A), L(A) is closed under arbitrary nonnegative integer linear combinations of its
elements). Thus L(A) is always of the form Z

+(Q) for some set Q ⊆ N, where
“Z

+(Q)” denotes the closure of Q under nonnegative integer linear combinations
(for us Z

+ = {0, 1, 2, . . . } and N = {1, 2, 3, . . . }). If Q is chosen minimal then Q

will be finite and we refer to the elements of Q as the “generators” of L(A). We
will see that for any k ∈ N there is some tile A whose level semigroup has exactly
k generators, and that this result still holds true if we restrict A to being a set
rather than a multiset. (We had previously discussed [14] how to construct a tile
with level semigroup Z

+(a, b) for any a, b ∈ N. Kolountzakis and Lagarias [7] have
also shown that when it comes to tilings of the real line by translates of a single
real-valued function, there exist tiles whose level semigroups are not even finitely
generated. Such a phenomenon cannot occur for tilings of the integers since any
semigroup that is a subset of Z

+ has finitely many generators.)
Our second result is a comment on the asymptotic relationship between the

diameter diam(A) = max{j ∈ A} −min{j ∈ A} of a tile A and the longest period
of an A-tiling. A simple pigeonhole argument [14] shows that all A-tilings of level
d are periodic with period less than (d + 1)diam(A). Recently Kolountzakis [6] and
Ruzsa [11] have shown there exists an upper bound m(A) independent of the level
d such that all A-tilings are periodic mod m(A). More specifically, if we let K(A)
stand for the longest minimal period of an A-tiling and let

D(n) = max{K(A) : diam(A) ≤ n}

then Ruzsa shows there exists some c > 0 such that

D(n) < ec
√

n ln(n)(2)
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0 4
P5

0 6
P3,5

0 9
P3,4,5

Figure 1. The tiles P5, P3,5 and P3,4,5. The multiplicity with
which an integer appears inside the tile is indicated by the number
of points in the column above it.

for all n sufficiently large (Kolountzakis gives a similar though slightly weaker upper
bound). We will conversely show that there exists a constant b > 0 such that

D(n) > eb
√

n ln(n)(3)

for all n sufficiently large.
The lower bound (3) is achieved using tiles that contain integers with very high

multiplicity and also using tilings of very high level. The question of finding similar
upper and lower bounds for level 1 tilings is still open. Biró [1] has in fact shown
that for level 1 tilings the upper bound (2) can be improved to

D(n) < en( 1
3 +ε)

(4)

for any ε > 0, which implies that a lower bound of type (3) cannot hold for level 1
tilings. We have recently found, however, that the period of a level 1 A-tiling can
still grow superpolynomially compared to diam(A) [18]. A few more remarks on
(3) can be found at the end of the next section.

Notation. As already stated, Z
+(Q) stands for the closure under nonnegative

integer linear combinations of the set Q. We write Zn for the set {0, 1, . . . , n− 1}.
We use the standard notation [xk]P (x) for the coefficient of xk in the formal power
series (or polynomial) P (x), where [xk]P (x)Q(x) = [xk](P (x)Q(x)).

Results I

In this section we introduce some of the main tiles of interest to us and use them
to prove the lower bound (3). We define a tile Pn1,...,nk

for all n1, . . . , nk ∈ N and
all k ∈ N by

Pn1,...,nk
(x) =

k∏
j=1

(1 + x + · · ·+ xnj−1).

Some sample tiles Pn1,...,nk
are sketched in Figure 1.
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︸ ︷︷ ︸
n2

︸︷︷︸n1
←→

︸ ︷︷ ︸
n2

︸︷︷︸n1

Figure 2. Pn1,n2 as a coordinate-sum projection (n1 = 3, n2 = 5).

︸︷
︷︸ n1

︸ ︷︷ ︸
n2

Figure 3. A coordinate-sum representation of a Pn1,n2-tiling of
level n1.

︷ ︸︸ ︷n2

︸︷︷︸n1

Figure 4. A coordinate-sum representation of a Pn1,n2-tiling of
level n2.

One can understand the tile Pn1,...,nk
as the coordinate-sum projection of the

array of points Zn1 ×· · ·×Znk
in Z

k onto Z. This idea is shown in Figure 2 for the
tile P3,5. This way of visualizing Pn1,...,nk

is useful since it allows us to see right
away that Pn1,...,nk

admits tilings of levels N/n1, . . . , N/nk where N = n1 · · ·nk:
simply pile translates of the array Zn1 × · · · × Znk

end-to-end along one of the
coordinate directions, and then take the coordinate-sum projection of the column
obtained (see Figures 3 and 4, where this process is illustrated for the tile P3,5).
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Alternately, we may verify that Pn1,...,nk
admits a tiling of level N/ni for i =

1, . . . , k via the formal computation:

(niZ)(x)Pn1,...,nk
(x) =

∞∑
t=−∞

xnit
∏

1≤j≤k

(1 + x + · · ·+ xnj−1)

=
∏

1≤j≤k
j �=i

(1 + x + · · ·+ xnj−1)
∞∑

m=−∞
xm

=
N

ni

∞∑
m=−∞

xm,

so that, by Equation (1), niZ is Pn1,...,nk
-tiling of level N/ni.

By taking the disjoint union of the tilings n1Z, . . . , nkZ we obtain a Pn1,...,nk
-

tiling of least period lcm(n1, . . . , nk). Since diam(Pn1,...,nk
) = (

∑
ni)−k+1, we thus

see that Pn1,...,nk
-tilings can have quite long periods compared to diam(Pn1,...,nk

).
This observation, coupled with a simple asymptotic computation, yields the lower
bound (3):

Theorem 1. There exists a constant c > 0 such that for all n sufficiently large
there is a tile A of diameter less than n admitting an A-tiling T of least period
greater than ec

√
n ln(n).

Proof. Recall that K(A) denotes the longest minimal period an A-tiling, and that
D(n) = max{K(A) : diam(A) ≤ n}. We thus need to show D(n) > ec

√
n ln(n) for

some c > 0 for all n sufficiently large.
Let π(r) denote the number of primes at most r and let p1, . . . , pπ(r) be the first

π(r) primes. Let σr = p1 + · · ·+ pπ(r). By the prime number theorem

σr ≤ r2

ln(r)

for all r sufficiently large. If r <
√

σr ln(
√

σ(r)) then

σr <
σr ln(

√
σ(r))

ln
(√

σr ln(
√

σ(r))
) < σr

a contradiction, so

r ≥
√

σr ln(
√

σ(r)) =
1√
2

√
σr ln(σr)

for all r sufficiently large. But since

diam(Pp1 ... pπ(r)) = σr − r < σr and K(Pp1 ... pπ(r)) ≥ p1 · · · pπ(r),
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we have

D(σr) ≥ p1 · · · pπ(r)

≥ εer

≥ εe
1√
2

√
σr ln(σr)

for all ε < 1, for all r sufficiently large. Thus, since for any n ∈ N there is some
r ∈ N such that n ≤ σr ≤ 2n, there is a constant c > 0 such that

D(n) > ec
√

n ln(n)

for all n sufficiently large. �

Theorem 1 thus depends on the idea that tilings with long periods can be ob-
tained by “sandwiching” together many tilings of small but different period lengths.
Some may find this sandwich method somewhat unappealing, and would rather have
a construction where the tilings with long period do not decompose as the disjoint
union of tilings of smaller period. We say that an A-tiling is indecomposable if it
is not the disjoint union of two other nonempty A-tilings. As a matter of fact,
indecomposable tilings with exponentially long periods do exist, as we show in [15].
In that paper we give the slightly weaker lower bound

D(n) > ec 3
√

n ln(n)

for indecomposable tilings. The construction of that paper also involves tiles of the
type Pn1,...,nk

.

Results II

In this section we show the existence of tiles whose level semigroups have arbi-
trarily many generators. We have already seen that Pn1,...,nk

admits tilings n1Z,
. . . , nkZ of levels N/n1, . . . , N/nk where N = n1 · · ·nk. As a judicious choice of
the numbers n1, . . . , nk turns Z

+(N/n1, . . . , N/nk) into a k-generated semigroup
(proved later) this would be sufficient to establish the above result if it were true
that the tilings n1Z, . . . , nkZ and their translates were always the only indecom-
posable Pn1,...,nk

-tilings1 — but this is not always the case! For example P6,10,15

1For full disclosure, we note that the tilings n1Z, . . . , nkZ are not necessarily indecomposable

themselves; for example if ni|nj , ni �= nj for some i, j.
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0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 5. Two representations of P 3,1
3,2 .

admits an indecomposable tiling T given2 by

T (x) = (6Z)(x) + x5(10Z)(x)− (15Z)(x)

=
∞∑

j=−∞
x30j(1 + x6 + x12 + x18 + x24) + (x5 + x15 + x25)− (1 + x15)

=
∞∑

j=−∞
x30j(x5 + x6 + x12 + x18 + x24 + x25)

that is neither a translate of 6Z, 10Z or 15Z (one sees that T is a P6,10,15-tiling
precisely because T (x) is a linear combination of (6Z)(x), (10Z)(x) and (15Z)(x)).
As a general matter, indecomposable Pn1,...,nk

-tilings can become very wild once
k ≥ 3 [15, 16], making it hard to characterize L(Pn1,...,nk

) in the general case.3

What we shall prove instead, and which will be sufficient for our purposes, is
that n1Z, . . . , nkZ and their translates are the only indecomposable Pn1,...,nk

-tilings
when n1, . . . , nk are pairwise coprime. This is a sufficient but not a necessary
condition for n1Z, . . . , nkZ to be the only indecomposable Pn1,...,nk

-tilings. For
example all Pn1,n2-tilings are disjoint unions of n1Z, n2Z regardless of whether n1

and n2 are coprime or not [14], and we will see further down that nZ is the only
indecomposable Pn,...,n-tiling. We leave it as an open problem to determine exactly
which tuples (n1, . . . , nk) have the property that all Pn1,...,nk

-tilings decompose as
a disjoint union of n1Z, . . . , nkZ.

We will also prove analogous results on level semigroups for tiles that are sets
instead of multisets. For this we need a more general class of tiles than the tiles
Pn1,...,nk

. We define a tile P q1,...,qk
n1,...,nk

using k additional indices q1, . . . , qk ∈ N given
by the polynomial:

P q1,...,qk
n1,...,nk

(x) =
k∏

j=1

(1 + xqj + x2qj + · · ·+ x(nj−1)qj ).

Note Pn1,...,nk
= P 1,...,1

n1,...,nk
. One can think of P q1,...,qk

n1,...,nk
as the coordinate-sum pro-

jection of a k-dimensional array with spaced rows and columns, where the spacing
is specified by the variables q1, . . . , qk, as shown in Figure 5.

Like for Pn1,...,nk
, the coordinate-sum representation of P q1,...,qk

n1,...,nk
allows us to

see right away that P q1,...,qk
n1,...,nk

admits tilings of levels N/n1, . . . , N/nk where N =

2This example is due independently to Rédei [10] and to Schoenberg [12], who both originally

gave it in the context of vanishing sums of roots of unity. See [15, 16] for a connection between

our work and vanishing sums of roots of unity.
3It is noteworthy that L(Pn1,...,nk ) can in fact be characterized without knowing the indecom-

posable Pn1,...,nk -tilings in certain special cases; compare [15] and [3].
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Figure 6. A P 3,1
3,2 -tiling of level 2.

Figure 7. A P 3,1
3,2 -tiling of level 3.

Figure 8. More P 3,1
3,2 -tilings of level 2.

n1 · · ·nk (regardless of the values of q1, . . . , qk). The drawings corresponding to
Figures 3, 4 are shown in Figures 6, 7. Note that if qi > 1 then there will generally
be several different P q1,...,qk

n1,...,nk
-tilings of level N/ni that are inequivalent under trans-

lation, as shown in Figure 8, where we show some P 3,1
3,2 -tilings of level two that are

translation-inequivalent from the tiling of Figure 6.
Formally, one notes that if T is any P qi

ni
-tiling of level 1 then T is also a P q1,...,qk

n1,...,nk
-

tiling of level N/ni, since
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T (x)P q1,...,qk
n1,...,nk

(x) = T (x)P q1
n1

(x)
n∏

l=1
l �=i

P ql
nl

(x)

=
∞∑

j=−∞
xj

n∏
l=1
l �=i

P ql
nl

(x)

=
N

ni

∞∑
j=−∞

xj .

Our main reason for considering the larger family of tiles P q1,...,qk
n1,...,nk

instead of
Pn1,...,nk

is that P q1,...,qk
n1,...,nk

is a set instead of a multiset for certain choices of the
variables q1, . . . , qk; for example if q1, . . . , qk are taken rapidly enough increasing,
e.g., if qj+1 > (n1 − 1)q1 + · · · + (nj − 1)qj for 1 ≤ j < k, then it is easy to check
that P q1,...,qk

n1,...,nk
is a set. This will allow us to prove level semigroup results for set-like

tiles instead of multiset-like tiles.
The main result of this section is the following theorem on P q1,...,qk

n1,...,nk
-tilings:

Theorem 2. If the products n1q1, . . . , nkqk ∈ N are pairwise coprime then the only
indecomposable P q1,...,qk

n1,...,nk
-tilings are level 1 P qi

ni
-tiling for 1 ≤ i ≤ k.

The aforementioned result that the only indecomposable Pn1,...,nk
-tilings are the

translates of n1Z, . . . , nkZ when n1, . . . , nk are pairwise coprime is a corollary
of Theorem 2 (applied with q1 = · · · = qk = 1). Likewise, Theorem 2 is not
best possible and does not constitute a characterization of which pairs of k-tuplets
(n1, . . . , nk), (q1, . . . , qk) have the property that all indecomposable P q1,...,qk

n1,...,nk
-tilings

are level 1 P qi
ni

-tiling for 1 ≤ i ≤ k. The existence of set-like tiles with many-
generated level semigroups is easy to deduce from Theorem 2; see Corollary 2 at
the end of the paper.

We jot down without proof the elementary structure of indecomposable P q
n-

tilings before beginning the proof of Theorem 2:

Proposition 1. If T is an indecomposable P q
n-tiling then T has level 1 and there

are numbers b0, . . . , bq−1 where bs ≡ s mod q such that T [a] = 1 ⇐⇒ a ≡ bs mod
nq for some 0 ≤ s < q.

Before starting the proof of Theorem 2 we note that all roots of P q
n(x) are

nq-th roots of unity since (1 − xq)P q
n(x) = 1 − xnq, and that by extension all

roots of P q1,...,qk
n1,...,nk

(x) = P q1
n1

(x) · · ·P qk
nk

(x) are m-th roots of unity where m =
lcm(n1q1, . . . , nkqk).

Proof of Theorem 2. Assume by contradiction that n1q1, . . . , nkqk are pairwise
relatively prime and that T is an indecomposable P q1,...,qk

n1,...,nk
-tiling that is not a P qi

ni
-

tiling for any i ∈ {1, . . . , k} (this latter assumption obviously implies that k ≥ 2).
In particular T does not contain any P q1

n1
-tilings, so by Propopsition 1 there must be

some 0 ≤ s < q1 for which there are numbers a0, . . . , an1−1, ai ≡ s− iq1 mod n1q1,
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such that T [ai] = 0 for 0 ≤ i < n1 (we put ai ≡ s − iq1 instead of ai ≡ s + iq1 as
this turns out more convenient later on). We can assume wlog via a translation
that s = 0, so that ai ≡ −iq1 mod n1q1 for 0 ≤ i < n1.

Let l = lcm(n2q2, . . . , nkqk). Since (1 − x)P q2,...,qk
n2,...,nk

(x) divides 1 − xl (as all the
roots of the former polynomial are distinct l-th roots of unity) we have

0 = (1− x)T (x)P q1,...,qk
n1,...,nk

(x)

= T (x)P q1
n1

(x)((1− x)P q2,...,qk
n2,...,nk

(x))

= T (x)P q1
n1

(x)(1− xl)

= T (x)(1− xn1q1)(1− xl).(5)

In other words, T (x)(1− xl) is periodic mod n1q1 and therefore

T (x)(1− xzn1q1)(1− xl) = 0

for any integer z. Let z0, . . . , zn1−1 ∈ Z be chosen such that iq1 + zin1q1 = −ai.
We have

0 = T (x)(P q1
n1

(x) + (xz0n1q1 − 1) + xq1(xz1n1q1 − 1) + · · ·
+ x(n1−1)q1(xzn1−1n1q1 − 1))(1− xl)

= T (x)(x−a0 + · · ·+ x−an−1)(1− xl)

so that, for any u ∈ Z,

0 = [x0]T (x)(x−a0 + · · ·+ x−an−1)(x−ul − 1)

= [x0]T (x)(x−a0−ul + · · ·+ x−an−1−ul − x−a0 − · · · − x−an−1)

= T [a0 + ul] + · · ·+ T [an−1 + ul]− T [a0]− · · · − T [an−1]

= T [a0 + ul] + · · ·+ T [an−1 + ul].

But T [·] ≥ 0, so we conclude that T [a0 +ul] = · · · = T [an−1 +ul] = 0 for all u ∈ Z.
From (5) we get more generally that

T (x)(1− xvn1q1)(1− xul) = 0

for all u, v ∈ Z. Taking the coefficient of xt in this expression yields

T [t]− T [t− ul] = T [t− vn1q1]− T [t− vn1q1 − ul](6)

for all t, u, v ∈ Z. Since gcd(n1q1, l) = 1 for all t ∈ Z there are ut, vt ∈ Z such that
t− vtn1q1 = a0 + utl. By (6) we have that

T [t]− T [t− l] = T [t− vtn1q1]− T [t− vtn1q1 − l]

= T [a0 + utl]− T [a0 + (ut − 1)l]

= 0− 0 = 0

for any t ∈ Z, so T is periodic mod l = lcm(n2q2, . . . , nkqk). By symmetry T is also
periodic mod lcm(n1q1, . . . , ni−1qi−1, ni+1qi+1, . . . , nkqk) for any 1 ≤ i ≤ k, but the
gcd of all those periods is 1 so T is periodic mod 1. Therefore, since T [a0] = 0,
T [j] = 0 for all j ∈ Z, as sought. �
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Corollary 1. If n1q1, . . . , nkqk are pairwise coprime then

L(P q1,...,qk
n1,...,nk

) = Z
+(N/n1, . . . , N/nk)

where N = n1 · · ·nk.

Corollary 2. For any k ∈ N there exists a set-like tile whose level semigroup has
exactly k generators.

Proof. By the prime number theorem there is some number K > 0 for which there
exist k primes p1, . . . , pk greater than K and less than 2K. Put N = p1 · · · pk. Note
that since

max
1≤i,j≤k

N/pi

N/pj
= max

1≤i,j≤k

pi

pj
< 2

none of the elements in {N/p1, . . . , N/pk} can be obtained as a nonnegative integer
linear combination of the others. Therefore Z

+(N/p1, . . . , N/pk) is a semigroup
with exactly k generators.

Now we choose q1, . . . , qk such that:

(i) qj+1 > (p1 − 1)q1 + · · ·+ (pj − 1)qj for 1 ≤ j < k.
(ii) The numbers p1q1, . . . , pkqk are pairwise coprime.

(Such qj ’s obviously exist.) By the choice of the qj ’s P q1,...,qk
p1,...,pk

is a set and P q1,...,qk
p1,...,pk

has level semigroup Z
+(N/p1, . . . , N/pk) by Theorem 2, where Z

+(N/p1, . . . , N/pk)
is a semigroup with k generators. �

Theorem 2 shows that all P q1,...,qk
n1,...,nk

-tilings are periodic mod lcm(n1q1, . . . , nkqk)
when n1q1, . . . , nkqk are pairwise coprime. This is true no matter what the values of
n1, . . . , nk, q1, . . . , qk; it is a consequence of the fact that the roots of P q1,...,qk

n1,...,nk
(x) are

all lcm(n1q1, . . . , nkqk)-th roots of unity and of the following result of Kolountzakis
[6] and of Ruzsa [11]:

Theorem 3 (Kolountzakis [6], Ruzsa [11]). Let A be a tile. If A(x) has no roots
that are roots of unity, then all A-tilings are periodic mod 1. Otherwise all A-tilings
are periodic mod lcm(m1, . . . , mk) where m1, . . . , mk are the orders of the roots of
unity that are roots of A(x).

It follows in particular that all Pn,...,n-tilings are periodic mod n, and therefore
that nZ (and its translates) are the only indecomposable Pn,...,n-tilings, as was
mentioned above.
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