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An ergodic sum related to the approximation by
continued fractions

Andrew Haas

Abstract. To each irrational number x is associated an infinite sequence of
rational fractions pn

qn
, known as the convergents of x. Consider the functions

qn|qnx− pn| = θn(x). We shall primarily be concerned with the computation,
for almost all real x, of the ergodic sum

lim
n→∞

1

n

n∑
k=1

log θk(x) = −1 − 1

2
log 2 ≈ −1.34657.

Each irrational number x has a unique infinite, regular continued fraction ex-
pansion of the form

x = [a1; a2, a3 . . . ] = a1 +
1

a2 +
1

a3 + . . .

where the ai are integers and ai > 0 for i > 1. To x is associated an infinite
sequence of rational fractions pn

qn
= [a1; a2, . . . , an], in lowest terms, known as the

convergents of x. Define the functions θn(x) by the identity∣∣∣∣x − pn

qn

∣∣∣∣ =
θn(x)

q2
n

.

Important metrical results on the θn(x) are proved in the papers [3],[5] and [7]. Since
the convergents satisfy the following well-known inequality, usually attributed to
Dirichlet, ∣∣∣∣x − pn

qn

∣∣∣∣ <
1
q2
n

,

we have 0 < θn(x) < 1.
It does not seem to have been observed that for almost all x

lim
n→∞

log θn(x)
n

= 0.(1)

To begin we supply a proof of this fact which was suggested by A. Rockett.
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From the sequence of inequalities (see [9]),

1
qn(qn + qn+1)

≤
∣∣∣∣x − pn

qn

∣∣∣∣ ≤ 1
qnqn+1

we get

1
n

log
(

qn

qn + qn+1

)
≤ 1

n
log θn(x) ≤ 1

n
log

(
qn

qn+1

)
.

The result then follows easily from the Khintchine–Lévy Theorem, which asserts
that for almost all x

lim
n→∞

1
n

log qn =
π2

12 log 2
, (see [2] or [9]).(2)

Now we look at the limiting average of the functions log θn(x). While this av-
erage resembles those, such as limn→∞ 1

n

∑n
k=1 θk(x), computed in [3] and [5], its

evaluation is complicated by the fact that log x is not continuous on the interval
[0,1]. As a result, knowledge of the distribution function for θn(x) is not sufficient
to prove the theorem. As in [3], we work with a form of the natural automorphic
extension of the Gauss transform, derived from the extension originally given by
Nakada [8].

Theorem 1. For almost all x

lim
n→∞

1
n

n∑
k=1

log θk(x) = −1 − 1
2

log 2 ≈ −1.34657.

Let Λ = ((0, 1) \ Q) × [0, 1] and define the map S̃ : Λ → Λ by

S̃(s, t) =
(

1
s
−

[
1
s

]
,

1
t + [ 1s ]

)

where [x] is the greatest integer function. Let ν be the probability measure with
density m(s, t) = 1

log 2 (1 + st)−2. It was first observed by Nakada [8] that the

dynamical system (Λ, B, ν, S̃) is ergodic. See also [1].
Consider the related self-mapping T̃ of Ω = ((0, 1) \ Q) × [−∞,−1] defined by

T̃ (x, y) =
(

1
x
−

[
1
x

]
,
1
y
−

[
1
x

])
.

Let ϕ : Λ → Ω be the invertible function given by ϕ(s, t) = (s,− 1
t ). It is clear that

ϕ maps Λ onto Ω and that T̃ = ϕ ◦ S̃ ◦ ϕ−1.
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The measure µ = ϕ∗ν is defined by

µ(D) =
1

log

∫
ϕ−1(D)

1
(1 + st)2

dsdt,

where D is a borel subset of Ω. It follows by an application of the chain rule that
µ has the density p(x, y) = 1

log 2 (x − y)−2. As constructed, µ is invariant under

the action of T̃ and ϕ defines an isomorphism between the dynamical systems
(Λ,B, ν, S̃) and (Ω, B, µ, T̃ ). It follows that (Ω, B, µ, T̃ ) is an ergodic dynamical
system. The ergodicity of T̃ is central to the proof of Theorem 1 that follows.

Let T (x) = 1
x − [ 1

x ] be the classical Gauss map and let π(x1, x2) = x1 be pro-
jection on the first factor. Then independent of y, π ◦ T̃ (x, y) = T (x) and π∗(µ)
is the classical Gauss measure, which is an invariant measure for T , with density
g(x) = 1

log 2
1

1+x .
For irrational x = [0; a1, a2 . . . ], the Gauss map T acts as a shift on con-

tinued fraction expansions with T (x) = [0; a2, a3 . . . ]. Even when x is ratio-
nal, T acts as a shift on the finite continued fraction expansion and the iter-
ates are defined until Tn(x) = 0. We assume henceforth that x = [0; a1, a2 . . . ]
is irrational. The iterates T̃n(x) are then defined for all positive integers n. If
y = −[a−1; a−2, . . . ] ∈ (−∞,−1], with a possibly finite continued fraction expan-
sion and x is as above then T̃n(x, y) = (x̂, ŷ) where x̂ = [0; an+1, an+2 . . . ] and
ŷ = −[an; an−1, an−2, . . . , a1, a−1 . . . ].

Define the function

F (x, y) = log
(

1
x
− 1

y

)
= log

(
y − x

xy

)
.

We show that F is integrable on Ω = (0, 1)× (−∞,−1] with respect to the density
p. It shall soon be clear that F is very useful for computing the quantity log θn(x).∫

Ω

log
(

y − x

xy

)
p(x, y) dxdy

=
1

log 2

∫ −1

−∞

∫ 1

0

log
(

y−x
xy

)
(x − y)2

dxdy

=
1

log 2

∫ −1

−∞

1 + log(1 − y) − log(−y)
y(y − 1)

dy

=
1

log 2
lim

h→∞

[
log(−y) + log(1 − y) +

1
2
(log(−y))2

+
1
2
(log(1 − y))2 − log(−y) log(1 − y)

] ]∣∣∣∣−1

−h

=
1

log 2

[(
log 2 +

1
2
(log 2)2

)

− lim
h→∞

( 1
2 log(−y) − 1

2 log(1 − y) + 1
1

log(−y)

+
1
2 log(1 − y) − 1

2 log(−y) + 1
1

log(1−y)

)]

where the last limit is zero by L’Hospital’s rule.
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Since F is µ-integrable and T̃n(x, y) is defined on a set of full measure for all
n ≥ 0, it is a direct consequence of the Birkhoff Ergodic Theorem (see [4] or [2])
that for almost all (x, y) ∈ Ω

lim
n→∞

1
n

n∑
i=1

F (T̃ i(x, y)) =
∫

Ω

F (x, y)p(x, y) dxdy.(3)

This value was just computed to be 1 + 1
2 log 2.

It is known, see, e.g., [2], that if two numbers α, β have continued fractions
expansions which agree in their first n digits, then |α − β| < 2−n+1. Thus for
y, y′ ∈ [−∞,−1], |π2 ◦ T̃n(x, y) − π2 ◦ T̃n(x, y′)| < 2−n+1.

Our next task is to prove that if the equality (3) holds for a given (x, y) then it
holds for (x, y′) for all y′ ∈ [−∞,−1]. In essence, the equality is true for almost all
x independent of y. Fix x and suppose that the equality (3) holds for (x, y) ∈ Ω.
Let y′ ∈ [−∞,−1]. To simplify the computation write T̃ i(x, y) = (xi, yi) and
T̃ i(x, y′) = (xi, y

′
i). Keep in mind that yi and y′

i are negative numbers. Then

1
n

n∑
i=1

∣∣∣∣F (T̃ i(x, y)) − F (T̃ i(x, y′))
∣∣∣∣ =

1
n

n∑
i=1

∣∣∣∣log
(

yi − xi

xiyi

)
− log

(
y′

i − xi

xiy′
i

)∣∣∣∣
=

1
n

n∑
i=1

∣∣∣∣
(

log
(
xi − yi

) − log(xi) − log(−yi)
)

−
(

log
(
xi − y′

i

) − log(xi) − log(−y′
i)

)∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣∣log
xi − yi

xi − y′
i

∣∣∣∣ +
1
n

n∑
i=1

∣∣∣∣log
y′

i

yi

∣∣∣∣.(4)

There is no loss of generality in supposing that xi − yi ≥ xi − y′
i, since the

absolute value of the log of the quotient in the first sum of (4) is the same either
way the inequality goes. Then by an earlier observation

0 < (xi − yi) − (xi − y′
i) = y′

i − yi < 2−i+1.

Since xi − y′
i > 1,

xi − yi

xi − y′
i

< 1 + 2−i+1(xi − y′
i)

−1 < 1 + 2−i+1.

Now take logs and apply the standard estimate that comes from the alternating
series for log x to get

log
xi − yi

xi − y′
i

< log(1 + 2−i+1) < 2−i+1.

It follows that the first sum in (4) converges to zero as n goes to ∞. By a similar
argument the same conclusion can be reached for the second sum in (4). This shows
that if the equality (3) holds for some (x, y) ∈ Ω then it holds for any (x, y′) ∈ Ω.

We are now close to completing the the proof of Theorem 1. Two identities from
the classical theory will link the above to our main theorem. If x = [0; a1, a2 . . . ]
then

[an; an−1, . . . , a1] =
qn

qn−1
(see [9])(5)
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and

θn(x) =
(

1
Tn(x)

+
qn−1

qn

)−1

(see [6, p. 29, (11)]).(6)

Given x ∈ (0, 1), let (x0, y0) = T̃ (x,∞) = (T (x),−[1/x]) ∈ Ω. As above define
T̃ i(x0, y0) = (xi, yi). If x = [0; a1, a2 . . . ] then for i > 0

(xi−1, yi−1) = ([0; ai+1, ai+2 . . . ],−[ai; ai−1, ai−2, . . . , a1]) =
(

T i(x),− qi

qi−1

)
where we have used (5) above. From (6) and the definition of F ,

−F (T̃ i(x0, y0)) = − log
(

1
xi

− 1
yi

)

= log
(

1
T i+1(x)

+
qi

qi+1

)−1

= log θi+1(x).

Therefore

lim
n→∞

1
n

n∑
i=1

log θi+1(x) = lim
n→∞

1
n

n∑
i=1

−F (T̃ i(x0, y0))

converges to −1 − 1
2 log 2 for almost all x0 ∈ (0, 1), independent of y0, and conse-

quently for almost all x ∈ (0, 1). The proof of Theorem 1 is complete.
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