New York Journal of Mathematics

Weak- L^{1} estimates and ergodic theorems

Ciprian Demeter and Anthony Quas

$$
\begin{aligned}
& \text { AbSTRACT. We prove that for any dynamical system }(X, \Sigma, m, T) \text {, the maxi- } \\
& \text { mal operator defined by } \\
& \qquad N^{*} f(x)=\sup _{n} \frac{1}{n} \#\left\{1 \leq i: \frac{f\left(T^{i} x\right)}{i} \geq \frac{1}{n}\right\} \\
& \text { is almost everywhere finite for } f \text { in the Orlicz class } L \log \log L(X) \text {, extending } \\
& \text { a result of Assani [2]. As an application, a weighted return times theorem is } \\
& \text { also proved. }
\end{aligned}
$$

Contents

1. Introduction

169
2. Main results 171

References

1. Introduction

Let T be a measure preserving transformation of a probability space (X, Σ, m). We call (X, Σ, m, T) a dynamical system. The following return times theorem was proved in [4]:

Theorem 1 (Bourgain). Let $1 \leq p \leq \infty$ and let $1 / p+1 / q=1$. For each dynamical system (X, Σ, m, T) and $f \in L^{p}(X)$, there is a set $X_{0} \subset X$ of full measure, such that for any other dynamical system $(Y, \mathcal{F}, \mu, S), g \in L^{q}(Y)$ and $x \in X_{0}$, the limit,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right) g\left(S^{k} y\right)
$$

exists for μ a.e. y.
One of the most interesting unanswered questions that emerges from this result is whether or not the fact that f and g lie in dual spaces is in general necessary in order to have a positive result. Neither of the existing proofs of Theorem 1 gives any indication on this, since each of them relies on Hölder's inequality.

[^0]On the other hand, if $\left(g S^{k}\right)$ is replaced with a sequence $\left(\xi_{k}\right)$ of independent identically distributed random variables such that $\mathbb{E}\left(\left|\xi_{1}\right|\right)<\infty$, then the following criterion of B. Jamison, S. Orey and W. Pruitt [5] proves to be an excellent tool to break the duality.

Theorem 2 (Jamison, Orey and Pruitt). Let $\left(a_{k}\right)$ be a sequence of positive real numbers and let $N^{*}=\sup _{n} \frac{1}{n} \#\left\{k: a_{k} / \sum_{i=1}^{k} a_{i} \geq 1 / n\right\}$, then the following are equivalent:

1. $N^{*}<\infty$.
2. For any i.i.d. sequence of random variables $\left(\xi_{k}\right)$ such that $\mathbb{E}\left(\left|\xi_{1}\right|\right)<\infty$, defining a new sequence $\left(\Xi_{n}\right)$ of random variables by

$$
\Xi_{n}(\omega)=\sum_{k=1}^{n} a_{k} \xi_{k}(\omega) / \sum_{k=1}^{n} a_{k}
$$

the sequence $\left(\Xi_{n}\right)$ converges pointwise almost surely.
Motivated by this criterion, Assani [1] introduced the following maximal function: given $f \in L^{1}(X)$, consider

$$
N^{*} f(x)=\sup _{n} \frac{1}{n} \#\left\{1 \leq i: \frac{f\left(T^{i} x\right)}{i} \geq \frac{1}{n}\right\}
$$

He proved in [2] for $f \in L \log L(X), N^{*} f \in L^{1}$ and in particular $N^{*} f(x)<\infty$ for a.e. x. Based on this and Theorem 2, the following "duality-breaking" version of Theorem 1 follows almost immediately:

Corollary 3 (Assani). Let (X, Σ, m, T) be a measure-preserving transformation and let the function f satisfy $\int|f| \log ^{+}|f| d m<\infty$, that is $f \in L \log L(X)$. Then there is a set $X_{0} \subset X$ of full measure, such that for any sequence $\left(\xi_{k}\right)$ of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_{1} \in L^{1}(\Omega)$ and any $x \in X_{0}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right) \xi_{k}(\omega)
$$

exists for μ a.e. ω.
Moreover in [1] it is proved that if Theorem 1 is true for $p=q=1$, then $N^{*} f(x)$ must be finite almost everywhere for all $f \in L^{1}(X)$. This connection sheds more light on the importance of the operator N^{*} and motivates its further study.

In the next section we will prove the finiteness of N^{*} for functions in the larger class $L \log \log L$. Note that while Assani shows that $N^{*} f \in L^{1}$ for $f \in$ $L \log L$, our result establishes that $N^{*} f \in L^{1, \infty}$ for $f \in L \log \log L$ (i.e., that $\left.\sup _{t} \operatorname{tm}\left\{x: N^{*} f(x)>t\right\}<\infty\right)$ so that while our hypothesis is weaker, so is our conclusion. Note however that since our conclusion implies that $N^{*} f(x)<\infty$ for almost every x, it is sufficient to imply a corollary like Corollary 3 in the case where $f \in L \log \log L$.

In a preprint that appeared at around the time this paper was submitted, Assani, Buczolich, and Mauldin [3] show that there exists an $f \in L^{1}(X)$ such that $N^{*} f(x)=$ ∞ almost everywhere.

2. Main results

Throughout this section we will denote the natural logarithm of x by $\log x$ and the weak- L^{1} norm of f by

$$
\|f\|_{1, \infty}=\sup _{\lambda>0} \lambda m\{x:|f(x)|>\lambda\}
$$

We will also need to refer to the entropy of a sequence of positive real numbers. Specifically, for a sequence $\left(a_{n}\right)$ of nonnegative real numbers (not all 0), define the entropy by

$$
H\left(\left(a_{n}\right)\right)=\sum_{n}-\frac{a_{n}}{\sum_{j} a_{j}} \log \left(\frac{a_{n}}{\sum_{j} a_{j}}\right)
$$

under the convention $0 \log 0=0$.
We define f^{*} to be the ergodic maximal function, $f^{*}(x)=\sup _{n}\left|\frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right)\right|$. The maximal ergodic theorem asserts that $\left\|f^{*}\right\|_{1, \infty} \leq\|f\|_{1}$ for all $f \in L^{1}(X)$. The following inequality from [7] turns out to be extremely useful to our investigation:

Lemma 4. Suppose that for $i=1,2, \ldots, g_{i}(x)$ is an $L_{1, \infty}$ function on a measure space such that $\sum\left\|g_{i}\right\|_{1, \infty}<\infty$. Then

$$
\left\|\sum_{i=1}^{\infty} g_{i}\right\|_{1, \infty} \leq 2(K+2) \sum_{i=1}^{\infty}\left\|g_{i}\right\|_{1, \infty}
$$

where K is the entropy of the sequence $\left(\left\|g_{n}\right\|_{1, \infty}\right)$.
We can now prove our main result.
Theorem 5. For each dynamical system (X, Σ, m, T) and each $f \in L \log \log L(X)$ (that is f satisfying $\int|f| \log ^{+} \log ^{+}|f| d m<\infty$), $N^{*} f(x)<\infty$ for a.e. x.

Proof. It is enough to consider f positive. Making use of the fact that $f(x) \leq$ $\sum_{i=1}^{\infty} 2^{i} \chi_{A_{i}}(x)$, where $A_{i}=\left\{x: 2^{i-1}<f(x) \leq 2^{i}\right\}$ for $i \geq 2$ and $A_{1}=\{x: f(x) \leq$ $2\}$, it easily follows that for each n,

$$
\frac{1}{n} \#\left\{k \geq 1: \frac{f\left(T^{k} x\right)}{k} \geq 1 / n\right\} \leq \frac{1}{n} \sum_{i=1}^{\infty} \sum_{k=1}^{n 2^{i}} \chi_{A_{i}}\left(T^{k} x\right) \leq \sum_{i=1}^{\infty} 2^{i}\left(\chi_{A_{i}}\right)^{*}(x)
$$

We will show that the last term in the above inequality is finite a.e. by proving that its $L_{1, \infty}$ norm is finite.

Let $a_{i}=2^{i}\left\|\chi_{A_{i}}\right\|_{1, \infty}$. By the maximal ergodic theorem, we see that $a_{i} \leq$ $2^{i} m\left(A_{i}\right)$. The fact that $f \in L \log \log L$ implies that $\sum_{i} a_{i} \log i<\infty$ (and hence clearly M, which we define to be $\sum_{i} a_{i}$, is finite). From the lemma above, we see that it is sufficient to show that the entropy of the sequence $\left(a_{i}\right)$ is finite: $\sum_{i}-a_{i} / M \log \left(a_{i} / M\right)<\infty$. One quickly sees that this is equivalent to establishing $\sum_{i}-a_{i} \log a_{i}<\infty$.

Consider now $S_{1}=\left\{i: a_{i} \leq 1 / i^{2}\right\}$ and $S_{2}=\left\{i: a_{i}>1 / i^{2}\right\}$. Now

$$
\sum_{i \in S_{1}}-a_{i} \log a_{i} \leq 1+\sum_{j=2}^{\infty} \log \left(j^{2}\right) / j^{2}<\infty
$$

since $\psi(t)=-t \log t$ is increasing on $[0,1 / e]$. On the other hand

$$
\sum_{i \in S_{2}}-a_{i} \log a_{i}<2 \sum_{i \in S_{2}} a_{i} \log i<\infty
$$

Corollary 6. For each dynamical system (X, Σ, m, T) and nonnegative function $f \in L \log \log L(X)$, there is a set $X_{0} \subset X$ of full measure, such that for any sequence $\left(\xi_{k}\right)$ of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_{1} \in L^{1}(\Omega)$ and any $x \in X_{0}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right) \xi_{k}(\omega)
$$

exists for μ a.e. ω.
There does not seem to be better way of exploiting Lemma 4 in order to extend even more the class of functions for which $N^{*} f$ is almost everywhere finite. Moreover, as we show in the following proposition, the inequality in Lemma 4 is sharp up to a constant. We note that a more general version of this proposition appears in work of Kalton [6].

Proposition 7. Given positive numbers a_{1}, \ldots, a_{n}, there exist functions g_{1}, \ldots, g_{n} with $\left\|g_{i}\right\|_{1, \infty}=a_{i}$ such that $\left\|g_{1}+\ldots g_{n}\right\|_{1, \infty} \geq \frac{1}{6}(2+K) \sum\left\|g_{i}\right\|_{1, \infty}$, where K is the entropy of the sequence $\left(a_{i}\right)$.

Proof. For each i, let ξ_{i} be a random variable taking the value $1 / n$ with probability $\left(1-a_{i}\right)^{n-1} a_{i}$. Moreover, the ξ_{i} 's will be chosen to be independent. One can then check that $\mathbb{P}\left(\xi_{i}>\lambda\right) \leq a_{i} / \lambda$ while $\mathbb{P}\left(\xi_{i} \geq 1-\epsilon\right)=a_{i}$ for ϵ small enough, so that $\left\|\xi_{i}\right\|_{1, \infty}=a_{i}$.

We see that

$$
\begin{aligned}
\mathbb{E}\left(\xi_{i}\right) & =\sum_{n=1}^{\infty} a_{i} \frac{\left(1-a_{i}\right)^{n-1}}{n} \\
& =-\frac{a_{i}}{1-a_{i}} \log a_{i} \geq-a_{i} \log a_{i}
\end{aligned}
$$

Similarly, we see that

$$
\mathbb{E}\left(\xi_{i}^{2}\right)=a_{i} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(1-a_{i}\right)^{n-1} \leq a_{i} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 2 a_{i}
$$

In particular, setting $\Xi=\xi_{1}+\cdots+\xi_{n}$, we see that $\mathbb{E}(\Xi) \geq K$ but $\operatorname{Var}(\Xi) \leq 2$.
Using Tchebychev's inequality, we see that

$$
\mathbb{P}(\Xi \geq K-2) \geq \mathbb{P}(|\Xi-\mathbb{E}(\Xi)| \leq 2) \geq 1-\frac{\operatorname{Var}(\Xi)}{2^{2}} \geq \frac{1}{2}
$$

If $K>4$, we have $\mathbb{P}(\Xi \geq K / 2) \geq \frac{1}{2}$ so that the weak- L^{1} norm exceeds $K / 4$, which in turn exceeds $(K+2) / 6$. If $K \leq 4$, take f to be any function of weak L^{1} norm 1 and let $f_{n}=a_{n} f$, so that $\left\|f_{n}\right\|_{1, \infty}=a_{n}$. Then $\sum f_{i}=f$, so that $\left\|\sum f_{i}\right\|_{1, \infty}=$ $1 \geq \frac{1}{6}(K+2) \sum\left\|f_{i}\right\|_{1, \infty}$. This completes the proof of the proposition.

Remark 8. Note that although $f \in L \log \log L$ is sufficient to guarantee that $N^{*} f<\infty$ almost everywhere, there are functions f outside $L \log \log L(X)$, for which $N^{*} f(x)<\infty$ for a.e. x. In particular, it is easy to construct functions outside $L \log \log L$ for which the entropy computed in Theorem 5 is finite, guaranteeing the finiteness of $N^{*} f$.

Further, if we are willing to restrict the system, we see that no condition on the distribution of f ensures the divergence of $N^{*} f(x)$. Specifically, Lemma 1 of [1] guarantees that whenever $T^{k} f$ are independent (identically distributed) random variables with an arbitrary L^{1} distribution, then $N^{*} f(x)<\infty$ for a.e. x.

Another consequence of Theorem 5 is the following weighted version of Corollary 3.

Theorem 9. For each dynamical system (X, Σ, m, T) and $f \in L^{1}(X)$, there is a set $X_{0} \subset X$ of full measure, such that for any sequence $\left(\xi_{k}\right)$ of i.i.d. random variables on the probability space $(\Omega, \mathcal{F}, \mu)$ with $\xi_{1} \in L^{1}(\Omega)$ and any $x \in X_{0}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n \log \log n} \sum_{k=1}^{n} f\left(T^{k} x\right) \xi_{k}(\omega)=0
$$

for μ a.e. ω.
The proof will be based on the following relative of Theorem 5. Define

$$
L^{*} f(x)=\sup _{n} \frac{1}{n} \#\left\{1 \leq i: \frac{f\left(T^{i} x\right)}{i \log \log i} \geq \frac{1}{n}\right\}
$$

Lemma 10. Let (X, Σ, m, T) be a measure-preserving system. For each $f \in L_{1}(X)$, $L^{*} f(x)<\infty$ for a.e. x.

Proof. As usual, we can assume f is positive. Fix an $n \in \mathbb{N}$. Using the fact that $f(x) \leq \sum_{i=1}^{\infty} 2^{i} \chi_{A_{i}}(x)$ we get that

$$
\frac{1}{n} \#\left\{1 \leq k: \frac{f\left(T^{k} x\right)}{k \log \log k} \geq 1 / n\right\} \leq \frac{1}{n} \sum_{i=1}^{\infty} \sum_{k=1}^{p_{i}} \chi_{A_{i}}\left(T^{k} x\right) \leq \frac{1}{n} \sum_{i=1}^{\infty} p_{i}\left(\chi_{A_{i}}\right)^{*}(x)
$$

where p_{i} is the largest integer such that $p_{i}\left(\log \log p_{i}\right) \leq n 2^{i}$. Letting $\phi:(1, \infty) \rightarrow \mathbb{R}$ be the increasing function $\phi(x)=x \log \log x$, we see that $p_{i} \leq \phi^{-1}\left(n 2^{i}\right)$. We claim that there exists a $C>0$ such that $p_{i} \leq C \frac{2^{i} n}{\log (i+1)}$ for all $i, n \in \mathbb{N}$. To see this, we check the existence of a C such that $\phi^{-1}\left(2^{x}\right) \leq C \frac{2^{x}}{\log (x+1)}$ or equivalently $2^{x} \leq \phi\left(C \frac{2^{x}}{\log (x+1)}\right)$ for all $x \geq 0$. Hence

$$
\sup _{n} \frac{1}{n} \#\left\{1 \leq i: \frac{f\left(T^{i} x\right)}{i \log \log i} \geq \frac{1}{n}\right\} \leq C \sum_{i=1}^{\infty}\left(\frac{2^{i}}{\log (i+1)}\right)\left(\chi_{A_{i}}\right)^{\star}(x)
$$

Based on Lemma 4 and on the maximal ergodic theorem, it suffices to prove that $\sum_{i=1}^{\infty}-\left(\frac{2^{i}\left\|\chi_{A_{i}}\right\|_{1}}{\log (i+1)}\right) \log \left(\frac{2^{i}\left\|\chi_{A_{i}}\right\|_{1}}{\log (i+1)}\right)<\infty$. By splitting the sum in two parts depending on whether or not $\frac{2^{i}\left\|\chi_{A_{i}}\right\|_{1}}{\log (i+1)}<\frac{1}{i^{2}}$ and reasoning as in the proof of Theorem 5, it easily follows that the sum from above is finite.

Proof of Theorem 9. It suffices to assume that both f and ξ_{1} are positive. According to the previous lemma, let X_{0} the subset of full measure of X containing all the points x for which $L^{*} f(x)<\infty$. For a fixed $x \in X_{0}$ denote $w_{k}:=f\left(T^{k} x\right)$ and also $W_{k}:=k \log \log k$. The argument of Jamison, Orey and Pruitt from [5] can be extended with really no essential changes to this case, to conclude that since

$$
\begin{gathered}
\sup _{n} \frac{1}{n} \#\left\{1 \leq i: \frac{w_{i}}{W_{i}} \geq \frac{1}{n}\right\}<\infty \\
\lim _{n \rightarrow \infty} \frac{1}{W_{n}} \sum_{k=1}^{n} w_{k} \xi_{k}(\omega)=0
\end{gathered}
$$

for μ a.e. ω.
Remark 11. It is not known whether in Theorem 9 the weight $n \log \log n$ can be replaced with a smaller one, like $n \log \log \log n$. Any improvement on this weight will necessarily have behind it an extension of the result of Theorem 5 to a larger Orlicz class. On the other hand, a combination of Theorem 2 and the result from [3], shows that this weight can not be chosen to be n.

Remark 12. It would be interesting to find the largest Orlicz class that would guarantee that $N^{*} f(x)<\infty$ almost everywhere. The above establishes that such an Orlicz class would contain $L \log \log L$.

A careful examination of the proof of [3] demonstrates that in any Orlicz class with an essentially smaller weight than the class $L \log \log \log L$, there exists a function f such that $N^{*} f(x)=\infty$ almost everywhere.

In particular, these two results demonstrate that the largest Orlicz class that would guarantee that $N^{*} f(x)<\infty$ almost everywhere lies between $L \log \log L$ and $L \log \log \log L$.

References

[1] I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J. 88 (1997), 217-246, MR 1455518 (98g:60059), Zbl 0883.60023.
[2] I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math. 3A (1997), 15-30, MR 1604577 (99c:60061), Zbl 0915.28009.
[3] I. Assani, Z. Buczolich, and R. Mauldin, An L^{1} counting problem in ergodic theory, arXiv math.DS/0307384.
[4] J. Bourgain, H. Furstenberg, Y. Katznelson and D. Ornstein, Return times of dynamical systems (appendix to Bourgain's 'Pointwise ergodic theorems for arithmetic sets'), Inst. Hautes Études Sci. Publ. Math. 69 (1989), 47-50, MR 1019960 (90k:28030), Zbl 0705.28008.
[5] B. Jamison, S. Orey, and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 40-44, MR 0182044 (31 \#6268), Zbl 0141.16404.
[6] N. J. Kalton, Sequences of random variables in L_{p} for $p<1$, J. Reine Angew. Math. 329 (1981), 204-214, MR 0636454 (83a:46040), Zbl 0461.60020.
[7] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54, MR 0241685 (39 \#3024), Zbl 0182.10801.

Department of Mathematics, University of Illinois at Urbana, Urbana, IL 61801 demeter@math.uiuc.edu

Department of Mathematical Sciences, University of Memphis, Memphis, TN 381526429
aquas@memphis.edu
This paper is available via http://nyjm.albany.edu:8000/j/2004/10-10.html.

[^0]: Received August 14, 2003.
 Mathematics Subject Classification. 37A30, 46E30, 60F15.
 Key words and phrases. Return times theorem, Orlicz spaces.
 The second author's research was partially supported by NSF Grant DMS-0200703.

