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Homogenization of Random Walk in Asymmetric
Random Environment

Joseph G. Conlon

Abstract. In this paper, the author investigates the scaling limit of a partial
difference equation on the d dimensional integer lattice Zd, corresponding to a
translation invariant random walk perturbed by a random vector field. In the
case when the translation invariant walk scales to a Cauchy process he proves
convergence to an effective equation on Rd. The effective equation corresponds
to a Cauchy process perturbed by a constant vector field. In the case when the
translation invariant walk scales to Brownian motion he shows that the scaling
limit, if it exists, depends on dimension. For d = 1, 2 he provides evidence that
the scaling limit cannot be diffusion.
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1. Introduction

In this paper we shall be concerned with homogenization of a nondivergence
form elliptic equation. Let (Ω,F , µ) be a probability space and b : Ω → Rd be a
bounded measurable function b(ω) = (b1(ω), . . . , bd(ω)) with

|b(ω)|2 =
d∑
i=1

|bi(ω)|2 ≤ 1, ω ∈ Ω.(1.1)

We assume that Zd acts on Ω by translation operators τx : Ω → Ω, x ∈ Zd, which
are measure preserving ergodic and satisfy the properties τxτy = τx+y, x, y ∈ Zd,
τ0 = identity. Using these operators we can define a measurable function b :
Zd × Ω → Rd by b(x, ω) = b(τxω), x ∈ Zd, ω ∈ Ω.
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For ε > 0 let Zdε = εZd be the ε scaled integer lattice. We define the integral of
a function g : Zdε → R by ∫

Zd
ε

g(x)dx def.= εd
∑
x∈Zd

ε

g(x).

The space L2(Zdε) is then the space of square integrable functions u : Zdε → C with
norm, ‖u‖ε satisfying

‖u‖2
ε =

∫
Zd

ε

|u(x)|2dx.

For i = 1, . . . , d, let ei ∈ Zd be the element with entry 1 in the ith position and
0 in the other positions. Suppose γ ∈ C and f : Rd → R is a C∞ function with
compact support. Let p : Zd → R be a probability density, whence

p(x) ≥ 0, x ∈ Zd,
∑
x∈Zd

p(x) = 1.

With any such p we can associate a translation invariant operator Ap on functions
uε : Zdε → R by

Apuε(x) = uε(x)−
∑
y∈Zd

p(y)uε(x+ εy).

For some probability densities p, the Markov chain with generator Ap scales in the
large time limit to a Levy process [20]. If Ap is such a generator, we denote the
index of the corresponding symmetric stable process by |Ap|. If p is given by

p(±ei) = 1/2d, i = 1, . . . , d,(1.2)

then |Ap| = 2 since the corresponding Levy process is Brownian motion. We also
define a p which scales to a Cauchy process, whence |Ap| = 1. To do this consider
the standard nearest neighbor random walk on Zd+1 started at the point (0,−1),
0 ∈ Zd. Then

p(x) = probability the walk first hits the hyperplane(1.3)

{(y, 0) : y ∈ Zd} in the point (x, 0), x ∈ Zd.

We shall be interested in solutions to the equation

Apuε(x, ω)− γ

d∑
i=1

bi

(x
ε
, ω
)
[uε(x+ εei, ω)− uε(x− εei, ω)] + ε|Ap|uε(x, ω)

(1.4)

= ε|Ap|f(x), x ∈ Zdε , ω ∈ Ω,

when p is given by either (1.2) or (1.3). For a function g : X → C where X = Rd

or X = Zdε , let ĝ be its Fourier transform,

ĝ(ξ) =
∫
X

g(x)eix·ξdx, ξ ∈ Rd.

Note that when X = Zdε , then ĝ(ξ) is periodic in ξ whence we can restrict ξ to
the cube [−π/ε, π/ε]d. Suppose now b ≡ 0 in (1.4) and p is given by (1.2). Then
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it is easy to see that (1.4) has a unique solution uε(x) in L2(Zdε). Further, if
u(x), x ∈ Rd, is the function which satisfies

[1 + |ξ|2/2d]û(ξ) = f̂(ξ), ξ ∈ Rd,

then limε→0 ‖uε − u‖ε = 0. Similarly if b ≡ 0 and p is given by (1.3) then (1.4)
has a unique solution uε(x) in L2(Zdε). We show in §2 that if u(x), x ∈ Rd, is the
function which satisfies

[1 + |ξ|]û(ξ) = f̂(ξ), ξ ∈ Rd,(1.5)

then

lim
ε→0

‖uε − u‖ε = 0.(1.6)

We can also prove a corresponding theorem when b �≡ 0 in the case p is given
by (1.3). In the following the expectation value of a random variable X on Ω is
denoted by 〈X〉.
Theorem 1.1. For 0 < ε ≤ 1, there exists a constant γd > 0, depending only on
d, such that if γ ∈ C satisfies |γ| < γd then (1.4) has a unique solution uε(·, ω) ∈
L2(Zdε), ω ∈ Ω. There exists a vector qγ ∈ Cd, |qγ | < 1, analytic in γ, such that if
u(x), x ∈ Rd, is the function which satisfies

[1 + |ξ|+ iqγ · ξ]û(ξ) = f̂(ξ), ξ ∈ Rd,(1.7)

then there is the limit

lim
ε→0

〈‖uε( , ·)− u‖2
ε

〉
= 0.(1.8)

Theorem 1.1 is a homogenization result for p given by (1.3). It says that the
scaling limit of the random walk, with transition probability (1.3), in a random
environment described by b(x, ω), is a Cauchy process with a constant drift qγ .
Corresponding results for uniformly elliptic partial differential equations in diver-
gence form were first proved by Kozlov [11] and later by Papanicolaou and Varad-
han [16]. In this case the scaling limit is Brownian motion. One can also prove a
Brownian motion scaling limit for parabolic equations in divergence form when the
coefficients are random in time as well as space [13]. It is possible to relax some-
what the uniform ellipticity assumption and still prove the scaling limit [5]. For a
comprehensive survey of homogenization results in partial differential equations see
the book of Oleinik at al [25]. Here we obtain the scaling limit of an asymmetric
partial difference equation. The scaling limit of a divergence form partial differ-
ence equation has been obtained by Künnemann [12] and of a symmetric partial
difference equation in non-divergence form by Lawler [14].

Evidently qγ is in general nonzero even in the case 〈b(·)〉 = 0. Nevertheless it is
possible to impose some general conditions on b(·) to ensure qγ = 0. We say that
the vector field b(·) is reflection invariant if it has the property that

(1.9)

〈
n∏
i=1

bki
(τxi

·)
〉

= (−1)n
〈
n∏
i=1

bki
(τ−xi

·)
〉
,

xi ∈ Zd, 1 ≤ ki ≤ d, i = 1, . . . n, n ≥ 1.

Clearly (1.9) implies that 〈b(·)〉 = 0. We show at the end of §2 that if b(·) satisfies
(1.9) then qγ = 0 in (1.7).
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Suppose now (1.9) holds. Let uε(x) = 〈uε(x, ·)〉, x ∈ Zdε , where uε(x, ω) is the
unique solution to (1.4) given by Theorem 1.1. Suppose p̂ : [−π, π]d → R is the
Fourier transform of the function p of (1.3) and f̂ε the Fourier transform of the
function f restricted to the lattice Zdε . If ûε(ξ) is the Fourier transform of uε(x),
then one can see that there is a d × d matrix qγ,ε(ζ), ζ ∈ [−π, π]d, continuous in
ζ and analytic in γ, such that

ûε(ξ)[1 + ε−1{1− p̂(εξ)} − ε−1e(εξ)qγ,ε(εξ)e(−εξ)] = f̂ε(ξ) , ξ ∈ [−π/ε, π/ε],
(1.10)

where e(ζ), ζ ∈ Rd, is the vector e(ζ) = (e1(ζ), · · ·, ed(ζ)), with ek(ζ) = 1− eiek·ζ .

Theorem 1.2. Suppose the variables b(τx·), x ∈ Zd, are independent with 〈b(·)〉 =
0 and qγ,ε(ζ) is defined by (1.10) for |γ| < γd, where γd is the constant of Theo-
rem 1.1. Then there exists a positive constant γ′d < γd, depending only on d, such
that if |γ| < γ′d the matrix qγ,ε(ζ) converges uniformly in ζ as ε → 0 to a matrix
qγ(ζ), ζ ∈ [−π, π]d.

Theorem 1.2 is a considerably deeper theorem than Theorem 1.1. One has to
use the Calderon-Zygmund theorem [8, 22] that the Hilbert transform is bounded
on Lp spaces for p �= 2. In contrast, Theorem 1.1 can be proved by just using L2

theory.
Next we consider the situation when p is given by (1.2) and b �≡ 0. We then

have the following theorem:

Theorem 1.3. For 0 < ε ≤ 1 and γ ∈ C satisfying |γ| < ε/
√
2d, equation (1.4)

has a unique solution uε(·, ω) ∈ L2(Zdε), ω ∈ Ω. If (1.9) holds then there is a
d×d matrix qγ,ε(ζ), ζ ∈ [−π, π]d, continuous in ζ and analytic in γ, such that the
Fourier transform ûε(ξ) of 〈uε(x, ·)〉 satisfies

ûε(ξ)[1 + ε−2{1− p̂(εξ)} − ε−2e(εξ)qγ,ε(εξ)e(−εξ)] = f̂ε(ξ) , ξ ∈ [−π/ε, π/ε].
(1.11)

Note that (1.11) is simply the analogue for p given by (1.2) of (1.10) for p given
by (1.3). Since qγ,ε(ζ) is analytic in γ, we can write it in a series expansion,

qγ,ε(ζ) =
∞∑
m=2

γmqm,ε(ζ),(1.12)

which converges for |γ| < ε/
√
2d. In §5 we investigate the limiting behavior of qm,ε

as ε → 0. We restrict ourselves to the situation when the b(τx·), x ∈ Zd, are given
by independent Bernoulli variables. Thus we assume that bj(·) ≡ 0, j > 1, and
b1(τx·) = Yx, x ∈ Zd, where the variables Yx, x ∈ Zd, are assumed to be i.i.d.
Bernoulli, Yx = ±1 with equal probability. In that case we have the following:

Theorem 1.4. For m = 2, 3, · · · the d× d matrix qm,ε(ζ) has the properties:

(a) qm,ε(ζ) ≡ 0 if m is odd or m = 2.
(b) The entries of the matrix qm,ε(ζ) = [qm,ε,k,k′(ζ)], 1 ≤ k, k′ ≤ d, are zero if

k, k′ > 1.
(c) The entries of the matrix qm,ε(0) = [qm,ε,k,k′(0)] are zero if k + k′ > 2.
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(d) Assume d = 1 and K ⊂ R is a compact subset. Then εm/2qm,ε(εξ) converges
uniformly for ξ ∈ K to a function qm(ξ), as ε → 0. The function q4(ξ) is
given by the formula,

q4(ξ) =
32

18 + ξ2
.(1.13)

(e) If d = 2 then q4,ε,1,1(0) converges to +∞ as ε → 0.
(f) If d ≥ 3 then q4,ε(ζ) converges uniformly for ζ ∈ [−π, π]d to a matrix q4(ζ) =

[q4,k,k′(ζ)] satisfying q4,1,1(0) > 0, as ε → 0.

Unlike in the previous theorems, the results of Theorem 1.4 depend on the dimen-
sion d. For d = 1 the theorem suggests that if we set γ = γ′

√
ε in (1.4), fix γ′and

let ε → 0, then we should obtain a scaling limit. Note however that one expects the
resulting series obtained from (1.12) by letting ε → 0 to be at most asymptotic in
γ′, not analytic. The limit here is related to the limits obtained by Sinai [21] and
Kesten [9] for one dimensional random walk in random environment. For d = 2 the
theorem suggests that if we fix γ in (1.4) and let ε → 0 no scaling limit exists. This
appears to contradict a conjecture of Fisher [6] that two dimensional random walk
in random environment has a diffusive scaling limit. In contrast Derrida and Luck
[4] conjecture a nondiffusive scaling limit in two dimensions. A numerical study of
the two dimensional equation (1.4) was made in [2] using a multigrid algorithm. It
was observed that the algorithm gave considerable acceleration over pure iterative
methods such as Gauss-Seidel. This suggests that there is some stability in the
Fourier space behavior of the solution to (1.4) as ε → 0. For d ≥ 3 the theorem
suggests a diffusive scaling limit for d dimensional random walk in random envi-
ronment and that the effective diffusion constant is smaller than for the zero noise
case.

There has been some recent work [17, 23, 24] on (1.4) with p given by (1.2) and
under the assumption 〈b(·)〉 �= 0. This situation is very different to the situation
studied in Theorem 1.4 since one expects now the drift to dominate diffusion. The
methods used in [23, 24] are related to methods used to prove Anderson localisation
for the random Schrodinger equation.

In this paper we shall adapt a method developed in [3] to prove the homoge-
nization results for (1.4). The method consists of space translation in Ω followed
by Fourier transformation in Zd. The space translation in Ω is similar in spirit to
“viewing the medium from an observer sitting on a tagged particle”, as described
in [10]. The main advantage here is that one obtains the coefficients of the effective
homogenized equation from the zero Fourier mode equation in the new variables.
The method also avoids use of Martingales, as for example occurs in the recent
paper [15].

2. Proof of Theorem 1.1

We first prove (1.6). Thus we consider (1.4) with b ≡ 0 and p given by (1.3). To
obtain an expression for p, let us denote a point in Zd+1 by (x, y) with x ∈ Zd, y ∈
Z. For n = 0, 1, 2, . . . let G(x, y, n) be the probability density of the standard
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random walk in Zd+1, started at the origin, after n steps. Thus

∑
x∈Zd

∑
y∈Z

G(x, y, n)ei[x·ξ+yζ] =

{
1

(d+ 1)

[
d∑
i=1

cos(ei · ξ) + cos ζ

]}n
.(2.1)

By the reflection principle, the probability that the d+1 dimensional walk, started
at (0,−1) first hits the hyperplane {(y, 0) : y ∈ Zd} after n + 1 steps at the point
(x, 0) is given by

1
2(d+ 1)

[G(x, 0, n)−G(x, 2, n)] .

Hence we have

p(x) =
1

2(d+ 1)

∞∑
n=0

[G(x, 0, n)−G(x, 2, n)] .(2.2)

We can compute the Fourier transform of p by using (2.1). Thus

p̂(ξ) =
∑
x∈Zd

p(x)eix·ξ =
1

4π(d+ 1)

∫ π

−π
dζ

1− cos 2ζ

1−
[∑d

i=1 cos(ei · ξ) + cos ζ
]
/(d+ 1)

.

(2.3)

Lemma 2.1. The limit (1.6) holds.

Proof. We rewrite the formula of (2.3) for p̂(ξ) as

p̂(ξ) = 1− 1
2π

∫ π

−π
dζ

(1 + cos ζ)
∑d
i=1[1− cos(ei · ξ)][

(1− cos ζ) +
∑d
i=1[1− cos(ei · ξ)]

] ,(2.4)

whence, on performing the integration with respect to ζ, we obtain the formula,

1− p̂(ξ) =



[
1 +

2∑d
i=1[1− cos(ei · ξ)]

]1/2

− 1




d∑
i=1

[1− cos(ei · ξ)] .(2.5)

It follows from (2.3), (2.4) that 0 < p̂(ξ) ≤ 1. We can also easily see from (2.5) that

lim
ε→0

ε−1[1− p̂(εξ)] = |ξ|, ξ ∈ Rd.(2.6)

Consider now (1.4) with b ≡ 0. Taking the Fourier transform of (1.4), we see that
(1.4) is equivalent to the equation,

[1 + ε− p̂(εξ)]ûε(ξ) = εf̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
,(2.7)

where f̂ε is the Fourier transform of f regarded as a function on Zdε . Since f is C∞

of compact support it is easy to see that (2.7) is uniquely solvable in L2
([−π

ε ,
π
ε

]d)
and

ûε(ξ) = f̂ε(ξ)
/
[1 + ε−1 {1− p̂(εξ)}] , ξ ∈

[−π
ε
,
π

ε

]d
.(2.8)
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Let û(ξ) be the function given in (1.5). We decompose its Fourier inverse u(x), x ∈
Rd, as a sum, u(x) = vε(x) + wε(x), where

vε(x) =
1

(2π)d

∫
[−π

ε ,
π
ε ]d

û(ξ)e−ix·ξdξ.

Since f̂(ξ) is rapidly decreasing in ξ it follows that limε→0 ‖wε‖ε = 0. We can see
this from the identity

‖wε‖2
ε =

1
(2π)d

∫
[−π

ε ,
π
ε ]d

∣∣∣∣∣∣
∑

n∈Zd\{0}
û(ξ +

2πn
ε

)

∣∣∣∣∣∣
2

dξ.

Thus we have

lim
ε→0

‖uε − u‖ε = lim
ε→0

‖uε − vε‖ε,

‖uε − vε‖2
ε =

1
(2π)d

∫
[−π

ε ,
π
ε ]d

|ûε(ξ)− û(ξ)|2dξ,

where ûε(ξ) is given by (2.8) and û(ξ) by (1.5). The result follows from (2.6) and
the dominated convergence theorem. �

Next we wish to prove existence of a solution to (1.4) provided γ is sufficiently
small, depending only on d. To do this we need to define the Green’s function
Gp,η(x), x ∈ Zd, associated with p. Thus for η > 0, Gp,η(x) is the solution to the
equation

Ap Gp,η(x) + η Gp,η(x) = δ(x), x ∈ Zd,(2.9)

where δ is the Kronecker δ function, δ(0) = 1, δ(x) = 0, x �= 0. The Fourier
transform Ĝp,η(ξ) of Gp,η(x) is given by the formula

Ĝp,η(ξ) = [1 + η − p̂(ξ)]−1
, ξ ∈ [−π, π]d.(2.10)

It is easy to see from (2.5) that

0 ≤ Ĝp,η(ξ) ≤ C/[η + |ξ|] ,
for some universal constant C. We can also obtain a corresponding decay rate on
the function Gp,η(x).

Lemma 2.2. Let Gp,η(x), x ∈ Zd, be the solution to (2.9), and 0 < η ≤ 1. Then
there is a constant Cd, depending only on d such that if d ≥ 2,

0 ≤ Gp,η(x) ≤ Cd
/ [

1 + η2|x|2] [1 + |x|d−1
]
, x ∈ Zd.(2.11)

Proof. Consider the random walk on Zd with transition probability p given by
(2.2). Let pn(x), n = 0, 1, 2, . . . be the probability that the walk, started at the
origin hits x after n steps. Thus p0(x) = δ(x) and p1(x) = p(x), x ∈ Zd. It is easy
to see that the solution of (2.9) is given by the formula,

Gp,η(x) =
∞∑
m=0

(1 + η)−m−1pm(x), x ∈ Zd.(2.12)
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We can derive a formula for pm(x), m ≥ 2, similar to the formula (2.2) for p(x).
In fact we have

pm(x) =
1

2(d+ 1)

∞∑
n=0

[G(x,m− 1, n)−G(x,m+ 1, n)].(2.13)

It is easy to see from this and (2.12) that

Gp,0(x) = δ(x) +
1

2(d+ 1)

∞∑
n=0

[G(x, 0, n) +G(x, 1, n)].(2.14)

If we use now the bound

0 ≤ G(x, y, n) ≤ Cd
1 + n(d+1)/2

exp
[−min{|x|+ |y|, (|x|2 + |y|2)/(n+ 1)}/Cd

]
,

for the standard random walk on Zd+1, then the inequality (2.11) for η = 0 follows
from (2.14). To obtain (2.11) for η > 0 we need to use the inequality,

0 ≤ G(x, y − 1, n)−G(x, y + 1, n) ≤
Cdy

1 + n(d+3)/2
exp

[−min{|x|+ |y|, (|x|2 + |y|2)/(n+ 1)}/Cd
]
,

x ∈ Zd, y ∈ Z y ≥ 0.

It follows from this and (2.13) that

0 ≤ pm(x) ≤ Cdm

1 + [|x|2 +m2](d+1)/2
, m ≥ 1.

The inequality (2.11) follows now from this last inequality by estimating the sum
(2.12). �

Lemma 2.3. Suppose d ≥ 2 and f : Rd → R is a C∞ function with compact
support. Then there exists a constant γd, depending only on d such that if |γ| < γd
and 0 < ε ≤ 1, then (1.4) has a unique solution uε(x, ω) in L2(Zdε). Further, there
is a constant Cd, depending only on d, such that ‖uε(·, ω)‖ε ≤ Cd‖f‖ε.
Proof. Suppose uε(x, ω) is in L2(Zdε) and satisfies (1.4). Let vε(x, ω) be defined
by

vε(x, ω) = ε−1[Apuε(x, ω) + εuε(x, ω)].

It is easy to see that vε(x, ω) ∈ L2(Zdε). In view of (2.9) it follows that

uε(x, ω) = ε1−d
∫
Zd

ε

dy Gp,ε

(
x− y

ε

)
vε(y, ω).(2.15)

Now for i = 1, . . . , d let us define operators Ti on L2(Zdε) by

Tiw(x) = ε−d
∫
Zd

ε

dy

[
Gp,ε

(
x− y

ε
+ ei

)
−Gp,ε

(
x− y

ε
− ei

)]
w(y) .

It is easy to see that Ti is a bounded operator on L2(Zdε). It follows from (2.10)
that the norm of Ti is bounded by

‖Ti‖ ≤ sup
ξ∈[−π,π]d

[
2| sin(ei · ξ)|
1 + ε− p̂(ξ)

]
.(2.16)
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We can see from (2.5) that there is a constant cd, 0 < cd < 1, depending only on
d such that

1− p̂(ξ) ≥ cd|ξ|, ξ ∈ [−π, π]d.(2.17)

It follows from this and (2.16) that ‖Ti‖ ≤ 2/cd. Observe now that (1.4) implies
that vε(x, ω) ∈ L2(Zdε) satisfies the equation

vε(x, ω)− γ

d∑
i=1

bi(x/ε, ω)Tivε(x, ω) = f(x).(2.18)

In view of (1.1), if we take γd = cd/2 it follows that for |γ| < γd the function vε(x, ω)
is uniquely determined by (2.18). In view of (2.15) it follows that uε(x, ω) ∈ L2(Zdε)
is the unique solution to (1.4). To prove existence note that (2.18) has a solution
vε(x, ω) ∈ L2(Zdε) provided |γ| < γd. If we then define uε(x, ω) by (2.15) one can
easily see that uε(x, ω) satisfies (1.4). �

We have proven existence of a unique solution uε(x, ω) to (1.4) provided |γ| < γd.
Next we follow a development similar to the one in [3]. Thus we put vε(x, ω) =
uε(x, τ−x/εω), x ∈ Zdε , ω ∈ Ω, whence uε(x, ω) = vε(x, τx/εω). Rewriting (1.4) in
terms of vε, we obtain the equation,

vε(x, τx/εω)−
∑
y∈Zd

p(y)vε(x+ εy, τyτx/εω)

− γ
d∑
i=1

bi(τx/εω)[vε(x+ εei, τeiτx/εω)

− vε(x− εei, τ−eiτx/εω)] + εvε(x, τx/εω) = εf(x), x ∈ Zdε , ω ∈ Ω.

This last equation is evidently the same as

vε(x, ω)−
∑
y∈Zd

p(y)vε(x+ εy, τyω)(2.19)

− γ

d∑
i=1

bi(ω)[vε(x+ εei, τeiω)− vε(x− εei, τ−eiω)]

+ εvε(x, ω) = εf(x), x ∈ Zdε , ω ∈ Ω.

We write now vε(x, ω) = uε(x) + ψε(x, ω), x ∈ Zdε , ω ∈ Ω, where 〈ψε(x, ·)〉 = 0,
x ∈ Zdε . It follows that

uε(x) =
〈
vε(x, ·)

〉
=
〈
uε(x, ·)

〉
, x ∈ Zdε .
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Substituting into (2.19) we obtain the equation

uε(x)−
∑
y∈Zd

p(y)uε(x+ εy)(2.20)

− γ

d∑
i=1

bi(ω)[uε(x+ εei)− uε(x− εei)] + εuε(x)

+ ψε(x, ω)−
∑
y∈Zd

p(y)ψε(x+ εy, τyω)

− γ
d∑
i=1

bi(ω) [ψε(x+ εei, τeiω)− ψε(x− εei, τ−eiω)]

+ εψε(x, ω) = εf(x), x ∈ Zdε , ω ∈ Ω.

Taking the expected value of this last equation, we obtain the equation,

Apuε(x)− γ

d∑
i=1

〈bi(·)〉[uε(x+ εei)− uε(x− εei)] + εuε(x)(2.21)

− γ

〈
d∑
i=1

bi(·) [ψε(x+ εei, τei ·)− ψε(x− εei, τ−ei
·)]
〉

= εf(x), x ∈ Zdε .

If we subtract now (2.21) from (2.20) we obtain

ψε(x, ω)−
∑
y∈Zd

p(y)ψε(x+ εy, τyω)

(2.22)

− γP

d∑
i+1

bi(ω)[ψε(x+ εei, τei
ω)− ψε(x− εei, τ−ei

ω)] + εψε(x, ω)

= γ

d∑
i=1

[bi(ω)− 〈bi(·)〉][uε(x+ εei)− uε(x− εei)], x ∈ Zdε , ω ∈ Ω,

where P : L2(Ω) → L2(Ω) is the projection orthogonal to the constant function.
Thus a solution uε(x, ω) of (1.4) which is in L2(Zdε × Ω) yields functions uε(x) in
L2(Zdε) and ψε(x, ω) in L2(Zdε × Ω) which satisfy 〈ψε(x, ·)〉 = 0, x ∈ Zdε , and the
equations (2.21), (2.22). Conversely, if we can find functions uε(x) in L2(Zdε) and
ψε(x, ω) in L2(Zdε × Ω) which have the property that 〈ψε(x, ·)〉 = 0, x ∈ Zdε , and
satisfy (2.21), (2.22) then we can construct from them the solution uε(x, ω) of (1.4)
and uε(x, ω) is in L2(Zdε × Ω).

We concentrate now on finding solutions to the system (2.21), (2.22) of equations.
To do this we Fourier transform the equations. The Fourier transform of (2.21) is
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given by

ûε(ξ)


1 + ε−1 [1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(ej · εξ)
ε


(2.23)

+ γε−1

〈
d∑
j=1

bj(·)
[
eiεej ·ξψ̂ε(ξ, τ−ej ·)− e−iεej ·ξψ̂ε(ξ, τej ·)

]〉

= f̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
.

The Fourier transform of (2.22) is given by

(2.24) ψ̂ε(ξ, ω)−
∑
y∈Zd

p(y)e−iεy·ξψ̂ε(ξ, τyω)

+ γP

d∑
j=1

bj(ω)
[
eiεej ·ξψ̂ε(ξ, τ−ejω)− e−iεej ·ξψ̂ε(ξ, τejω)

]
+ εψ̂ε(ξ, ω)

= γ

d∑
j=1

[bj(ω)− 〈bj(·)〉]
[
e−iεej ·ξ − eiεej ·ξ] ûε(ξ), ξ ∈

[−π
ε
,
π

ε

]d
, ω ∈ Ω.

Suppose now that Ψkε(ζ, ω), 1 ≤ k ≤ d, ζ ∈ [−π, π]d, ω ∈ Ω, are functions in
L2([−π, π]d × Ω) which satisfy the equation,

Ψkε(ζ, ω)−
∑
y∈Zd

p(y)e−iy·ζΨkε(ζ, τyω)

(2.25)

+ γP

d∑
j=1

bj(ω)
[
eiej ·ζΨkε(ζ, τ−ejω)− e−iej ·ζΨkε(ζ, τejω)

]
+ εΨkε(ζ, ω)

= bk(ω)− 〈bk(·)〉, ζ ∈ [−π, π]d, ω ∈ Ω, 1 ≤ k ≤ d.

Then it is clear that the function

ψ̂ε(ξ, ω) = −2iγûε(ξ)
d∑
k=1

sin(εek · ξ)Ψkε(εξ, ω)(2.26)

is in L2(
[−π
ε ,

π
ε

]d × Ω) provided ûε(ξ) is bounded. Furthermore ψ̂ε(ξ, ω) given by
(2.25), (2.26) satisfies (2.24). If we substitute for ψ̂ε from (2.26) into (2.23) then
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we obtain the equation,

ûε(ξ)

{
1 + ε−1 [1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(εej · ξ)
ε

(2.27)

− 2iγ2

〈
d∑

j,k=1

bj(·) sin(εek · ξ)
ε

[
eiεej ·ξΨkε(εξ, τ−ej ·)− e−iεej ·ξΨkε(εξ, τej ·)

]〉}

= f̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
.

Lemma 2.4. Suppose d ≥ 2 and γd = cd/2, where cd satisfies (2.17). Then if
|γ| < γd and 0 < ε ≤ 1, Equation (2.25) has a unique solution Ψkε(ζ, ω) ∈ L2(Ω).
Furthermore, Ψkε(ζ, ω) viewed as a function from [−π, π]d to L2(Ω) is continuous
and satisfies an inequality,

ε2 sup
ζ∈[−π,π]d

〈|Ψkε(ζ, ·)|2〉 ≤ Cd,(2.28)

where Cd depends only on d.

Proof. We follow an argument similar to that in Lemma 2.3. Suppose Ψkε(ζ, ω) ∈
L2(Ω) and satisfies (2.25). Let Φkε(ζ, ω) be defined by

Φkε(ζ, ω) = Ψkε(ζ, ω)−
∑
y∈Zd

p(y)e−iy·ζΨkε(ζ, τyω) + εΨkε(ζ, ω).(2.29)

It is easy to see that Φkε(ζ, ω) ∈ L2(Ω). Further, it follows from (2.9) that

Ψkε(ζ, ω) =
∑
x∈Zd

Gp,ε(x)e−ix·ζΦkε(ζ, τxω).(2.30)

Now for η > 0, ζ ∈ [−π, π]d, j = 1, . . . , d we define operators Tj,η,ζ on L2(Ω) by

Tj,η,ζϕ(ω) =
∑
x∈Zd

[Gp,η(x− ej)−Gp,η(x+ ej)] e−ix·ζϕ(τxω).(2.31)

We can see from Bochner’s theorem [19] that Tj,η,ζ is bounded on L2(Ω) and

‖Tj,η,ζ‖ ≤ sup
ζ′∈[−π,π]d

2| sin(ej · ζ ′)|
1 + η − p̂(ζ ′)

≤ 2
cd

,(2.32)

where the constant cd is from (2.17). Further, (2.25), (2.29), (2.30) imply that
Φkε(ζ, ω) satisfies the equation,

Φkε(ζ, ω)− γP

d∑
j=1

bj(ω)Tj,ε,ζΦkε(ζ, ω) = bk(ω)− 〈bk(·)〉.(2.33)

Hence if we take γd = cd/2, it follows that for |γ| < γd the function Φkε(ζ, ω) is
uniquely determined by Equation (2.33). In view of (2.30) it follows that Ψkε(ζ, ω)
is the unique solution of (2.25) in L2(Ω). We can similarly prove existence for
|γ| < γd. The inequality of (2.28) follows from (2.30) on using Bochner’s theorem
and the fact that Φkε(ζ, ·) ∈ L2(Ω) is bounded independently of ζ, ε. �
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It is clear now that we can construct the solutions to (2.21), (2.22), by using
Lemma 2.4 and Equations (2.26) and (2.27). Next we wish to show that the limit
of the coefficient of ûε(ξ) in (2.27) as ε → 0 exists. Evidently

lim
ε→0


1 + ε−1[1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(εej · ξ)
ε




= 1 + |ξ|+ 2γi
d∑
j=1

〈bj(·)〉(ej · ξ),

so we are left to show existence of the term involving the function Ψkε . To prove
this first observe from (2.30), (2.31) that

e−iej ·ζΨkε(ζ, τej
ω)− eiej ·ζΨkε(ζ, τ−ej

ω) = Tj,ε,ζΦkε(ζ, ω).

Next we prove a version of the von Neumann ergodic theorem [19].

Lemma 2.5. Let ϕ ∈ L2(Ω) and ξ ∈ Rd. Then if 〈ϕ〉 = 0 the function Tj,ε,εξϕ
converges in L2(Ω) to the function Tj,0,0ϕ.

Proof. First note that we can define the operator Tj,0,ζ , ζ ∈ [−π, π]d, by (2.31)
and from (2.32) it is a bounded operator on L2(Ω). To be more precise, observe
that for η > 0, Tj,η,ζϕ = 0 if ϕ ∈ L2(Ω) satisfies ∂j,ζϕ = 0, where ∂j,ζ is the
operator on L2(Ω) given by

∂j,ζϕ(ω) = e−iej ·ζϕ(τejω)− eiej ·ζϕ(τ−ejω).

Observe that the adjoint ∂∗
j,ζ of ∂j,ζ is given by ∂∗

j,ζ = −∂j,ζ . Suppose now ϕ = ∂j,ζψ

where ψ ∈ L2(Ω). Then from (2.31) we have that

Tj,η,ζϕ(ω) =
∑
x∈Zd

[Gp,η(x+ 2ej) +Gp,η(x− 2ej)− 2Gp,η(x)] e−ix·ζψ(τxω).

(2.34)

We can readily see, using the argument of Lemma 2.2 that there is a constant Cd,
depending only on d such that

|Gp,η(x+ 2ej) +Gp,η(x− 2ej)− 2Gp,η(x)|
≤ Cd/[1 + η2|x|2][1 + |x|d+1], x ∈ Zd.

Hence if ϕ = ∂j,ζψ, ψ ∈ L2(Ω), we can define Tj,0,ζϕ by setting η = 0 in the
formula (2.34). If ∂j,ζϕ = 0 we set Tj,0,ζϕ = 0. In view of (2.32) this defines Tj,0,ζ
as a bounded operator on L2(Ω) which has the property that, for any ϕ ∈ L2(Ω),
Tj,η,ζ ϕ converges in L2(Ω) to Tj,0,ζϕ as η → 0.

So far we have not used the ergodicity of the translation operators τx, x ∈ Zd.
Suppose now ϕ ∈ L2(Ω) and 〈ϕ〉 = 0. Then ergodicity of the translation operators
implies that for any δ > 0 there exists ψδ ∈ L2(Ω) such that ‖ϕ−∂j,0ψδ‖ < δ. Now
using the fact that

∂j,0ψδ = ∂j,εξψδ + ψ′
δ,ε

where ψ′
δ,ε ∈ L2(Ω) satisfies ‖ψ′

δ,ε‖ ≤ 2ε|ej · ξ|‖ψδ‖, it follows from (2.32), (2.34)
that Tj,ε,εξ[∂j,0ψδ] converges in L2(Ω) as ε → 0 to the function Tj,0,0[∂j,0ψδ]. The
result then follows from (2.32) on letting δ → 0. �
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Lemma 2.5 enables us to define the vector qγ ∈ Rd of (1.7).

Lemma 2.6. There exists a constant γd > 0, depending only on d, such that if
|γ| < γd and 0 < ε ≤ 1, Equation (2.27) has a unique solution ûε ∈ L2

(
[−πε ,

π
ε ]
d
)
.

There is a vector qγ ∈ Cd, analytic in γ and satisfying |qγ | < 1, such that if
u(x), x ∈ Rd, has Fourier transform satisfying (1.7) and uε(x), x ∈ Zdε, is the
Fourier inverse of ûε, then

lim
ε→0

‖uε − u‖ε = 0.(2.35)

Proof. First observe that we can rewrite (2.27) as

ûε(ξ)

{
1 + ε−1 [1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(εej · ξ)
ε

(2.36)

+ 2iγ2

〈
d∑

j,k=1

bj(·) sin(εek · ξ)
ε

Tj,ε,εξΦkε(εξ, ·)
〉}

= f̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
,

where Φkε(ζ, ω) is the solution of (2.33). Note that from (2.36),(2.17) and (2.32)
one has that ûε ∈ L2

(
[−πε ,

π
ε ]
d
)
provided 0 < ε ≤ 1, |γ| < γd and γd is sufficiently

small, depending only on d. It is also clear from Lemma 2.5 and (2.32) that for any
ϕ ∈ L2(Ω) with 〈ϕ〉 = 0 and nonnegative integer m,

lim
ε→0

Tmj,ε,εξϕ = Tmj,0,0ϕ,

where the convergence is in the L2 norm. It follows then from (2.33) that

lim
ε→0

Tj,ε,εξΦkε(εξ, ·) = Tj,0,0Φk0(0, ·).

Hence from (2.36) we define the vector qγ = (q1, . . . , qd) by

qk = 2γ〈bk(·)〉+ 2γ2
d∑
j=1

〈
bj(·)Tj,0,0Φk0(0, ·)

〉
.(2.37)

Evidently we may choose γd sufficiently small, depending only on d, such that
|qγ | < 1. The limit (2.35) now follows from the argument of Lemma 2.1. �

Lemma 2.7. Let Ψkε(ζ, ω) be the function defined in Lemma 2.4 for |γ| < γd, 0 <
ε ≤ 1. Then for any ξ ∈ Rd, there is the limit,

lim
ε→0

ε2
〈|Ψkε(εξ, ·)|2〉 = 0.(2.38)

Proof. We first consider the zeroth order contribution in γ to Ψkε . Thus in (2.33)
we make the approximation Φkε(ζ, ω) � bk(ω) − 〈bk(·)〉. In this approximation we
have from (2.30) and Bochner’s theorem the identity,

ε2
〈|Ψkε(εξ, ·)|2〉 =

∫
[−π,π]d

dµϕ(ζ)
[

ε

1 + ε− p̂(ζ − εξ)

]2

,(2.39)
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where dµϕ is the finite positive Borel measure on [−π, π]d, satisfying〈
ϕ(τx·)ϕ(·)

〉
=
∫

[−π,π]d
eix·ζdµϕ(ζ), x ∈ Zd ,

and ϕ(ω) = bk(ω)− 〈bk(·)〉. Observe now that[
ε

1 + ε− p̂(ζ − εξ)

]2

≤ 1, ζ ∈ [−π, π]d,(2.40)

lim
ε→0

[
ε

1 + ε− p̂(ζ − εξ)

]2

= 0, ζ ∈ [−π, π]d\{0}.(2.41)

Since 〈ϕ〉 = 0, one has by ergodicity of the translation operators τx, x ∈ Zd, that
µϕ({0}) = 0. It follows now by dominated convergence that (2.38) holds in this
approximation.

To deal with the general case note that (2.39) holds with ϕ(ω) = ϕε(ω) =
Φkε(εξ, ω). The result follows then from the above argument if we use the fact that
dµφε ≤ 2dµφ0 +2dµφε−φ0 and the fact that limε→0 µφε−φ0([−π, π]d) = ‖φε−φ0‖2 =
0. �

Proof of Theorem 1.1. We just need to prove (1.8). In view of Lemma 2.6 and
(2.26) it will be sufficient to show that

lim
ε→0

∫
[−π

ε ,
π
ε ]d

|f̂ε(ξ)|2|ξ|2ε2
〈|Ψkε(εξ, ·)|2〉 dξ = 0.

This follows by dominated convergence from (2.28) and Lemma 2.7. �

Finally we show that if (1.9) holds then the vector qγ defined by (2.37) is zero.

Lemma 2.8. Suppose (1.9) holds and the conditions of Theorem 1.1. Then qγ = 0
in (1.7).

Proof. In view of (2.37) we need to show that〈
bj(·)Tj,0,0Φk0(0, ·)

〉
= 0, 1 ≤ j, k ≤ d,(2.42)

where Φk0 satisfies (2.33). To do this let L2
R(Ω) be the subset of functions Φ ∈ L2(Ω)

which have the property that〈
Φ(τx·)

n∏
i=1

bki(τxi ·)
〉

= (−1)n+1

〈
Φ(τ−x·)

n∏
i=1

bki(τ−xi ·)
〉
,

x, xi ∈ Zd, 1 ≤ ki ≤ d, i = 1, . . . , n, n ≥ 0 .

Evidently Φ ∈ L2
R(Ω) implies 〈Φ〉 = 0. In view of (1.9) bi(·) ∈ L2

R(Ω), 1 ≤ i ≤ d.
Observe now that for any η > 0 the operator bj(ω)Tj,η,0 takes L2

R(Ω) into L2
R(Ω).

This follows from the fact that Gp,η(x) = Gp,η(−x), x ∈ Zd. Now let Φkη(ω) be the
solution in L2

R(Ω) to the equation

Φkη(ω)− γ

d∑
j=1

bj(ω)Tj,η,0Φkη(ω) = bk(ω).(2.43)
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Clearly a unique solution Φkη exists if |γ| < γd. Comparing (2.43) and (2.33) one
sees that Φkε(0, ω) = Φkε(ω) ∈ L2

R(Ω). Taking the limit as ε → 0 we conclude that
Φk0(0, ω) ∈ L2

R(Ω), whence (2.42) follows. �

3. Proof of Theorem 1.2

Since 〈b(·)〉 = 0 we have from (2.33), (2.36) that

e(εξ)qγ,ε(εξ)e(−εξ) = −2i
d∑
k=1

sin(εek · ξ)
∞∑
n=1

γn+1

〈 d∑
j=1

bj(·)Tj,ε,εξP


n

bk(·)
〉
.

It is easy to see from the argument of Lemma 2.8 that if (1.9) holds, then

〈 d∑
j=1

bj(·)Tj,ε,0P


n

bk(·)
〉

= 0, 1 ≤ k ≤ d, n ≥ 1.(3.1)

Hence we may write

(3.2) e(εξ)qγ,ε(εξ)e(−εξ) = −2i
d∑
k=1

sin(εek · ξ)
∞∑
n=0

γn+2
n∑
m=0〈

 d∑
j=1

bj(·)Tj,ε,0P


m 
 d∑
j=1

bj(·) {Tj,ε,εξ − Tj,ε,0}P




 d∑
j=1

bj(·)Tj,ε,εξP


n−m

bk(·)
〉
.

If x ∈ Zd with x · e1 > 0, we denote by L1(x) all the points of Zd which lie on
the line segment joining the point x − (x · e1)e1 and x, excluding the point x. If
x · e1 = 0, then L1(x) is the empty set. If x · e1 < 0, then L1(x) is all the points of
Zd which lie on the line segment joining the point x − (x · e1)e1 and x, excluding
the point x − (x · e1)e1. Similarly if x · e2 > 0 we denote by L2(x) all the points
of Zd which lie on the line segment joining the point x − (x · e1)e1 − (x · e2)e2

and x − (x · e1)e1, excluding the point x − (x · e1)e1 etc. For η > 0, ζ ∈ [−π, π]d,
k = 1, · · ·, d, we define operators Sk,η,ζ on L2(Ω) by

(3.3) Sk,η,ζϕ(ω) =
d∑
j=1

bj(ω)
∑
x∈Zd

[Gp,η(x− ej)−Gp,η(x+ ej)] sgn(x · ek)
∑

y∈Lk(x)

e−iy·ζϕ(τxω).
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We can see now from (3.2) and (2.31) that the matrix qγ,ε(ζ) = [qγ,ε,k,k′(ζ)], 1 ≤
k, k′ ≤ d, is given by the formula

qγ,ε,k,k′(ζ) =

(3.4)

−
∞∑
n=0

γn+2
n∑
m=0

〈
 d∑
j=1

bj(·)Tj,ε,0P


m

Sk′,ε,ζP


 d∑
j=1

bj(·)Tj,ε,ζP


n−m

bk(·)
〉

−
∞∑
n=0

γn+2
n∑
m=0

〈
 d∑
j=1

bj(·)Tj,ε,0P


m

e−iek·ζSk,ε,ζP


 d∑
j=1

bj(·)Tj,ε,ζP


n−m

bk′(·)
〉
.

We proceed as in [3] to consider the case when the b(τx·), x ∈ Zd, are given
by independent Bernoulli variables. Thus we assume that bj(·) ≡ 0, j > 1, and
b1(τx·) = Yx , x ∈ Zd, where the variables Yx, x ∈ Zd, are assumed to be i.i.d.
Bernoulli, Yx = ±1 with equal probability. Using the notation of §4 of [3] we
introduce the Fock spaces Fr(Zd), 1 < r < ∞, with F2(Zd) isomorphic to L2(Ω).
Now we have seen from (2.32) that T1,ε,ζ is a bounded operator on L2(Ω) with
norm ‖T1,ε,ζ‖2 ≤ 2/cd. We have also seen in Lemma 2.5 that

lim
ε→0

‖[T1,ε,ζ − T1,0,ζ ]ϕ‖2 = 0, ϕ ∈ L2(Ω).(3.5)

We note now as in [3] that the Calderon-Zygmund theorem implies that a similar
result holds for all Fock spaces Fr(Zd), 1 < r < ∞. We shall show that the limit in
(3.5) is uniform for ζ ∈ [−π, π]d, provided one projects orthogonal to the constant
function.

Lemma 3.1. Suppose 1 < r < ∞ and regard T1,ε,ζ as an operator on Fr(Zd).
Then there is a constant Cr,d depending only on r, d such that ‖T1,ε,ζ‖r ≤ Cr,d.
There is also the limit,

lim
ε→0

{
sup

ζ∈[−π,π]d
‖[T1,ε,ζP − T1,0,ζP ]ϕ‖r

}
= 0, ϕ ∈ Fr(Zd).(3.6)

Proof. Let Tε,ζ be the integral operator on Lr(Zd) defined by

Tε,ζf(x) =
∑
y∈Zd

Kε(x− y)e−i(x−y)·ζf(y), x ∈ Zd,

where Kε(x) = Gp,ε(x− e1)−Gp,ε(x+ e1). It follows from (2.17) that

|K̂ε(ξ)| ≤ 2/cd, ξ ∈ [−π, π]d.(3.7)

We may also apply the argument of Lemma 2.2 to see that there is a constant
Cd > 0, depending only on d, such that

|Kε(x)| ≤ Cd/[1 + ε2|x|2][1 + |x|d], x ∈ Zd,(3.8)

|Kε(x+ ei)−Kε(x)| ≤ Cd/[1 + ε2|x|2][1 + |x|d+1], x ∈ Zd.

It follows now from (3.7), (3.8) that Tε,ζ is a bounded operator on Lr(Zd) and
there is a constant Cr,d depending only on r, d such that ‖Tε,ζ‖r ≤ Cr,d. This is
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a discrete version of the Calderon-Zygmund Theorem [22]. Now, arguing as in [3],
we see that this also implies ‖T1,ε,ζ‖r ≤ Cr,d.

Next we show that

lim
ε→0

{
sup

ζ∈[−π,π]d
‖[Tε,ζ − T0,ζ ]f‖r

}
= 0, f ∈ Lr(Zd).(3.9)

We first show that (3.9) holds for r = 2. We can do this by going to the Fourier
representation of Tε,ζ , which we denote T̂ε,ζ . Thus,

T̂ε,ζ f̂(ξ) = K̂ε(ξ − ζ)f̂(ξ), ξ ∈ [−π, π]d.(3.10)

Observe now that since f̂ ∈ L2([−π, π]d), for any δ > 0 there exists ν > 0 such that∫
|ξ−ζ|<ν

|f̂(ξ)|2dξ < δ, ζ ∈ [−π, π]d.(3.11)

It is easy to see that for any ν > 0, K̂ε(ξ) converges uniformly to K̂0(ξ) in the
region ξ ∈ [−π, π]d, |ξ| > ν. It follows from this and (3.7), (3.10), (3.11) that (3.9)
holds for r = 2.

To prove (3.9) for general r, 1 < r < ∞, we define for n = 1, 2, . . . , ζ ∈ [−π, π]d
an operator An,ζ on functions f : Zd → C by

An,ζf(x) =
∑
z∈Zd

ϕn(z)eiz·ζf(x+ z), x ∈ Zd.

Here ϕn is the probability density for the standard random walk in Zd after n steps
of the walk. Thus ϕn(z) ≥ 0, z ∈ Zd, and∑

z∈Zd

ϕn(z) = 1.

It follows that An,ζ is a bounded operator on Lr(Zd) with ‖An,ζ‖r ≤ 1. Observe
now that

Tε,ζ [f −An,ζf ](x) =
∑
y∈Zd

Kε,n(x− y)e−i(x−y)·ζf(y), x ∈ Zd,

where the function Kε,n is given by

Kε,n(x) =
∑
z∈Zd

[Kε(x)−Kε(x+ z)]ϕn(z).

It is easy to see from (3.8) that Kε,n ∈ L1(Zd) with norm ‖Kε,n‖1 satisfying
‖Kε,n‖1 ≤ Cd,n, where the constant Cd,n depends only on d and n. Further, for
any x ∈ Zd, Kε,n(x) converges to K0,n(x). We conclude that for any function
f ∈ Lr(Zd) one has

lim
ε→0

{
sup

ζ∈[−π,π]d
‖[Tε,ζ − T0,ζ ][f −An,ζf ]‖r

}
= 0,

for any n = 1, 2, · · · . The result (3.9) follows then if we can show that for any
f ∈ Lr(Zd), 1 < r < ∞, and δ > 0, there exists a positive integer N such that

‖An,ζf‖r < δ, n ≥ N, ζ ∈ [−π, π]d.
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This last inequality follows by approximating f ∈ Lr(Zd) with a function of finite
support. A similar argument implies (3.6). �

Lemma 3.2. Suppose d ≥ 2, 1 < r < d and q < ∞ satisfies 1/r > 1/d + 1/q.
Then the operator Sk,η,ζ of (3.3) is a bounded operator from the space Fr(Zd) to
Fq(Zd). There is a constant Cr,q,d, depending only on r, q, d, such that the norm
‖Sk,η,ζ‖r,q of the operator Sk,η,ζ satisfies the inequality ‖Sk,η,ζ‖r,q ≤ Cr,q,d. There
is also the limit

lim
ε→0

{
sup

ζ∈[−π,π]d
‖[Sk,ε,ζP − Sk,0,ζP ]ϕ‖r,q

}
= 0, ϕ ∈ Fr(Zd).(3.12)

Proof. We proceed as in Lemma 3.1. Let Sε,ζ be the operator on functions f ∈
Lr(Zd) defined by

Sε,ζf(x) =
∑
y∈Zd

Kε,ζ(x− y)f(y), x ∈ Zd,

where

Kε,ζ(x) = [Gp,ε(x− e1)−Gp,ε(x+ e1)]sgn(x · ek)
∑

z∈L1(x)

e−iz·ζ .

It follows from (3.8) that there is a constant Cd > 0, depending only on d, such
that

|Kε,ζ(x)| ≤ Cd/[1 + |x|d−1], x ∈ Zd.

Hence Kε,ζ ∈ Ls(Zd) for any s > d/(d − 1). It follows now by Young’s inequality
that Sε,ζf ∈ Lq(Zd) for any q > 0 satisfying 1/r > 1/d + 1/q. Further, there is a
constant Cr,q,d, depending only on r, q, d, such that the norm ‖Sε,ζ‖r,q of Sε,ζ as an
operator from Lr(Zd) to Lq(Zd) satisfies ‖Sε,ζ‖r,q ≤ Cr,q,d. It is easy to see that
for any x ∈ Zd,

lim
ε→0

{
sup

ζ∈[−π,π]d
|Kε,ζ(x)−K0,ζ(x)|

}
= 0.

Hence, if S0,ζ is the operator with kernel K0,ζ , one has

lim
ε→0

{
sup

ζ∈[−π,π]d
‖[Sε,ζ − S0,ζ ]f‖q

}
= 0, f ∈ Lr(Zd),

provided q < ∞ satisfies 1/r > 1/d + 1/q. Now, arguing as in [3] we obtain the
result. �

Corollary 3.1. Suppose bj(·) ≡ 0, j > 1 and b1(τx·) = Yx, x ∈ Zd, where the
Yx, x ∈ Zd, are independent Bernoulli variables with zero mean. Then Theorem 1.2
holds.

Proof. Observe that bk(·) ∈ Fr(Zd) for all r ≥ 1. The result follows now from
Lemmas 3.1, 3.2 and the representation (3.4) for qγ,ε(ζ). �

Next we wish to generalize our method to all b(·) such that b(τx·), x ∈ Zd, are
independent random variables. To do this we pursue the method developed in §5
of [3]. Thus we define a spin space S as all s = (m1, . . . ,md) where the mi are
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nonnegative integers satisfying |s| = m1 + · · · + md ≥ 1. For s ∈ S we define a
random variable bs by

bs(·) =
d∏
i=1

bi(·)mi , s = (m1, . . . ,md),

and a random variable Y0,s = bs − 〈bs〉. Then for s ∈ S, n ∈ Zd we define the
variable Yn,s to be the translate of Y0,s, i.e., Yn,s(·) = Y0,s(τn·). For 1 < r < ∞ we
may define Fock spaces FrS(Zd) of many particle wave functions where the particles
move in Zd and have spin in S. We can also, for any δ > 0, define a mapping Uδ
from F2

S(Z
d) to functions on Ω by

(3.13) Uδψ = ψ0 +
∞∑
N=1

∑
{n1,...,nN}∈Zd,N

si∈S, 1≤i≤N

ψN (n1, s1, n2, s2, . . . , nN , sN )

× δ|s1|+···+|sN | Yn1,s1Yn2,s2 . . . YnN ,sN
.

Following the argument of Lemma 5.1 of [3] we have:

Lemma 3.3. There exists δ > 0, depending only on d, such that the mapping Uδ
of (3.13) is a bounded operator from F2

S(Z
d) to L2(Ω) satisfying ‖Uδ‖ ≤ 1.

We shall use the operator Uδ = U of Lemma 3.3 to transfer the equation of
(2.33) from L2(Ω) to F2

S(Z
d). Thus we shall need to construct operators PF , Bj,F ,

Tj,ε,ζ,F , 1 ≤ j ≤ d, with the property that they are bounded operators on F2
S(Z

d)
and satisfy

UPF = PU, UBj,F = bj(·)U, UTj,ε,ζ,F = Tj,ε,ζU.(3.14)

The simplest of these operators to construct is PF . Thus if ψ = {ψN : N =
0, 1, 2, . . . } ∈ F2

S(Z
d) then PFψ = {(PFψ)N : N = 0, 1, 2, . . . }, where (PFψ)0 =

0, (PFψ)N = ψN , N ≥ 1. Similarly we have Tj,ε,ζ,Fψ = {(Tj,ε,ζ,Fψ)N : N =
0, 1, 2, . . . }, where

(Tj,ε,ζ,Fψ)0 =
[
e−iζ·ej − eiζ·ej

]
Ĝp,ε(−ζ)ψ0,

(Tj,ε,ζ,Fψ)N (n1, s1, . . . , nN , sN ) =∑
x∈Zd

[Gp,ε(x− ej)−Gp,ε(x+ ej)] e−ix·ζψN (n1 − x, s1, . . . , nN − x, sN ), N ≥ 1.

The most complicated of the operators to define is Bj,F . We have

(Bj,Fψ)N (n1, s1, . . . , nN , sN ) = 〈bj(·)〉ψN (n1, s1, . . . , nN , sN )

+
∑
s∈S

[〈bjbs〉 − 〈bj〉〈bs〉] δ|s|ψN+1(0, s, n1, s1, . . . , nN , sN ),

if nk �= 0, 1 ≤ k ≤ N , N ≥ 0;
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(Bj,Fψ)N (0, s1, n2, s2, . . . , nN , sN ) = 0,

if nk �= 0, 2 ≤ k ≤ N, s1 = (m1, . . . ,md), mj = 0;

(Bj,Fψ)N (0, s1, n2, s2, . . . , nN , sN ) = δ−1ψN (0, s′1, n2, s2, . . . , nN , sN ),

if nk �= 0, 2 ≤ k ≤ N, s1 = (m1, . . . ,md), mj > 0, |s1| > 1,

s′1 = (m1, . . . ,mj−1,mj − 1,mj+1, . . . ,md);

(Bj,Fψ)N (0, s1, n2, s2, . . . , nN , sN ) = δ−1ψN−1(n2, s2, . . . , nN , sN )

−
∑
s∈S

〈bs〉δ|s|−1ψN (0, s, n2, s2, . . . , nN , sN ),

if nk �= 0, 2 ≤ k ≤ N and s1 = (0, 0, . . . , 1, 0, . . . , 0), with 1 in the ith position.

Lemma 3.4. For 1 ≤ k ≤ d let ϕk ∈ F2
S(Z

d) be the wave function ϕk = {ϕk,N :
N = 0, 1, 2, . . . } where ϕk,N ≡ 0 if N �= 1 and ϕk,1 is defined by

ϕk,1(n, s) = 1 if n = 0, s = (0, . . . , 0, 1, 0, . . . , 0),

with 1 in the kth position, ϕk,1(n, s) = 0, otherwise. Then there exists a constant
γd depending only on d such that if |γ| < γd, the equation

Φkε,F (ζ)− γPF
d∑
j=1

Bj,FTj,ε,ζ,FΦkε,F (ζ) = ϕk ,(3.15)

has a unique solution Φkε,F (ζ) ∈ F2
S(Z

d). Further the solution to (2.33) is given by
the function Φkε(ζ, ω) = UΦkε,F (ζ) ∈ L2(Ω).

Proof. Evidently PF is a bounded operator on F2
S(Z

d) with norm 1. We can also
easily see that Tj,ε,ζ,F is a bounded operator on F2

S(Z
d) with norm bounded by the

RHS of (2.32). Also Bj,F is bounded with norm depending only on d. Hence we may
choose γd small enough, depending only on d, such that (3.15) is uniquely solvable.
The fact that UΦkε,F (ζ) solves (2.33) comes from (3.14) and Uϕk = bk(·)−〈bk〉. �

Proof of Theorem 1.2. Observe from (2.36) that qε,γ(ζ) is defined in terms of
Φkε(ζ, ω). In view of Lemma 3.4 we get a representation of qε,γ(ζ) similar to (3.4)
but with the operators Tj,ε,ζ , Sk,ε,ζ , bj(·) on L2(Ω) replaced by the corresponding
operators Tj,ε,ζ,F , Sk,ε,ζ,F , Bj,F on Fock space. Here the operator Sk,ε,ζ,F satisfies
USk,ε,ζ,F = Sk,ε,ζU . We now argue exactly as in Corollary 3.1. �

4. Proof of Theorem 1.3

We assume in this section that the function p is given by (1.2). Let Gp,η(x) be
the function defined by (2.9). Then Ĝp,η(ξ) satisfies the inequality,

0 ≤ Ĝp,η(ξ) ≤ C/[η + |ξ|2],
for some universal constant C. One can also see that if d ≥ 2 and 0 < η < 1, there
is a constant Cd, depending only on d, such that

|Gp,η(x− ek)−Gp,η(x+ ek)| ≤ Cd exp [−√
η|x|/Cd] /[1 + |x|d−1].(4.1)

Next we prove the analogue of Lemma 2.3.
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Lemma 4.1. Suppose d ≥ 2 and f : Rd → R is a C∞ function with compact
support. Then if γ ∈ C satisfies |γ| < ε/

√
2d and 0 < ε ≤ 1, Equation (1.4) has

a unique solution uε(x, ω) in L2(Zdε). Further, there is a constant Cd, depending
only on d, such that ‖uε(·, ω)‖ε ≤ Cd‖f‖ε.
Proof. Suppose uε(x, ω) is in L2(Zdε) and satisfies (1.4). Let vε(x, ω) be defined
by

vε(x, ω) = ε−2[Apuε(x, ω) + ε2uε(x, ω)].

It is easy to see that vε(x, ω) ∈ L2(Zdε). In view of (2.9) it follows that

uε(x, ω) = ε2−d
∫
Zd

ε

dy Gp,ε2

(
x− y

ε

)
vε(y, ω).(4.2)

Now for i = 1, . . . , d let us define operators Ti on L2(Zdε) by

Tiw(x) = ε1−d
∫
Zd

ε

dy

[
Gp,ε2

(
x− y

ε
+ ei

)
−Gp,ε2

(
x− y

ε
− ei

)]
w(y).

It is easy to see that Ti is a bounded operator on L2(Zdε). It follows from (2.10)
that the norm of Ti is bounded by

‖Ti‖ ≤ sup
ξ∈[−π,π]d

[
2ε| sin(ei · ξ)|
1 + ε2 − p̂(ξ)

]
.(4.3)

Now (4.3) and (1.1) imply that the operator
∑d
i=1 bi(·, ω)Ti is bounded on L2(Zdε)

and has norm satisfying the inequality

∥∥∥∥∥
d∑
i=1

bi(·, ω)Ti
∥∥∥∥∥ ≤ sup

ξ∈[−π,π]d


2ε

{∑d
i=1 sin

2(ei · ξ)
}1/2

1 + ε2 − p̂(ξ)




≤ 4 sup
z>0

[
εz

ε2 + 2z2/d

]
=

√
2d.

Observe now that (1.4) implies that vε(x, ω) ∈ L2(Zdε) satisfies the equation

vε(x, ω)− γε−1
d∑
i=1

bi(x/ε, ω)Tivε(x, ω) = f(x).(4.4)

Hence if |γ| < ε/
√
2d, the function vε(x, ω) is uniquely determined by (4.4). In view

of (4.2) it follows that uε(x, ω) ∈ L2(Zdε) is the unique solution to (1.4). To prove
existence note that (4.4) has a solution vε(x, ω) ∈ L2(Zdε) provided |γ| < ε/

√
2d.

If we then define uε(x, ω) by (4.2) one can easily see that uε(x, ω) satisfies (1.4).
�

In order to obtain Equation (1.11) we follow a development similar to the one
following Lemma 2.3. Thus we put vε(x, ω) = uε(x, τ−x/εω), x ∈ Zdε , ω ∈ Ω, and
write vε(x, ω) = uε(x) + ψε(x, ω), x ∈ Zdε , ω ∈ Ω, where 〈ψε(x, ·)〉 = 0, x ∈ Zdε .
It follows that

uε(x) =
〈
vε(x, ·)

〉
=
〈
uε(x, ·)

〉
, x ∈ Zdε .
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Furthermore, the Fourier transform ûε(ξ) of uε(x) satisfies the equation

ûε(ξ)


1 + ε−2 [1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(ej · εξ)
ε2


(4.5)

+ γε−2

〈
d∑
j=1

bj(·)
[
eiεej ·ξψ̂ε(ξ, τ−ej ·)− e−iεej ·ξψ̂ε(ξ, τej ·)

]〉

= f̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
.

The Fourier transform of ψε(x, ω) is given in terms of ûε(ξ) by

ψ̂ε(ξ, ω) = −2iγûε(ξ)
d∑
k=1

sin(εek · ξ)Ψkε(εξ, ω)(4.6)

Here Ψkε(ζ, ω), 1 ≤ k ≤ d, ζ ∈ [−π, π]d, ω ∈ Ω, are functions in L2
(
[−π, π]d × Ω

)
which satisfy the equation

Ψkε(ζ, ω)−
∑
y∈Zd

p(y)e−iy·ζΨkε(ζ, τyω)

(4.7)

+ γP

d∑
j=1

bj(ω)
[
eiej ·ζΨkε(ζ, τ−ej

ω)− e−iej ·ζΨkε(ζ, τej
ω)
]
+ ε2Ψkε(ζ, ω)

= bk(ω)− 〈bk(·)〉, ζ ∈ [−π, π]d, ω ∈ Ω, 1 ≤ k ≤ d.

If we substitute for ψ̂ε from (4.6) into (4.5) then we obtain the equation,

(4.8) ûε(ξ)

{
1 + ε−2 [1− p̂(εξ)] + 2γi

d∑
j=1

〈bj(·)〉 sin(εej · ξ)
ε2

− 2iγ2

〈
d∑

j,k=1

bj(·) sin(εek · ξ)
ε2

[
eiεej ·ξΨkε(εξ, τ−ej

·)

− e−iεej ·ξΨkε(εξ, τej
·)
]〉}

= f̂ε(ξ), ξ ∈
[−π
ε
,
π

ε

]d
.

Let us assume now that (1.9) holds. Then, following the development at the
beginning of §3, we have that the matrix qγ,ε(ζ) = [qγ,ε,k,k′(ζ)], 1 ≤ k, k′ ≤ d of
(1.11) is given by the formula

(4.9) qγ,ε,k,k′(ζ) =

−
∞∑
n=0

γn+2
n∑
m=0

〈[
d∑
j=1

bj(·)Tj,ε2,0P
]m

Sk′,ε2,ζP

[
d∑
j=1

bj(·)Tj,ε2,ζP
]n−m

bk(·)
〉

−
∞∑
n=0

γn+2
n∑
m=0

〈[
d∑
j=1

bj(·)Tj,ε2,0P
]m

e−iek·ζSk,ε2,ζP

[
d∑
j=1

bj(·)Tj,ε2,ζP
]n−m

bk′(·)
〉
,
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where the operator Tj,η,ζ is defined by (2.31) and Sk,η,ζ by (3.3), with p given by
(1.2). One can see from the proof of Lemma 4.1 that qγ,ε(ζ) is continuous in ζ and
analytic in γ provided |γ| < ε/

√
2d.

5. Proof of Theorem 1.4

The matrix qm,ε(ζ) is given by the coefficient of γm in the expansion (4.9). Since
the b(τx·) are given by Bernoulli variables, (a) and (b) of Theorem 1.4 follow easily
from (4.9). Next we obtain a formula for q4,ε(ζ). Let Kε(x) be defined by

Kε(x) = Gp,ε2(x− e1)−Gp,ε2(x+ e1), x ∈ Zd.(5.1)

For x ∈ Zd, let xR be the reflection of x in the plane through the origin with normal
e1. It is clear that

Kε(xR) = −Kε(x), x ∈ Zd.(5.2)

For 1 ≤ k ≤ d, ζ ∈ [−π, π]d, define ak(ζ), bk(ζ) by

ak,ε(ζ) =
∑
x∈Zd

[Kε(x)]3sgn(x · ek)
∑

y∈Lk(x)

e−iy·ζ ,(5.3)

bk,ε(ζ) =
∑
x∈Zd

[Kε(x)]3eix·ζsgn(x · ek)
∑

y∈Lk(x)

e−iy·ζ .

Note that

ak,ε(0) = bk,ε(0) =
∑
x∈Zd

[Kε(x)]3(x · ek).(5.4)

Then one can see from (4.9) that

q4,ε,1,1(ζ) = [1 + e−ie1·ζ ][2a1,ε(ζ)− b1,ε(ζ)].(5.5)

One also has for 1 < k ≤ d,

q4,ε,1,k(ζ) = 2ak,ε(ζ)− bk,ε(ζ),(5.6)

q4,ε,1,k(ζ) = e−iek·ζ [2ak,ε(ζ)− bk,ε(ζ)].

Since ak,ε(0) = bk,ε(0) it follows that q4,ε,1,1(0) = 2a1,ε(0). From (5.2) and (5.4)
we see that ak,ε(0) = 0 if k > 1. Hence q4,ε,k,k′(0) = 0 for k + k′ > 2.

Lemma 5.1. (a) Let d = 1 and K ⊂ R be a compact set. Then ε2a1,ε(εξ) con-
verges uniformly for ξ ∈ K to a function a1(ξ), as ε → 0. Similarly ε2b1,ε(εξ)
converges to a function b1(ξ).

(b) If d ≥ 3 and 1 ≤ k ≤ d, then ak,ε(ζ) converges uniformly for ζ ∈ [−π, π] to a
function ak(ζ), as ε → 0. Similarly bk,ε(ζ) converges to a function bk(ζ).

Proof. (a) It is easy to see that for d = 1, η > 0, one has

Gp,η(x) =

[
1 + η −

√
2η + η2

]|x|
√

2η + η2
, x ∈ Z.

Hence if for ε > 0, we define ν(ε) by

ν(ε) = 1 + ε2 − ε
√

2 + ε2,(5.7)



Homogenization in Asymmetric Environment 55

then the function Kε(x) of (5.1) is given by

Kε(x) = 2ν(ε)|x|, x ∈ Z, x > 0.(5.8)

Substituting from (5.8) into (5.3) we obtain the identity

a1,ε(ζ) =
8ν(ε)3

1− ν(ε)3

[
1

1− ν(ε)3e−iζ
+

eiζ

1− ν(ε)3eiζ

]
.

One can see that

lim
ε→0

ε

1− ν(ε)3e−iεξ
=

1
3
√
2 + iξ

.

We conclude that

lim
ε→0

ε2a1,ε(εξ) =
16

18 + ξ2
.

Since for d = 1 one has a1,ε(ζ) = b1,ε(−ζ), the formula (1.13) follows now from the
last equation and (5.5).

(b) This follows from the fact that for d ≥ 3, the limit limε→0 Kε(x) = K0(x)
exists for all x ∈ Zd, and the bound (4.1). �

Lemma 5.2. (a) For d ≥ 3, one has a1(0) > 0.
(b) For d = 2 one has limε→0 a1,ε(0) = +∞.

Proof. (a) In view of (5.2) and (5.4) it is sufficient to show that K0(x) > 0 if
x ∈ Zd satisfies x · e1 > 0. To see this observe from (2.9) and (5.2) that Kε(x)
satisfies the equation

ApKε(x) + ε2Kε(x) = g(x), x ∈ Zd, x · e1 > 0,

with Dirichlet boundary condition Kε(x) = 0, x · e1 = 0. Here g is the function,
g(x) = 1, x = e1, g(x) = 0 otherwise. The positivity of K0(x) follows now from
the maximum principle.

(b) We shall show that there exists α > 0 and a positive constant cα, depending
only on α such that for d = 2,

lim
ε→0

Kε(ne1 +me2) ≥ cα
n
, |m| < αn, n = 1, 2, · · · .(5.9)

To prove (5.9) we use the fact that for d = 1 one has

Kε(n) = 2ν(ε)n =
2
π

∫ π

0

sin(nζ) sin(ζ)
2 sin2(ζ/2) + ε2

dζ n ≥ 1.

Since one also has for d = 2 the representation

Kε(ne1 +me2) =
2
π2

∫ π

0

∫ π

0

cos(mξ) sin(nζ) sin(ζ)
sin2(ζ/2) + sin2(ξ/2) + ε2

dζdξ,

we obtain for d = 2 the formula

lim
ε→0

Kε(ne1 +me2) =
4
π

∫ π

0

ν(
√
2 sin(ξ/2))n cos(mξ)dξ, m, n ∈ Z, n ≥ 1.

Now there exist universal positive constants c, C such that

exp[−Cnξ] ≤ ν(
√
2 sin(ξ/2))n ≤ exp[−cnξ], n ≥ 1, 0 ≤ ξ ≤ π.
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We conclude that the LHS of (5.9) is bounded below by

4
π

∫ π

0

exp[−Cnξ] dξ =
4

Cπn
{1− exp[−Cπn]} ,

if m = 0, and by

2
√
2

π

∫ π/4|m|

0

exp[−Cnξ] dξ − 4
π

∫ ∞

π/4|m|
exp[−cnξ] dξ

=
2
√
2

Cπn

{
1− exp

[
−Cπn

4|m|
]}

− 4
cπn

exp
[
− cπn

4|m|
]
,

if m �= 0. The inequality (5.9) clearly follows from the last two identities. The
result follows now from (5.4) and (5.9) since the argument of Part (a) implies
Kε(ne1 +me2) > 0, m, n ∈ Z, n > 0. �

We are left now to prove (c) and (d) of Theorem 1.4 for m > 4. In order to do
this we need to obtain a suitable representation of qm,ε(ζ) for general m. We first
consider the situation ζ = 0. Recall that we are assuming the bj(·) ≡ 0, j > 1,
and b1(τx·) = Yx, x ∈ Zd, where the variables Yx, x ∈ Zd, are assumed to be i.i.d.
Bernoulli, Yx = ±1 with equal probability.

Lemma 5.3. Suppose m ≥ 4 is even. Then qm,ε,k,k′(0) = 0 if k + k′ > 2 and
qm,ε,1,1(0) has the representation

(5.10) qm,ε,1,1(0) = −2
∑

x1,···,xm−1∈Zd

(
m−1∑
α=1

xα · e1

)
Kε(x1) · · ·Kε(xm−1)

〈
Y0Yx1Yx1+x2 · · · Yx1+···+xm−1

〉
.

Proof. First note that by the argument of Lemma 2.8 the representation (4.9) for
qγ,ε(0) continues to hold when we delete the projection operator P from the RHS
of the equation. It is easy to see from this that (5.10) holds. If k > 1 then one
has a similar representation to (5.10) for qm,ε,1,k(0) and qm,ε,k,1(0) but with e1 in
(5.10) replaced by ek. In that case (5.2) implies qm,ε,k,1(0) = qm,ε,1,k(0) = 0. �

In order to prove (d) of Theorem 1.4 for general m we use (5.10) to obtain a
representation of qm,ε,1,1(0) as a sum indexed by certain types of graph. We shall
use the terminology of [1]. For q = 2, 3, · · · let Fq be the set of unlabeled, connected,
directed multigraphs on q vertices with the properties:
(A) The graph has no loops.
(B) Each vertex has equal indegree and outdegree.
(C) The degree of each vertex is a multiple of 4.
(D) The number of edges in the graph is 4q.
For a graph G ∈ Fq let V [G] denote the vertex set of G and E[G] be the set

of directed edges of G. Each directed edge e has two vertices e+ and e−, with the
direction of the edge being from e− to e+. We associate with G and a directed edge
e ∈ E[G], a number Kε(G, e) defined by

Kε(G, e) =
∑

{yv∈Zd:v∈V [G]}
(ye− · e1)δ(ye+)

∏
e′∈E[G], e′ �=e

Kε(ye′+ − ye′−).(5.11)
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In (5.11) δ(x), x ∈ Zd is the Kronecker delta, δ(0) = 1, δ(x) = 0, x �= 0.

Lemma 5.4. Let m ≥ 4 be an even integer and q = m/2. Then

qm,ε,1,1(0) =
∑

G∈Fq, e∈E[G]

c(G, e)Kε(G, e),(5.12)

for some integers c(G, e) depending only on the graph G and the directed edge
e ∈ E[G].

Proof. Observe that

Kε(x1) . . .Kε(xm−1)
〈
Y0Yx1Yx1+x2 . . . Yx1+···+xm−1

〉 �= 0,

only if the sequence 0, x1, x1 + x2, . . . , x1 + · · · + xm−1 of points in Zd has the
property that it consists of q pairs of points with the property that no two adjacent
points of the sequence are the same. The q pairs of points do not have to be distinct.
Hence we may write

qm,ε,1,1(0) = −2
q∑
i=1

ai,(5.13)

where ai corresponds to the term on the RHS of (5.10) where i of the q pairs are
distinct. For a graph G ∈ Fq let K ′

ε(G, e) be defined in the same way as Kε(G, e)
except that the summation on the RHS of (5.11) is over all yv ∈ Zd : v ∈ V [G] such
that the q points yv ∈ Zd are distinct. Define F ′

q as the subset of Fq consisting
of regular graphs of degree 4 i.e., the degree of each vertex is exactly 4. Now
by (B) of the definition of Fq and Euler’s theorem [1] a graph G ∈ Fq has an
Eulerian path. Let c(G) be the number of Eulerian paths. For a graph G ∈ Fq,
one can group directed edges into equivalence classes where two directed edges e, e′

are equivalent if there is a graph isomorphism of G taking e to e′. Let E′[G] be
this set of equivalence classes. Then we may define K ′

ε(G, ê) for ê ∈ E′[G] by
K ′
ε(G, ê) = K ′

ε(G, e) for any e ∈ ê. Then one can see that aq of (5.13) is given by

aq =
∑

G∈F ′
q, ê∈E′[G]

c(G)K ′
ε(G, ê).

Since we can obtain a similar representation for the ai, 1 ≤ i < q, we have the
formula (5.12) up to replacing K ′

ε(G, e) by Kε(G, e). The result therefore holds
if we can show that for any graph G ∈ Fq and e ∈ E[G] there exist integers
cG,e(G′, e′), G′ ∈ Fq, e′ ∈ E[G′] such that

K ′
ε(G, e) =

∑
G′∈Fq, e′∈E[G′]

cG,e(G′, e′)Kε(G′, e′).(5.14)

The previous identity follows from Mayer’s trick to obtain an expansion for an
non-ideal gas [7]. That is for a function ϕ : Zd → R, one writes

exp


− ∑

1≤i<j≤N
ϕ(yi − yj)


 =

∏
1≤i<j≤N

[1 + fi,j ],(5.15)

where fi,j = exp[−ϕ(yi − yj)]− 1, and expands the RHS of (5.15) out. Now (5.14)
follows from (5.15) on taking ϕ to be the function, ϕ(y) = 0, y �= 0, ϕ(0) = +∞. �
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Lemma 5.5. Suppose d = 1, q ≥ 2 and G ∈ Fq, e ∈ G. If |G| is the number of
vertices of G, then the limit

lim
ε→0

ε|G|Kε(G, e) = K(G, e)(5.16)

exists.

Proof. Evidently it is sufficient to show that (5.16) holds with Kε(G, e) replaced
by K ′

ε(G, e). Suppose |G| = k ≤ q and label the vertices of G as 1, 2, . . . , k with
e+ = 1, e− = k. Then

K ′
ε(G, e) =

∑
π∈Sk

Kε,π(G, e),

where Sk is the group of permutations on 1, 2, . . . , k and

Kε,π(G, e) =
∑

yπ1<yπ2<···<yπk

δ(y1)yk
∏

e′∈E[G], e′ �=e
Kε(ye′+ − ye′−).

In view of (5.8) there are positive integers Nj , 1 ≤ j ≤ k − 1 such that

Kε,π(G, e) = ±
∑

yπ1<yπ2<···<yπk

δ(y1)yk
k−1∏
j=1

2Njν(ε)Nj [yπ(j+1)−yπ(j)].

Suppose now that πk1 = 1, πk2 = k and k1 < k2. Then

Kε,π(G, e) =
k2−1∑
i=k1

Kε,π,i(G, e),(5.17)

where

Kε,π,i(G, e) = ±
∑

yπ1<yπ2<···<yπk

δ(y1)[yπ(i+1) − yπ(i)]
k−1∏
j=1

2Njν(ε)Nj [yπ(j+1)−yπ(j)].

It is easy to see now just as in Lemma 5.1 that the limit

lim
ε→0

εkKε,π,i(G, e)

exists. Hence from (5.17) the limit,

lim
ε→0

εkKε,π(G, e)(5.18)

exists if k1 < k2. A similar argument shows that the limit (5.18) also exists if
k1 > k2. It follows then from the previous identities that the limit (5.16) exists. �
Remark 1. Lemma 5.5 proves that (d) of Theorem 1.4 holds with ξ = 0. Observe
that the number of graphs in Fq is of order q!. One can see this from an asymptotic
formula for the number Aq of labeled 4-regular simple graphs on q vertices [18],

Aq ∼ [(4q)!e−15/4]/[(2q)!96q].

Next we wish to obtain the analogue of Lemma 5.4 for qm,ε,k,k′(ζ) with ζ ∈
[−π, π]d and at least one of k, k′ being 1. To do this we define for any G ∈ Fq, e ∈
E[G], a function Kε(G, e, ζ) by

Kε(G, e, ζ) =
∑

{yv∈Zd:v∈V [G]}
exp[−iye− · ζ]δ(ye+)

∏
e′∈E[G], e′ �=e

Kε(ye′+ − ye′−).

(5.19)
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Note that Kε(G, e, ζ) is defined similarly to Kε(G, e) of (5.11) and has the property
Kε(G, e, 0) = 0. For 1 ≤ k ≤ d we define Kε,k(G, e, ζ) by

(5.20) Kε,k(G, e, ζ) =
∑

{yv∈Zd:v∈V [G]}
δ(ye+)


 ∏
e′∈E[G], e′ �=e

Kε(ye′+ − ye′−)





 ∑
e′∈E[G], e′ �=e

exp[i(ye′+ − ye−) · ζ] sgn[(ye′+ − ye′−) · ek]
∑

y∈Lk(ye′+
−ye′−

)

e−iy·ζ


 .

Note that Kε(G, e) of (5.11) is given by Kε(G, e) = Kε,1(G, e, 0). In the following
lemma we need to define Fq for q = 0, 1. The set F1 is the single point vertex graph
G with Kε(G, e, ζ) = 0. The set F0 is also the single point vertex graph G with
Kε(G, e, ζ) = 1.

Lemma 5.6. Let m ≥ 4 be an even integer and q = m/2. Define Am,ε,k(ζ) by

(5.21) Am,ε,k(ζ) =
q∑

q′=2

∑
G∈Fq′ , G′∈Fq−q′∑
e∈E[G], e′∈E[G′]

c(G, e,G′, e′)Kε,k(G, e, ζ)Kε(G′, e′, ζ),

for suitable integers c(G, e,G′, e′) depending only on the graphs G,G′ and the di-
rected edges e ∈ E[G], e′ ∈ E[G′]. Then

qm,ε,1,1(ζ) = [1 + e−ie1·ζ ] Am,ε,1(ζ),
qm,ε,1,k(ζ) = Am,ε,k(ζ), 1 < k ≤ d,
qm,ε,k,1(ζ) = e−iek·ζAm,ε,k(ζ), 1 < k ≤ d.

Proof. We define Am,ε,k′(ζ) as the coefficient of γm in the first term on the RHS
of (4.9). Evidently the formulas for qm,ε,k,k′(ζ) in the statement of the lemma
follow from this. We need then to establish (5.21). This follows by the same
argument as in Lemma 5.4. Note now that, unlike in Lemmas 5.3 and 5.4, the pro-
jection operators P in (4.9) make a contribution. Thus we obtain the factorisations
Kε,k(G, e, ζ)Kε(G′, e′, ζ) in (5.21) with G ∈ Fq′ , G′ ∈ Fq′′ , where q′ + q′′ = q. �

Lemma 5.7. Suppose d = 1 and K ⊂ R is a compact set. Let q ≥ 2 and G ∈
Fq, e ∈ G. If |G| is the number of vertices of G, then the limits

lim
ε→0

ε|G|−1Kε(G, e, εξ) = K(G, e, ξ)(5.22)

lim
ε→0

ε|G|Kε,1(G, e, εξ) = K1(G, e, ξ)(5.23)

exist, uniformly for ξ ∈ K.

Proof. The proof of (5.22) follows exactly the proof of Lemma 5.5. To prove
(5.23) we proceed similarly. Thus we focus on one term in the summation over
e′ ∈ E[G], e′ �= e in (5.20). As in Lemma 5.5 we fix a permutation π and consider
the sum over yπ1 < yπ2 < · · · < yπk. Suppose that πk1 = e′−, πk2 = e′+ and
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k1 < k2. Then

sgn(ye′+ − ye′−)
∑

y∈L1(ye′+
−ye′−

)

e−iyζ =

k2−1∑
i=k1


exp[−i(yπ(i) − yπ(k1))ζ]

yπ(i+1)−yπ(i)−1∑
z=0

e−izζ


 .

If we consider a fixed i on the RHS of the previous equation and sum over yπ1 <
yπ2 < · · · < yπk, then we see as in Lemma 5.5 that the contribution of this summa-
tion to (5.23) converges uniformly for ξ ∈ K as ε → 0. Since we can similarly argue
for all the other contributions we conclude that the uniform limit (5.23) exists. �
It is clear that (d) of Theorem 1.4 follows from Lemmas 5.6 and 5.7.
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