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On Commutation Relations for 3-Graded Lie
Algebras

M. P. de Oliveira

Abstract. We prove some commutation relations for a 3-graded Lie algebra,
i.e., a Z-graded Lie algebra whose nonzero homogeneous elements have degrees
−1, 0 or 1, over a field K. In particular, we examine the free 3-graded Lie
algebra generated by an element of degree −1 and another of degree 1. We
show that if K has characteristic zero, such a Lie algebra can be realized as
a Lie algebra of matrices over polynomials in one indeterminate. In the end,
we apply the results obtained to derive the classical commutation relations for
elements in the universal enveloping algebra of sl2(K).
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1. Introduction

Many expressions obtained for semisimple Lie algebras of hermitian type indicate
that there is an algebraic pattern in the commutation relations for 3-graded Lie
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algebras, i.e., Z-graded Lie algebras of the form

g = g−1 ⊕ g0 ⊕ g1(1)

over a field K of characteristic zero, in particular between elements of the uni-
versal enveloping algebras of g−1 and g1. In order to study these relations, we
introduce the free 3-graded Lie algebra g(x, y) generated by elements x of degree
1 and y of degree −1. In fact, one can manipulate formal series in the elements
of g(x, y) and exponentiate them to get a group, which can be treated similarly to
the analytic case. This way we obtain a sort of formal Harish-Chandra decomposi-
tion which allows us to compute the commutator of two elements in the universal
enveloping algebras of g−1 and g1 respectively. The crucial step to prove these
relations is Theorem 8 which shows that the center of g(x, y) is zero, if charK = 0.
As a consequence, g(x, y) can be realized as a subalgebra of sl2(tK[t]), where t
is an indeterminate. This embedding allows one to perform computations inside
SL2(K[ [t] ]), essentially as one does analysis on SL(2,C), to obtain results about
g(x, y).

According to Corollary 7, Theorem 8 shows that g(x, y) is isomorphic to g#(x, y),
the free KKT algebra in a pair of variables, if charK = 0. It is known from certain
identities in the theory of Jordan pairs that, for charK �= 2, 3, g#(x, y) can be
embedded in sl2(tK[t]) as well (see Theorem 6(a)). In contrast, we don’t know the
situation about g(x, y) if K has nonzero characteristic.

We would like to thank the referee of this article for some useful comments which
made the text more readable.

2. Basic facts on graded algebras

(i) Let S be a nonempty set. Recall that module M over a ring R is said to be
S-graded if

M =
⊕
s∈S

Ms withMs a subspace.

Such a decomposition is called S-gradation of M and the elements of Ms are
said to be homogeneous of degree s. If ∆ ⊂ Z and S = ∆2, the term bigradation
is synonymous with gradation. Given two S-graded modules M and N over R, a
homomorphism or linear map of graded modules fromM into N is a homomorphism
h :M → N of modules such that h(Ms) ⊂ Ns, s ∈ S.

Therefore, in this sense, a gradation of a module is just the choice of a direct
sum decomposition. One advantage of such a choice is to allow the introduction of
a topology on M . In fact, suppose throughout this article that R and Ms, s ∈ S,
are endowed with their discrete topologies. Then each term Ms can be seen as
a topological module. The product module with the product topology becomes a
topological module and M , with the relative topology, a topological submodule.

The relative topology on a subset X of the product module (including M) is
called the formal topology of X.

Now, let G = Nm or Zm, m � 1. Recall that an (possibly non-associative)
algebra A over a commutative ring R is said to be G-graded if A is G-graded as a
module and

AgAh ⊂ Ag+h, g, h ∈ G.
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In this case, the G-gradation of A is the same as the gradation of its underlying
module, as well as its homogeneous elements and so on.

(ii) If ρ : G → G′ is a homomorphism of monoids then A is G′-graded with
respect to the decomposition

A =
⊕
h∈G′

Ah with Ah =
⊕
g∈G

ρ(g)=h

Ag.

That gradation is said to be derived from the G-gradation by means of ρ. As a
special case, we have the total degree map ρt(x) = x1+ · · ·+xm, where x ∈ G = Nm

(m = 1, 2, . . . ) and G′ = N, and the derived gradation is called total gradation of
A.

(iii) Let us remark the connection between a graded Lie algebra and its universal
enveloping algebra. If A is a graded associative algebra over a commutative ring
R then AL , the Lie algebra with the same elements as A and bracket equal its
commutator, is graded with the same gradation. In an opposite direction, let L be
a graded Lie algebra over R. Its universal enveloping algebra U(L) acquires a unique
gradation such that the universal enveloping algebra homomorphism i : L → UL(L)
preserves degrees.

Now, if A is a G-graded unital associative algebra over R and ϕ : L → AL

a Lie algebra homomorphism of graded Lie algebras, the unique homomorphism
ψ : U(L) → A of associative algebras with identity such that ψ◦ i = ϕ also preserves
degrees.

(iv) A completion of a Hausdorff topological module M over a topological ring
R is a pair (f, M̂) where M̂ is a complete Hausdorff topological module over R and
f :M → M̂ is a topological module isomorphism from M onto a dense submodule
of M̂ . Such a completion exists and it is unique up to a diagram-commuting
topological module isomorphism. Analogously, one defines the completion of a
Hausdorff topological algebra over a commutative topological ring.

The product of the factors of a graded module, as considered in (i), is a complete
Hausdorff topological module since each factor is complete and Hausdorff as well
and therefore it is, with the natural inclusion of M , a completion of M .

However, it is not always true that the formal topology of a graded algebra, that
is, that of its underlying graded module, makes it a topological algebra. It occurs
if G = Nm, where m is some positive integer.

If h : A → B is a continuous linear map between Hausdorff topological algebras
then it can be extended uniquely to a continuous linear map ĥ : Â → B̂. Thus,
given a topological subalgebra A of a complete Hausdorff topological algebra B,
the inclusion of A inside its closure A in B is a completion of A.

(v) Let A be a Nm-graded algebra over R. Then it is a topological algebra with
its formal topology, R endowed with the discrete topology. From this point it is
easy to describe abstractly a completion of A. Since Â is also a completion of the
underlying topological module of A, each element is uniquely written as a series of



74 M. P. de Oliveira

homogeneous elements in A and by continuity, the product between a and b in Â

a =
∑

g∈N
m

ag, b =
∑

g∈N
m

bg ag, bg ∈ Ag

is given by

ab =
∑

g∈N
m

(ab)g where (ab)g =
∑

g1+g2=g

ag1bg2 ∈ Ag.

The proof of next lemma is immediate but the conclusion could be totally false if,
for instance, the homomorphism between the graded algebras were just an ordinary
homomorphism of algebras.

Lemma 1. Let A, B be Nm-graded algebras, both over R. An injective continuous
homomorphism of graded algebras ψ : A → B is an isomorphism of topological
algebras from A onto its image ψ(A) and its extension ψ̂ : Â → B̂ is a isomorphism
of topological algebras from Â onto ψ(A) ⊂ B̂.

(vi) We now fix R = K a field of characteristic zero and A a Nm-graded unital
associative algebra over K, m ∈ N∗. The total gradation of A produces the same
topology as the Nm-gradation, so the respective completions are isomorphic as
topological algebras. This way, although the results involving topological aspects
like continuity or convergence of series are stated here for G = Nm, it suffices to
consider in the proofs the case m = 1.

Â can be decomposed as Â∗ ⊕
A0 , where Â∗ is the ideal of Â consisting of the

elements with no component of degree zero. We write A∗ = A ∩ Â∗.
The maps exp : Â∗ → 1 + Â∗ and log : 1 + Â∗ → Â∗ defined by their classical

power series expansions converge in Â and satisfy the usual properties

exp log(1 + a) = 1 + a log(exp a) = a, a ∈ Â∗.(2)

exp a exp b = expZ(a, b), a, b ∈ Â∗ with(3)

Z(a, b) =
∑
m�1

∑
pi+qi>0

(−1)m−1 [· · · [
p1︷ ︸︸ ︷

aa] · · · a]
q1︷ ︸︸ ︷

b] · · · b] · · ·
pm︷ ︸︸ ︷

a] · · · a]
qm︷ ︸︸ ︷
b] · · · b]

m(p1 + q1 + · · ·+ pm + qm) p1! q1! · · · pm! qm!
∈ Â∗.

It follows from the above identities that 1 + Â∗ is a topological group with
respect to the multiplication and topology induced by Â and the maps exp and log
are homeomorphisms. From this point, the proof of the next lemma is immediate.

Lemma 2. (i) Let A be a Nm-graded unital associative algebra over a field K of
characteristic zero and L a graded Lie subalgebra of AL such that L ⊂ A∗.
Then the set G = exp( L̂), L̂ ⊂ Â∗, with its formal topology (that is, the
topology induced by Â), is a topological subgroup of 1 + Â∗, called the group
obtained exponentiating L̂ inside Â, and the map exp : L̂ → G is a homeo-
morphism.
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(ii) Let Ai be Nm-graded unital associative algebras over a field K of characteristic
zero, Li a graded Lie subalgebra of (Ai)L such that Li ⊂ Ai

∗ and Gi =
exp(L̂i), i = 1, 2. Then for any continuous homomorphism of Lie algebras
h : L1 → L2, there exists a unique homomorphism H : G1 → G2 of groups
such that the diagram

L̂1
ĥ−−−−→ L̂2

exp

� �exp

G1 −−−−→
H

G2

is commutative. Furthermore, H is continuous with respect to the formal
topologies of G1 and G2.

3. On 3-graded Lie algebras

3.1. Introduction. A Z-graded Lie algebra g of the form

g = g−1 ⊕ g0 ⊕ g1(4)

over a field K is called a 3-graded Lie algebra.
A Kantor-Koecher-Tits algebra, or KKT algebra for short, is a 3-graded Lie

algebra satisfying

g0 = [g−1, g1];

{x ∈ g0 | [x, g−1 ] = [x, g1] = 0} = 0 .
(5)

Suppose charK �= 2, 3. A Jordan pair is a pair of K-modules along with trilinear
maps

{ , , }σ : V σ × V −σ × V σ → V σ(6)

(x, y, z) �→ {x, y, z}σ, σ = ±
satisfying

{x, y, z}σ = {z, y, x}σ and(7)

[Dσ(x, y), Dσ(z, w) ] = Dσ({x, y, z}σ, w )−Dσ(z, {y, x, w}−σ )(8)

for x, z ∈ V σ and y, w ∈ V −σ, where Dσ : V σ × V −σ → End(V σ) is defined by

Dσ(x, y)z = {x, y, z}σ .(9)

Roughly speaking, the concepts of Jordan pairs and KKT algebras are the same.
Given a KKT algebra g, the pair (V +, V −) = (g1, g−1) is a Jordan pair for the
trilinear product

{x, y, z}σ = [[x, y ], z ]

x, z ∈ V σ and y ∈ V −σ. Conversely, given a Jordan pair (V +, V −), considering V ±

as subspaces of V + ⊕ V − one has the following KKT algebra:

g1 = V +, g−1 = V −,

g0 = linear combinations of {ψ(z, w) : V + ⊕V − −→ V + ⊕V − , z ∈ V +, w ∈ V −}
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where

ψ(z, w) =
(
D+(z, w) 0

0 −D−(w, z)

)
.

with bracket defined as follows:

[z + ψ + w, z′ + ψ′ + w′ ] = ψz′ − ψ′z + ψ(z, w′) + [ψ,ψ′]− ψ(z′, w) + ψw′ − ψ′w,

z, z′ ∈ V +, w, w′ ∈ V −, ψ, ψ′ ∈ g0.

We have characterized the Jordan pair in terms of graded Lie algebras or, in other
words, such a correspondence is an equivalence between the category of Jordan Pairs
and the category of KKT algebras.

From a 3-graded Lie algebra g one obtains a KKT algebra g#, defining

g# = g′ /(g′0 ∩ Zg′)(10)

where g′ is the 3-graded Lie subalgebra of g spanned by g−1 and g1, and Zg′ denotes
its center. Therefore one has

g#
i
∼= gi, i = −1, 1 , g#

0
∼= g′0 /(g

′
0 ∩ Zg′) ∼= adg′ g′0 , g′0 = [g−1, g1].(11)

3.2. The free case. We say that a Lie algebra g(x, y) over K is the free 3-graded
Lie algebra generated by variables x of degree 1 and y of degree −1 if for any 3-
graded Lie algebra h over K and elements x ∈ h1 and y ∈ h−1 there is a unique
homomorphism of graded Lie algebras ψ : g(x, y) → h such that ψ(x) = x and
ψ(y) = y. We alternatively say that g(x, y) is the free 3-graded Lie algebra generated
by the pair (x, y). Clearly g(x, y) is unique provided it exists.

The existence proof is standard but since it is constructive and introduces some
concepts to be used ahead, we give here a sketch. First, let FL(x, y) be the free
Lie algebra over K in two variables x and y with the natural bigradation given by
the number nx of occurrences of x and ny of y in a Lie monomial and let I be
the ideal of FL(x, y) spanned by the homogeneous elements of FL(x, y) such that
|nx − ny| ≥ 2.

Recall that a criterion for an ideal in a graded algebra to be graded is that it
be generated by homogeneous elements of the algebra. Thus I is a graded ideal,
g(x, y) = FL(x, y)/I inherits the natural bigradation of FL(x, y) and the natural
projection τ : FL(x, y) → g(x, y) becomes a homomorphism of bigraded algebras.
By (iii) in Section 2, this bigradation can be extended to a bigradation of the
universal enveloping algebra U(g(x, y)), making it a bigraded algebra. The image
by τ of a Lie monomial in FL(x, y) is called a Lie monomial of g(x, y).

From its natural bigradation, let us produce another for g(x, y) given by nx − ny.
This correspond to the gradation obtained from the other one by means of the
homomorphism of monoids ρd : N × N → Z given by ρd (m,n) = m− n. With this
gradation, we have finally

g(x, y) = g(x, y)−1 ⊕ g(x, y)0 ⊕ g(x, y)1 .

Now, for an arbitrary 3-graded Lie algebra h over K and elements x ∈ h1 and
y ∈ h−1, let φ : FL(x, y) → h be the homomorphism defined by φ(x) = x and
φ(y) = y. Since φ(I) is contained in the ideal of h generated by the image of
the homogeneous elements of FL(x, y) such that |nx − ny| ≥ 2, it is zero and φ
descends to a homomorphism ψ : g(x, y) → h such that ψ ◦ τ = φ. From the fact
that x, y are generators for g(x, y), it is easy to see that ψ is a homomorphism of
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graded Lie algebras with respect to the 3-gradations of g(x, y) and h and that such
a homomorphism is unique.

3.3. Commutativity of iterated brackets. Let g be a 3-graded Lie algebra.
For a, b ∈ g define

[[a, b ]]1 = [a, b ], [[a, b ]]i = [a, [b, [[a, b ]]i−1 ] ], i = 2, 3, . . .

Now let z ∈ g1, w ∈ g−1. For the sake of simplicity, we sometimes use the follow-
ing notation: let I : g → g be the identity map, Ai : g → g , i = 0, 1, . . . such
that A0 = I on g1, −I on g−1 and zero on g0 , Ai = ad[[z, w ]]i, i = 1, 2, . . . ,
and write for short A = A1.

The next lemma and its corollaries are intended to prove Theorem 6.

Lemma 3. If charK �= 3, [ [ [z, w], [z, v] ], z] = 0, z ∈ g1, v, w ∈ g−1.

Proof. Here we write A = ad[z, w ], i.e., A relative to the elements z and w. The
left hand side is

= [ [[z, [z, v]], w], z] + [ [z, [w, [z, v]]], z]

= A [z, [z, v]]− [ [z,Av], z]

= [Az, [z, v]] + [z,A [z, v]]− [ [z,Av], z]

= [Az, [z, v]] + [z, [Az, v]] + [z, [z,Av]]− [ [z,Av], z]

= [z, [Az, v]] + [z, [Az, v]] + 2 [z, [z,Av]]

= 2 [z, [Az, v]] + 2 [z, [z,Av]].

On the other hand, the left hand side is also equal to

[ A [z, v], z] = [[ Az, v], z] + [[z, Av], z]

Therefore

3[ [[z, w], [z, v]], z] = 0,

and since 3 �= 0,

[ [[z, w], [z, v]], z] = 0.

�

Notice that from g one obtains a 3-graded Lie algebra gop having the same
underlying Lie algebra structure as g but with Z-gradation given by

gop
i = g−i, i ∈ Z.

Hence one can interchange z with w, gi with g−i, etc in the statements proved
for the general 3-graded Lie algebra g. Such a procedure will be referred simply as
duality in what follows.

Corollary 4. Under the hypothesis of Lemma 3,
(1) [ [[z, w]] i, z] = −[ [[w, z]] i, z],
(2) [ [[z, w]] i, w] = −[ [[w, z]] i, w].

Proof. (1) follows from Lemma 3. (2) follows from (1) and duality. �
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Corollary 5. Under the hypothesis of Lemma 3,
(1) [ [ [z, w], [[z, w]] i], z] = 0,
(2) [ [ [z, w], [[z, w]] i], w] = 0.

Proof. (1) The case where i > 1 follows from Lemma 3 for v = [w, [[z, w]] i−1] .
(2) From (1) and duality, we have

0 = [ [ [w, z], [[w, z]] i], w]

= −[ [ [z, w], [[w, z]] i], w]
= −[ [ [z, [[w, z]] i], w], w]− [ [z, [w, [[w, z]] i]], w]

= [ [ [z, [[z, w]] i], w], w] + [ [z, [w, [[z, w]] i]], w]

(by Corollary 4)

= [ [ [z, w], [[z, w]] i], w] .

�
Theorem 6. Suppose charK �= 2, 3. Let π : g(x, y) → g#(x, y) be the natural
projection and i : g(x, y) → sl2(tK[t]) the homomorphism of graded Lie algebras
defined by

i(x) =
(

0 t
0 0

)
i(y) =

(
0 0
t 0

)
.

(a) There exists a monomorphism

i# : g#(x, y) → sl2(tK[t])

of graded Lie algebras such that

i = i# ◦ π.
(b) Zg(x,y) = ker i = kerπ = span{[ [x, y], [[x, y]] i] ∈ g(x, y) | i > 1 }.

Proof. Recall that sl2(tK[t]) is also a graded Lie algebra with degrees between
−1 and 1 over K with respect to the gradation

sl2(tK[t])−1 =
{ (

0 0
p(t) 0

)
| p(t) ∈ tK[t]

}
,

sl2(tK[t])0 =
{ (

p(t) 0
0 −p(t)

)
| p(t) ∈ tK[t]

}
,

sl2(tK[t])1 =
{ (

0 p(t)
0 0

)
| p(t) ∈ tK[t]

}
,

sl2(tK[t])i = {0} ⊂ sl2(tK[t]), i ∈ Z � {−1, 0, 1}.
Let i : g(x, y) → sl2(tK[t]) be the homomorphism defined by

i(x) =
(

0 t
0 0

)
, i(y) =

(
0 0
t 0

)
.
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It is easy to see that this homomorphism is a homomorphism of graded Lie
algebras with respect to the total gradation of g(x, y) and the natural N-gradation
of sl2(tK[t]) induced by tK[t]. The set

{x, y, [x, y ], [x, [y, [[x, y ]]i ] ], [y, [x, [[x, y ]]i ] ], [ [ [x, y ]]i, x ], [ [ [x, y ]]i, y ] ; i > 0}
spans g(x, y) by Corollary 5. Analyzing the image of such elements by i in sl2(tK[t])
we conclude that

ker i = span{[ [x, y], [[x, y]] i] ∈ g(x, y) | i = 2, . . . }.
From Corollary 5 we have

{[ [x, y], [[x, y]] i] ∈ g(x, y) | i = 2, . . . } ⊂ Zg(x,y)

and hence
ker i ⊂ Zg(x,y).

On the other hand, since i is a homomorphism, the image of the center of g(x, y)
by i is contained in the center of the image i(g(x, y)), which is zero. Therefore

Zg(x,y) ⊂ ker i

and
Zg(x,y) = ker i.

Now,
kerπ = Zg(x,y) ∩ g(x, y)0 = Zg(x,y) = ker i

and hence i descends to a monomorphism

i# : g#(x, y) → sl2(tK[t])

of graded Lie algebras, concluding the proof of the theorem. �
Corollary 7. Let charK �= 2, 3. Then the following statements are equivalent:
(a) g(x, y) = g#(x, y) (g(x, y) is a KKT algebra).
(b) The center of g(x, y) is zero.
(c) The homomorphism of graded Lie algebras i : g(x, y) → sl2(tK[t]) defined by

i(x) = t E, i(y) = t F is a monomorphism.

The main result in this section is the next theorem, which shows that if g(x, y)
is defined over a field of characteristic zero then the above statements are satisfied.

Theorem 8. If charK = 0, the center of g(x, y) is zero.

Proof. It suffices to show that for an any 3-graded Lie algebra g over K

[ [z, w ], [[z, w ]]m ] = 0, z ∈ g1, w ∈ g−1, m a positive integer,

by Theorem 6(b).
We proceed by induction. For m = 1 it is trivial. Suppose valid for m ≤ p, for

some positive natural p. First, let us prove some relations
(i) Ai+1z = AAiz, p ≥ i ≥ 0.

The case i = 0 is trivial. Suppose p ≥ i ≥ 1. Then:

Ai+1z = −[ [z,Aiw ], z ] = −[z, [Aiw, z ] ] = −[Aiz, [z, w ] ] = AAiz.

(ii) Ai+1w = −AAiw, i ≥ 0.

Ai+1w = −[ [z,Aiw ], w ] = −[ [z, w ], Aiw ] = −AAiw.
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(iii) If i+j = p for integers i, j ≥ 0 then [Ai+1z,Ajw ] = A[z,Apw ]+[Aiz,Aj+1w ].
In fact, suppose p ≥ 2.

[Ai+1z,Ajw ] = [AAiz,Ajw ] = A[Aiz,Ajw ] + [Aiz,Aj+1w ].

But

A[Aiz,Ajw ] = A[AiAjw, z ] +AAi[z,Ajw ] = A[AiAjw, z ]

= (−1)j−1A[AiA
jw, z ] = (−1)j−1A[AjAiw, z ]

= (−1)i+jA[AjAiw, z ] = −A[Apw, z ] = A[z,Apw ].

Therefore

[Ai+1z,Ajw ] = A[z,Apw ] + [Aiz,Aj+1w ],

which is obviously valid if p = 1.

Returning to the proof of the theorem, we have for m = p+ 1:

Ap+1[z, w ] = [Ap+1z, w ] + [z,Ap+1w ] = −[Ap+1z,A0w ] + [z,Ap+1w ]

= −(p+ 1)A[z,Apw ]− [A0z,Ap+1w ] + [z,Ap+1w ] (by (iii)).

Thus,

(p+ 2)Ap+1[z, w ] = −[z,Ap+1w ] + [z,Ap+1w ] = 0,

concluding the proof of the theorem. �

Let g be a 3-graded Lie algebra over K, charK = 0.

Lemma 9. If z ∈ g1, w ∈ g−1,
(i) Ai+1z = AAiz,
(ii) Ai+1w = −AAiw,
(iii) [Ai+1z,Ajw ] = [Aiz,Aj+1w ],
(iv) [Aiz,Ajw ] = [Ajz,Aiw ] for integers i, j ≥ 0.

Proof. They follow from the proof of Theorem 8. �

Proposition 10. [ [[z, w ]]m , [[z, w ]]n ] = 0, n,m ≥ 1, z ∈ g1, w ∈ g−1.

Proof.

[ [[z, w ]]m , [[z, w ]]n ] = Am[[z, w ]]n = −Am[z,An−1w ]

= −[Amz,An−1w ]− [z,AmAn−1w ]

= −[A0z,Am+n−1w ]− [z,AmAn−1w ]

= −[z,Am+n+−1w ]− [z,AmAn−1w ]

= [z,Am+n−1w ]− [z,Am+n−1w ]
= 0.

�
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3.4. Embedding results. As before, let K be a field, K[t] the algebra of poly-
nomials over K in t and tK[t] its ideal consisting of multiples of t; analogously,
let K[ [t] ] denote the algebra of formal power series in t with coefficients in K and
tK[ [t] ] its ideal whose elements have independent term equal to zero.

If A denotes one of the above algebras or ideals then letM2(A) be the algebra of
2× 2 matrices over A and sl2(A) the Lie algebra over K consisting of the elements
of M2(A) with trace zero.

The natural gradation of K[t] induces another in M2(K[t]) where the homo-
geneous elements of a certain degree are exactly the matrices whose entries are
monomials in K[t] with the same degree. These natural gradations will be used
implicitly in what follows.
M2(tK[t]) is a graded ideal (in the obvious sense) of M2(K[t]) and

sl2(K[t]) and sl2(tK[t])

are graded Lie subalgebras of (M2(K[t]))L.
Replacing K[t] with K[ [t] ] one obtains the respective completions.
Let

SL2(K[ [t] ])

be the group of matrices in M2(K[ [t] ]) with determinant 1 and

SL∗
2(K[ [t] ]) = exp(sl2(tK[ [t] ]))

the group obtained exponentiating sl2(tK[ [t] ]) inside M2(K[ [t] ]).
One has

SL∗
2(K[ [t] ]) = (1 +M2(tK[ [t] ])) ∩ SL2(K[ [t] ]).

The following theorem could be called the embedding theorem for g(x, y). It
follows promptly from the previous results.

Theorem 11. Let g(x, y) be the free 3-graded Lie algebra over K, charK = 0,
generated by variables x of degree 1 and y of degree −1, endowed with the total
gradation given by the sum of occurrences of x and y in each Lie monomial.

(a) The homomorphism i : g(x, y) → sl2(tK[t]) defined by

i(x) =
(

0 t
0 0

)
i(y) =

(
0 0
t 0

)

is a monomorphism of graded Lie algebras.
(b)This monomorphism extends to a monomorphism

î : ĝ(x, y) → sl2(tK[ [t] ])

of Lie algebras, where ĝ(x, y) is the completion of g(x, y) with respect to the
total gradation.

(c) Let G(x, y) and SL∗
2(K[ [t] ]) be the groups obtained exponentiating ĝ(x, y) and

sl2(tK[ [t] ]) inside Û(g(x, y)) and M2(K[ [t] ]) respectively. Then we have the
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commutative diagram

ĝ(x, y) î−−−−→ sl2(tK[ [t] ])

exp

� �exp

G(x, y) −−−−→
I

SL∗
2(K[ [t] ])

where the vertical maps are bijective and the map at the bottom is a monomor-
phism of groups.

(d) The horizontal monomorphisms in the previous diagram extend to a homo-
morphism I : Û(g(x, y)) →M2(K[ [t] ]) of associative algebras with unit.

(e) With respect to the formal topology on the subsets of Û(g(x, y)) andM2(K[ [t] ])
(i.e., the relative topology), the map in (d) is continuous and all other maps
above are homeomorphisms onto their respective images.

Proof. (a) It follows from Corollary 7 and Theorem 8.
(b) i is continuous with respect to the formal topology and hence it extends to

î : ĝ(x, y) → sl2(tK[ [t] ]), an isomorphism of topological Lie algebras onto its
image by Lemma 1.

(c) The existence of the homomorphism of groups I follows immediately from
Lemma 2. Since exp and log are homeomorphisms, it follows from the diagram
that I is, in fact, an isomorphism of topological groups onto its image.

(d) The monomorphism i of graded Lie algebras extends to a homomorphism
of graded associative algebras with unit i′ : U(g(x, y)) → M2(K[t]) by the
results of (iii) in Section 2. Since i′ is continuous, it extends to a continuous
homomorphism I : Û(g(x, y)) →M2(K[ [t] ]) of associative algebras with unit.
From the commutative diagram in (c), we conclude that I also extends I.

(e) It has already been proved.
�

4. Commutation relations

4.1. Exponential relation. Suppose charK = 0.

Corollary 12. For g(x, y) one has

expx exp y = exp((1 + ad y adx/2)−1y ) L(x, y ) exp((1 + adx ad y/2)−1x),

where

L(x, y ) = exp
( log(1 + adx ad y/2)

adx ad y/2
[x, y ]

)
,(i)

which can be expanded as

L(x, y ) =
∑
m�0

1
m!

m∏
i=1

([x, y ]− (m− i) adx ad y/2).(ii)
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In (ii), for u, v ∈ U(g(x, y)) and U, V ∈ EndK

(
U(g(x, y))

)
, we define the product

in U(g(x, y))⊕ EndK

(
U(g(x, y))

)
by

(u⊕ U )(v ⊕ V ) = (uv + U(v ))⊕ (uV + U◦V ), and
n∏

i=1

ai = (· · · ( (a1a2 )a3 ) · · · an ) ai ∈ U(g(x, y))⊕ End(U(g(x, y)))
(for n < 1 the product is defined to be 1).

Proof. (i) It follows from Theorem 11 and(
1 t
0 1

) (
1 0
t 1

)
=(

1 0
t(1 + t2)−1 1

) (
1 + t2 0
0 (1 + t2)−1

) (
1 t(1 + t2)−1

0 1

)
.

(ii) Let us calculate the coefficient of

([[x, y ]]i1 )n1([[x, y ]]i2 )n2 · · · ([[x, y ]]ir )nr , ij � 1, nj � 0,

in formula (ii). Let m = n1i1+ · · ·+nrir and n = n1+ · · ·+nr . We write s for the
sequence of n elements obtained by first listing n1 copies of i1, then n2 copies of
i2 and so on until nr copies of ir. Denote by Sn the symmetric group on 1, . . . , n
and P(s) = {σ(s) : σ ∈ S(n)}; that is, all the permutations of s . The coefficient
equals

(−1)m−n

2m−nm!

∑
k∈P(s)

(m− 1)!
(m− k1 )!

(m− k1 − 1)!
(m− k1 − k2 )! · · ·

(m− k1 − k2 − · · · − kn−1 − 1)!
0!

=
(−1)m−n

2m−n

∑
k∈P(s)

1
m(m− k1 ) · · · (m− k1 − k2 − · · · − kn−1 )

=
(−1)m−n

2m−n

1
n1! · · ·nr!

∑
σ∈Sn

1
m(m− jσ(1 ) ) · · · (m− jσ(1 ) − jσ(2 ) · · · − jσ(n−1 ) )

=
(−1)m−n

2m−n

1
n1! · · ·nr!

1
in1
1 · · · inr

r
,

which coincides with the corresponding coefficient in formula (i). �

Remark 1. The series K(x, y ) = L(−x, y ) is called the canonical kernel function
of g(x, y) and it is closely related to the geometry of a bounded symmetric domain
in Cn. See [3], [4], [10] for details.

Example 1. In the notation of Theorem 11, we have

i([[x, y ]]i) = 2i−1

(
t2i 0
0 −t2i

)
i = 1, 2, . . .

and therefore {[[x, y ]]i, i = 1, 2, . . . } is a commutative family of elements in g(x, y)
as well as {[[z, w ]]i, i = 1, 2, . . . } in g for z ∈ g1 and w ∈ g−1. Hence, the Embedding
Theorem 11 provides an alternative proof to Proposition 10.
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4.2. Commutation relations for powers of elements in g−1 and g1. From
this point to the end of the article we fix once and for all a 3-graded Lie algebra g
over a field K of characteristic zero. Let z ∈ g1 and w ∈ g−1. Corollary 12 implies
that

zi

i!
wj

j!
=

min(i, j)∑
m=0

∑
m1+m2+m3=m
m1, m2, m3 �0

Aj−m
m1

Bm2C
i−m
m3

(12)

where

A0
0 = 1 , A0

m = 0, m > 0 .

Ak
m =

1
k!

∑
n1+···+nk=m
n1,... ,nk�0

((− adw ad z/2)n1w ) · · · ((− adw ad z/2)nkw ), k > 0 , m � 0.

Bm =
1
m!

m∏
i=1

([z, w ]− (m− i) ad z adw/2) , m � 0.

C0
0 = 1 , C0

m = 0, m > 0 .

Ck
m =

1
k!

∑
n1+···+nk=m
n1,... ,nk�0

((− ad z adw/2)n1z ) · · · ((− ad z adw/2)nkz ), k > 0 , m � 0.

Given u ∈ U(g) write u = u0 + u∗ for unique u0, u∗ such that u0 ∈ U(g0) and
u∗ ∈ g−1U(g) + U(g)g1. If i = j = n we have(

zn

n!
wn

n!

)
0

=
1
n!

n∏
i=1

([z, w ]− (n− i) ad z adw/2) .(13)

For instance, for g = sl2(K) and

H =
(

1 0
0 −1

)
, z = E =

(
0 1
0 0

)
, w = F =

(
0 0
1 0

)
,

Ei

i!
F j

j!
=

min(i, j)∑
m=0

F j−m

(j −m)!

( m∑
m2=0

(−1)m−m2

(
i+ j −m−m2 − 1

m−m2

)(
H

m2

))
Ei−m

(i−m)!

=
min(i, j)∑

m=0

F j−m

(j −m)!

( m∑
m2=0

(
2m− i− j
m−m2

)(
H

m2

))
Ei−m

(i−m)!

=
min(i, j)∑

m=0

F j−m

(j −m)!

(
H − i− j + 2m

m

)
Ei−m

(i−m)!
·

Example 2. From identity (12) we have

(14) z2w2 = 2[z, w]2 − [z, [w, [z, w] ] ]

+ 4w [z, w]z − 2[w, [z, w] ]z − 2w [z, [w, z] ] + w2 z2.
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4.3. Polarizing multilinear identities. Let V,W be vector spaces over K and
F : V n →W a n-linear map, n � 1. Then

(15)
∑

σ∈Sn

F (Xσ(1), · · · , Xσ(n)) =

n∑
k=1

∑
i1<···<ik

(−1)n−kF (Xi1 + · · ·+Xik
, . . . , Xi1 + · · ·+Xik

),

where X1, · · · , Xn ∈ V and Sn is the symmetric group on 1, . . . , n .
The above expression can be used to polarize the previous relations. For example,

the commutator of two monomials in U(g1) and U(g−1) has U(g0)-component in
the “U(g−1)U(g0)U(g1)” decomposition given by:

(16) (z1 · · · znw1 · · ·wn )0 =∑
σ,ρ∈Sn

1
n!

( n∏
i=1

([zσ(i), wρ(i) ]− (n− i) ad zσ(i) adwρ(i)/2)
)

where zi ∈ g1, wi ∈ g−1 and
n∏

i=1

ai = (· · · ( (a1a2 )a3 ) · · · an )

ai ∈ U(g)⊕ End(U(g)) , 1 � i � n.

Remark 2. Expression (16) has been used in association with the contravariant
form on highest weight modules over the complexification of a semisimple Lie alge-
bra of hermitian type. See [3], [4] for details.
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