New York Journal of Mathematics

New York J. Math. 7 (2001) 217-222.

Reduced Cowen Sets

Raúl E. Curto and Woo Young Lee

ABSTRACT. For $f \in H^2$, let

 $G'_f := \{ g \in zH^2 : f + \overline{g} \in L^{\infty} \text{ and } T_{f+\overline{g}} \text{ is hyponormal} \}.$

In 1988, C. Cowen posed the following question: If $g \in G_f'$ is such that $\lambda \, g \notin G_f'$ (all $\lambda \in \mathbb{C}, \, |\lambda| > 1$), is g an extreme point of G_f' ? In this note we answer this question in the negative. At the same time, we obtain a general sufficient condition for the answer to be affirmative; that is, when $f \in H^\infty$ is such that rank $H_f < \infty$.

Contents

1.	Introduction	217
2.	Main results	219
References		222

1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its self-commutator $[A^*,A]:=A^*A-AA^*$ is positive (semidefinite). Given $\varphi\in L^\infty(\mathbb{T})$, the Toeplitz operator with symbol φ is the operator T_{φ} on the Hardy space $H^2(\mathbb{T})$ of the unit circle $\mathbb{T}\equiv\partial\mathbb{D}$ defined by $T_{\varphi}f:=P(\varphi\cdot f)$, where $f\in H^2(\mathbb{T})$ and P denotes the orthogonal projection that maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. Let $H^\infty(\mathbb{T}):=L^\infty\cap H^2$, that is, H^∞ is the set of bounded analytic functions on \mathbb{D} . The problem of determining which symbols induce hyponormal Toeplitz operators was solved by C. Cowen [Co2] in 1988. Cowen's method is to recast the operator-theoretic problem of hyponormality for Toeplitz operators as a functional equation involving the operator's symbol.

Received February 15, 2001.

 $^{{\}it Mathematics~Subject~Classification.~Primary~47B35; Secondary~47B20,~30D50.}$

 $Key\ words\ and\ phrases.$ Toeplitz operators, Hankel operators, hyponormal operators, reduced Cowen sets, Hermite-Fejér interpolation problem.

The work of the first author was partially supported by NSF research grant DMS-9800931.

The work of the second author was partially supported by grant No. 2000-1-10100-002-3 from the Basic Research Program of the KOSEF.

Suppose that $\varphi \in L^{\infty}(\mathbb{T})$ is arbitrary and consider the following subset of the closed unit ball of $H^{\infty}(\mathbb{T})$,

$$\mathcal{E}(\varphi) := \{ k \in H^{\infty}(\mathbb{T}) : ||k||_{\infty} \le 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty}(\mathbb{T}) \}.$$

Cowen's Theorem states that T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty [Co2], [NT]. We also recall the connection between Hankel and Toeplitz operators. For φ in L^{∞} , the Hankel operator $H_{\varphi}: H^2 \to H^2$ is defined by $H_{\varphi}f := J(I-P)(\varphi f)$, where $J: (H^2)^{\perp} \to H^2$ is given by $Jz^{-n} = z^{n-1}$ for $n \geq 1$. The following are two basic identities:

$$(1) T_{\varphi\psi} - T_{\varphi}T_{\psi} = H_{\overline{\varphi}}^* H_{\psi} (\varphi, \psi \in L^{\infty}) \text{and} H_{\varphi h} = T_{\widetilde{h}}^* H_{\varphi} (h \in H^{\infty}),$$

where for $\zeta \in L^{\infty}$, we define $\widetilde{\zeta}(z) := \overline{\zeta(\overline{z})}$. From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$[T_{\varphi}^*, T_{\varphi}] = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{\varphi}^* H_{\varphi} = H_{\overline{\varphi}}^* H_{\overline{\varphi}} - H_{k}^*_{\overline{\varphi}} H_{k}_{\overline{\varphi}} = H_{\overline{\varphi}}^* (1 - T_{\tilde{k}} T_{\tilde{k}}^*) H_{\overline{\varphi}},$$

which implies that $\ker H_{\overline{\varphi}} \subseteq \ker [T_{\varphi}^*, T_{\varphi}].$

To describe the set of g such that $T_{f+\overline{g}}$ is hyponormal for a given f, C. Cowen [Co1] defined the set G_f' as follows. If $H:=\{h\in zH^\infty:||h||_2\leq 1\}$, let

$$G'_f := \left\{ g \in zH^2 : \sup_{h_0 \in H} |\langle hh_0, f \rangle| \ge \sup_{h_0 \in H} |\langle hh_0, g \rangle| \text{ for every } h \in H^2 \right\}.$$

To see how this definition is relevant to hyponormality of Toeplitz operators, we assume that $f+\bar{g}\in L^{\infty}$. Note that if $f\in H^2$ then $H_{\overline{f}}$ makes sense when f has an L^{∞} -conjugate $g\in H^2$, that is, $f+\bar{g}\in L^{\infty}$. For, given $h\in H^2$ we have $H_{\overline{f}+g}(h)=J(I-P)(\bar{f}h+gh)=J(I-P)(\bar{f}h)=:H_{\overline{f}}h$. If $f+\bar{g}\in L^{\infty}$ $(f\in H^2,g\in zH^2)$ and $h\in H^2$ then

$$\sup_{h_0 \in H} |\langle hh_0, f \rangle| = \sup_{h_0 \in H} \left| \int_{\mathbb{T}} hh_0 \overline{f} \, d\mu \right| = \sup_{h_0 \in H} \left| \int_{\mathbb{T}} (I - P)(\overline{f}h + gh)h_0 \, d\mu \right|$$
$$= \sup_{h_0 \in H} |\langle (I - P)\overline{f}h, \overline{h_0} \rangle| = \sup_{h_0 \in H} |\langle J(I - P)\overline{f}h, h_0 \rangle|$$
$$= ||H_{\overline{f}}h||$$

and similarly,

$$\sup_{h_0 \in H} |\langle hh_0, g \rangle| = ||H_{\overline{g}}h||.$$

Recall ([Ab, Lemma 1]) that if $\varphi=f+\bar g\in L^\infty$ $(f\in H^2,g\in zH^2)$ then the following are equivalent:

- (a) T_{φ} is hyponormal;
- (b) $||H_{\overline{f}}h|| \ge ||H_{\overline{g}}h||$ for every $h \in H^2$.

Therefore we can see that for $f \in H^2$.

(2)
$$G'_f = \{g \in zH^2 : f + \overline{g} \in L^\infty \text{ and } T_{f+\overline{g}} \text{ is hyponormal} \}.$$

We call G'_f the reduced Cowen set for f. To avoid some technical difficulties using the original definition of G'_f when dealing with hyponormality of $T_{f+\bar{g}}$, hereafter we assume that $f + \bar{g} \in L^{\infty}$ and adopt (2) as our definition of G'_f ; this appears to

be natural when studying the set G'_f . We can easily see that G'_f is balanced and convex. Write

$$\nabla G'_f := \left\{ g \in G'_f : \ \lambda \, g \notin G'_f \ (\text{all } \lambda \in \mathbb{C}, \ |\lambda| > 1) \right\}$$

and $\operatorname{ext} G'_f$ for the set of all extreme points of G'_f . In [Co1] the following question was posed:

Question. Is $\nabla G'_f \subseteq \operatorname{ext} G'_f$?

In [CCL] an affirmative answer to the above question was given in case f is an analytic polynomial. In this note we answer the above question in the negative, and give a general sufficient condition for the answer to be affirmative: If rank $H_{\overline{f}} < \infty$ then $\nabla G'_f \subseteq \operatorname{ext} G'_f$. In [CCL], our ploy was to use the Carathéodory-Schur Interpolation Problem to deal with the case of an analytic polynomial f. By comparison, we here resort to the classical Hermite-Fejér Interpolation Problem.

2. Main results

If $\varphi \in L^{\infty}$, write $\varphi_{+} = P(\varphi) \in H^{2}$ and $\varphi_{-} = \overline{(I-P)(\varphi)} \in zH^{2}$. Thus $\varphi = \varphi_{+} + \overline{\varphi_{-}}$ is the decomposition of φ into its analytic and co-analytic parts. We first reformulate Cowen's Theorem. Suppose that $\varphi \in L^{\infty}$ is of the form $\varphi(z) = \sum_{n=-\infty}^{\infty} a_{n}z^{n}$ and that $k(z) = \sum_{n=0}^{\infty} c_{n}z^{n}$ is in H^{2} . Then $\varphi - k\,\overline{\varphi} \in H^{\infty}$ if and only if

$$\begin{pmatrix}
\overline{a_1} & \overline{a_2} & \overline{a_3} & \dots & \overline{a_n} & \dots \\
\overline{a_2} & \overline{a_3} & \dots & \overline{a_n} & \dots \\
\overline{a_3} & \dots & \dots & \dots & \dots \\
\vdots & \overline{a_n} & \dots & \dots & \dots \\
\overline{a_n} & \dots & \dots & \dots & \dots
\end{pmatrix}
\begin{pmatrix}
c_0 \\ c_1 \\ c_2 \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix} = \begin{pmatrix}
a_{-1} \\ a_{-2} \\ a_{-3} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix},$$
(3)

that is, $H_{\overline{\varphi_+}}k=\bar{z}\widetilde{\varphi_-}.$ Thus by Cowen's Theorem we have:

Lemma 1 ([CuL]). If $\varphi \equiv \varphi_+ + \overline{\varphi_-} \in L^{\infty}$, then $\mathcal{E}(\varphi) \neq \emptyset$ if and only if the equation $H_{\overline{\varphi_+}k} = \overline{z}\widetilde{\varphi_-}$ admits a solution k satisfying $||k||_{\infty} \leq 1$.

Recall that a function $\varphi \in L^{\infty}$ is of bounded type (or in the Nevanlinna class) if it can be written as the quotient of two functions in $H^{\infty}(\mathbb{D})$, that is, there are functions ψ_1, ψ_2 in $H^{\infty}(\mathbb{D})$ such that

$$\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)} \quad \text{for almost all } z \in \mathbb{T}.$$

For example, rational functions in L^{∞} are of bounded type. By an argument of M. Abrahamse [Ab, Lemma 3], the function φ is of bounded type if and only if $\ker H_{\overline{\varphi}} \neq \{0\}$. Thus if $\varphi \equiv \varphi_+ + \overline{\varphi_-} \in L^{\infty}$ and $\overline{\varphi}$ is not of bounded type then $\ker H_{\overline{\varphi_+}} = \ker H_{\overline{\varphi}} = \{0\}$, so that the equation $H_{\overline{\varphi_+}} k = \overline{z} \widetilde{\varphi_-}$ has a unique solution whenever it is solvable; in other words, if $\overline{\varphi}$ is not of bounded type, and T_{φ} is hyponormal, then $\mathcal{E}(\varphi)$ has exactly one element.

We now have:

Theorem 2. Suppose that $\psi \in H^{\infty}$ is such that $\overline{\psi}$ is not of bounded type, and let $f := z^3 \psi$. Then $\nabla G'_f \nsubseteq \operatorname{ext} G'_f$.

Proof. By assumption, $f \in H^{\infty}$ and \bar{f} is not of bounded type; indeed, if \bar{f} were of bounded type then $\bar{f} = \frac{g}{h} \ (g, h \in H^{\infty}(\mathbb{D}))$, and so $\bar{\psi} = \frac{z^3 g}{h}$ would be of bounded type. Observe now that by definition and Lemma 1,

$$G'_f = \{g \in zH^2 : f + \overline{g} \in L^\infty \text{ and } H_{\overline{f}}k = \overline{z}\widetilde{g} \text{ for some } k \in H^\infty \text{ with } ||k||_\infty \le 1\}.$$

Since $f \in z^3 H^{\infty}$, we have that $\bar{z}f$, $\bar{z}^2 f$, $\frac{1}{2}(\bar{z}+\bar{z}^2)f$ all are in zH^{∞} . A straightforward calculation shows that

$$H_{\overline{f}}(q) = \overline{zq} \, \widetilde{f} \quad \text{for } q = z, \ z^2, \ \frac{1}{2}(z+z^2).$$

Since $||q||_{\infty} \leq 1$ and $\bar{q}\tilde{f} = \widetilde{q}f \in zH^{\infty}$ we have that $\{\bar{z}f, \bar{z}^2f, \frac{1}{2}(\bar{z}+\bar{z}^2)f\} \subseteq G'_f$. We will now show that $\frac{1}{2}(\bar{z}+\bar{z}^2)f \in \nabla G'_f$, which proves $\nabla G'_f \nsubseteq \operatorname{ext} G'_f$. Since \bar{f} is not of bounded type (so $\operatorname{ker} H_{\bar{f}} = \{0\}$), we know that for $|\lambda| > 1$ and $q := \frac{1}{2}(z+z^2)$, the unique solution of the equation $H_{\bar{f}}k = \overline{\lambda zq}\,\tilde{f}$ is $k = \bar{\lambda}\,q$. But $||\bar{\lambda}\,q||_{\infty} > 1$, so $\lambda\,\bar{q}\,f \notin G'_f$ and therefore $\frac{1}{2}(\bar{z}+\bar{z}^2)f \equiv \bar{q}f \in \nabla G'_f$.

For a concrete example satisfying the hypotheses of Theorem 2, let ψ be a Riemann mapping of the unit disk onto the interior of the ellipse with vertices $\pm i(1-\alpha)^{-1}$ and passing through $\pm (1+\alpha)^{-1}$, where $0 < \alpha < 1$. Then ψ is in H^{∞} , and $\bar{\psi}$ is not of bounded type ([CoL, Corollary 2]).

In [CCL], an affirmative answer to Cowen's Question was given in case f is an analytic polynomial. We now establish that the answer is also affirmative in the more general instances of rank $H_{\overline{f}} < \infty$.

To see this we need the following auxiliary lemma.

Lemma 3. Let q be a finite Blaschke product, let $k \in H^{\infty}$, and let

$$G \equiv G(q, k) := \{ b \in k + qH^{\infty} : ||b||_{\infty} < 1 \}.$$

If G contains at least two functions then it contains a function b with $||b||_{\infty} < 1$.

Proof. Write

$$q \equiv e^{i\theta} \prod_{i=1}^{n} b_i^{n_i}$$
, where $b_i \equiv \frac{z - \alpha_i}{1 - \overline{\alpha_i} z}$, $\theta \in [0, 2\pi)$,

and $\alpha_1, \dots, \alpha_n$ are distinct points in \mathbb{D} . If we define

$$\mathbf{x}_{i,j} := \frac{z^j}{(1 - \overline{\alpha_i}z)^{j+1}} \quad \text{for } 1 \le i \le n \text{ and } 0 \le j < n_i,$$

then the functions $\mathbf{x}_{i,j}$ form a basis for $H^2 \ominus qH^2$ (cf. [FF, Lemma X.1.1]). Write $k = k_1 + k_2$, where $k_1 \in H^2 \ominus qH^2$ and $k_2 \in qH^2$. Note that k_1 is entirely determined by the values of $k_1^{(j)}(\alpha_i)$ $(1 \le i \le n, \ 0 \le j < n_i)$, and also that

$$k^{(j)}(\alpha_i) = k_1^{(j)}(\alpha_i)$$
 for $1 \le i \le n$ and $0 \le j < n_i$.

Therefore the problem of finding a function b in $k+qH^{\infty}$ with $||b||_{\infty} \leq 1$ is equivalent to the problem of finding a function $b \in H^{\infty}$ satisfying

(a)
$$b^{(j)}(\alpha_i) = k_1^{(j)}(\alpha_i)$$
 for $1 \le i \le n$ and $0 \le j < n_i$;

(b) $||b||_{\infty} \leq 1$.

This is exactly the classical Hermite-Fejér Interpolation Problem (HFIP) (If n=1, this is the Carathéodory–Schur Interpolation Problem and if $n_i=1$ for all i, this is the Nevanlinna-Pick Interpolation Problem; cf. [FF]). Then by [FF, Theorem X.5.6 and Corollary X.5.7], there exists a solution to HFIP if and only if the Hermite-Fejér matrix M_{k_1} associated with k_1 is a contraction, and furthermore the solution is unique if and only if $||M_{k_1}||=1$. $(M_{k_1}$ is the $d\times d$ lower triangular matrix whose entries involve the values of $k_1^{(j)}(\alpha_i)$, where $d=\sum_{i=1}^n n_i$.) Suppose that G contains two functions. Then the Hermite-Fejér matrix M_{k_1} has norm less than 1. We can then choose a positive number $\lambda>1$ for which $||M_{\lambda k_1}||<1$. This implies that $||\lambda k_1+qh||_{\infty}\leq 1$ for some $h\in H^{\infty}$. Let $b:=k_1+\frac{1}{\lambda}qh$; then $b\in k+qH^{\infty}$ and $||b||_{\infty}\leq \frac{1}{\lambda}<1$. This proves Lemma 3.

In Section 1 we noticed that if $\varphi \equiv \varphi_+ + \overline{\varphi_-} \in L^\infty$ is such that T_φ is a hyponormal operator then $\ker H_{\overline{\varphi_+}} = \ker H_{\overline{\varphi}} \subseteq \ker [T_\varphi^*, T_\varphi]$. Thus we can see that if $\varphi = f + \overline{g}$, where $f \in H^\infty$ and $g \in G_f'$ and if $\operatorname{rank} H_{\overline{f}} < \infty$ then $\operatorname{rank} [T_\varphi^*, T_\varphi] \leq \operatorname{rank} H_{\overline{f}}^* = \operatorname{rank} H_{\overline{f}}$.

We now have:

Theorem 4. If $f \in H^{\infty}$ is such that rank $H_{\overline{f}} < \infty$ then $\nabla G'_f \subseteq \operatorname{ext} G'_f$.

Proof. Suppose that rank $H_{\overline{f}}=N$. By the above considerations, if $g\in G_f'$ and $\varphi:=f+\overline{g}$ then rank $[T_{\varphi}^*,T_{\varphi}]\leq N$. We observe that if $g\in \nabla G_f'$ then every solution k of the equation $H_{\overline{f}}k=\overline{z}\widetilde{g}$ has exactly norm 1; for, if k is a solution of the equation $H_{\overline{f}}k=\overline{z}\widetilde{g}$ with $||k||_{\infty}<1$ then $\frac{k}{||k||_{\infty}}\in \mathcal{E}(\psi)$ for $\psi:=f+\overline{g/||k||_{\infty}}$, and hence $\frac{1}{||k||_{\infty}}\cdot g=\frac{g}{||k||_{\infty}}\in G_f'$, a contradiction. We now claim that if $g\in \nabla G_f'$ then $\mathcal{E}(f+\overline{g})$ consists of exactly one finite Blaschke product. To see this observe that by Beurling's Theorem, $\ker H_{\overline{f}}=qH^2$ for some inner function q. (Recall that the second identity in (1) implies that $z(\ker H_{\varphi})\subseteq \ker H_{\varphi}$ for all $\varphi\in L^{\infty}$.) Since rank $H_{\overline{f}}<\infty$, q must be a finite Blaschke product. Furthermore if k is in $\mathcal{E}(f+\overline{g})$, that is, k is a solution of the equation $H_{\overline{f}}k=\overline{z}\widetilde{g}$ and $||k||_{\infty}\leq 1$, then $\mathcal{E}(f+\overline{g})=G(q,k)=\{b\in k+qH^{\infty}:||b||_{\infty}\leq 1\}$. By the above considerations and Lemma 3, $\mathcal{E}(f+\overline{g})$ then contains exactly one element. Since $[T_{\varphi}^*,T_{\varphi}]$ is of finite rank it follows from an argument of T. Nakazi and K. Takahashi [NT, Theorem 10] that $\mathcal{E}(f+\overline{g})$ contains a finite Blaschke product, and consequently, $\mathcal{E}(f+\overline{g})$ consists of one finite Blaschke product.

To prove $\nabla G'_f \subseteq \operatorname{ext} G'_f$, we now assume, without loss of generality, that g_1 , g_2 , $\frac{1}{2}(g_1+g_2) \in \nabla G'_f$; it will suffice to show that $g_1=g_2$. By what we have just discussed, there exist finite Blaschke products b_1 and b_2 corresponding to g_1 and g_2 , respectively. Since $H_{\overline{f}}b_i=\overline{z}\widetilde{g_i}$ for i=1,2, it follows that $\frac{1}{2}(b_1+b_2)$ is a solution of the equation $H_{\overline{f}}k=\frac{1}{2}\overline{z}(\widetilde{g_1}+\widetilde{g_2})$. Further since $||\frac{1}{2}(b_1+b_2)||_{\infty} \leq 1$, we have that $\frac{1}{2}(b_1+b_2) \in \mathcal{E}(f+\frac{1}{2}(g_1+g_2))$. But since $\frac{1}{2}(g_1+g_2) \in \nabla G'_f$, it follows that $\frac{1}{2}(b_1+b_2)$ is a finite Blaschke product. However since Blaschke products are extreme points of the unit ball of H^{∞} (cf. [Ga, p. 179]), we can conclude that $b_1=b_2$, which implies $g_1=g_2$. (In fact, by an argument of K. deLeeuw and W. Rudin [dLR], if $f\in H^{\infty}$, $||f||_{\infty}=1$, then f is an extreme point of the unit ball of H^{∞} if and only if $\int \log(1-|f(e^{i\theta})|)d\theta=-\infty$.) This completes the proof of Theorem 4.

References

- [Ab] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597–604, MR 55 #1126, Zbl 0332.47017.
- [CCL] M. Chō, R. E. Curto and W. Y. Lee, Triangular Toeplitz contractions and Cowen sets for analytic polynomials, preprint 2000.
- [Co1] C. C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J.B. Conway and B.B. Morrel, eds.), Pitman Research Notes in Mathematics, Vol 171, Longman, 1988; pp. 155–167, MR 90j:47022, Zbl 0677.47017.
- [Co2] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812, MR 89f:47038, Zbl 0668.47021.
- [CoL] C. C. Cowen and J. J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216–220, MR 86h:47034.
- [CuL] R. E. Curto and W. Y. Lee, Joint Hyponormality of Toeplitz Pairs, Memoirs Amer. Math. Soc. no. 712, Amer. Math. Soc., Providence, 2001, CMP 1 810 770.
- [dLR] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H_1 , Pacific J. Math. 8 (1958), 467–485, MR 20 #5426, Zbl 0084.27503.
- [FF] C. Foiaş and A. Frazho, The Commutant Lifting Approach to Interpolation Problems, Operator Theory: Adv. Appl., no. 44, Birkhäuser-Verlag, Boston, 1990, MR 92k:47033, Zbl 0718.47010.
- [Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981, MR 83g:30037, Zbl 0469.30024.
- [NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753–769, MR 93j:47040, Zbl 0798.47018.

Department of Mathematics, University of Iowa, Iowa City, IA 52242 curto@math.uiowa.edu http://www.math.uiowa.edu/~curto/

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea wylee@yurim.skku.ac.kr

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-13.html.