New York Journal of Mathematics

New York J. Math. 7 (2001) 217-222.

Reduced Cowen Sets

Raúl E. Curto and Woo Young Lee

Abstract

For $f \in H^{2}$, let $G_{f}^{\prime}:=\left\{g \in z H^{2}: f+\bar{g} \in L^{\infty}\right.$ and $T_{f+\bar{g}}$ is hyponormal $\}$. In 1988, C. Cowen posed the following question: If $g \in G_{f}^{\prime}$ is such that $\lambda g \notin G_{f}^{\prime}$ (all $\lambda \in \mathbb{C},|\lambda|>1$), is g an extreme point of G_{f}^{\prime} ? In this note we answer this question in the negative. At the same time, we obtain a general sufficient condition for the answer to be affirmative; that is, when $f \in H^{\infty}$ is such that rank $H_{\bar{f}}<\infty$.

Contents

1. Introduction 217
2. Main results 219

References 222

1. Introduction

A bounded linear operator A on a Hilbert space is said to be hyponormal if its self-commutator $\left[A^{*}, A\right]:=A^{*} A-A A^{*}$ is positive (semidefinite). Given $\varphi \in L^{\infty}(\mathbb{T})$, the Toeplitz operator with symbol φ is the operator T_{φ} on the Hardy space $H^{2}(\mathbb{T})$ of the unit circle $\mathbb{T} \equiv \partial \mathbb{D}$ defined by $T_{\varphi} f:=P(\varphi \cdot f)$, where $f \in H^{2}(\mathbb{T})$ and P denotes the orthogonal projection that maps $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{T})$. Let $H^{\infty}(\mathbb{T}):=$ $L^{\infty} \cap H^{2}$, that is, H^{∞} is the set of bounded analytic functions on \mathbb{D}. The problem of determining which symbols induce hyponormal Toeplitz operators was solved by C. Cowen [Co2] in 1988. Cowen's method is to recast the operator-theoretic problem of hyponormality for Toeplitz operators as a functional equation involving the operator's symbol.

[^0]Suppose that $\varphi \in L^{\infty}(\mathbb{T})$ is arbitrary and consider the following subset of the closed unit ball of $H^{\infty}(\mathbb{T})$,

$$
\mathcal{E}(\varphi):=\left\{k \in H^{\infty}(\mathbb{T}):\|k\|_{\infty} \leq 1 \text { and } \varphi-k \bar{\varphi} \in H^{\infty}(\mathbb{T})\right\}
$$

Cowen's Theorem states that T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty [Co2], [NT]. We also recall the connection between Hankel and Toeplitz operators. For φ in L^{∞}, the Hankel operator $H_{\varphi}: H^{2} \rightarrow H^{2}$ is defined by $H_{\varphi} f:=J(I-P)(\varphi f)$, where $J:\left(H^{2}\right)^{\perp} \rightarrow H^{2}$ is given by $J z^{-n}=z^{n-1}$ for $n \geq 1$. The following are two basic identities:

$$
\begin{equation*}
T_{\varphi \psi}-T_{\varphi} T_{\psi}=H_{\varphi}^{*} H_{\psi} \quad\left(\varphi, \psi \in L^{\infty}\right) \quad \text { and } \quad H_{\varphi h}=T_{\breve{h}}^{*} H_{\varphi} \quad\left(h \in H^{\infty}\right) \tag{1}
\end{equation*}
$$

where for $\zeta \in L^{\infty}$, we define $\widetilde{\zeta}(z):=\overline{\zeta(\bar{z})}$. From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$
\left[T_{\varphi}^{*}, T_{\varphi}\right]=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{\varphi}^{*} H_{\varphi}=H_{\bar{\varphi}}^{*} H_{\bar{\varphi}}-H_{k \bar{\varphi}}^{*} H_{k \bar{\varphi}}=H_{\bar{\varphi}}^{*}\left(1-T_{\widetilde{k}} T_{\widetilde{k}}^{*}\right) H_{\bar{\varphi}}
$$

which implies that $\operatorname{ker} H_{\bar{\varphi}} \subseteq \operatorname{ker}\left[T_{\varphi}^{*}, T_{\varphi}\right]$.
To describe the set of g such that $T_{f+\bar{g}}$ is hyponormal for a given f, Cowen [Co1] defined the set G_{f}^{\prime} as follows. If $H:=\left\{h \in z H^{\infty}:\|h\|_{2} \leq 1\right\}$, let

$$
G_{f}^{\prime}:=\left\{g \in z H^{2}: \sup _{h_{0} \in H}\left|\left\langle h h_{0}, f\right\rangle\right| \geq \sup _{h_{0} \in H}\left|\left\langle h h_{0}, g\right\rangle\right| \text { for every } h \in H^{2}\right\}
$$

To see how this definition is relevant to hyponormality of Toeplitz operators, we assume that $f+\bar{g} \in L^{\infty}$. Note that if $f \in H^{2}$ then $H_{\bar{f}}$ makes sense when f has an L^{∞}-conjugate $g \in H^{2}$, that is, $f+\bar{g} \in L^{\infty}$. For, given $h \in H^{2}$ we have $H_{\bar{f}+g}(h)=$ $J(I-P)(\bar{f} h+g h)=J(I-P)(\bar{f} h)=: H_{\bar{f}} h$. If $f+\bar{g} \in L^{\infty}\left(f \in H^{2}, g \in z H^{2}\right)$ and $h \in H^{2}$ then

$$
\begin{aligned}
\sup _{h_{0} \in H}\left|\left\langle h h_{0}, f\right\rangle\right| & =\sup _{h_{0} \in H}\left|\int_{\mathbb{T}} h h_{0} \bar{f} d \mu\right|=\sup _{h_{0} \in H}\left|\int_{\mathbb{T}}(I-P)(\bar{f} h+g h) h_{0} d \mu\right| \\
& =\sup _{h_{0} \in H}\left|\left\langle(I-P) \bar{f} h, \overline{h_{0}}\right\rangle\right|=\sup _{h_{0} \in H}\left|\left\langle J(I-P) \bar{f} h, h_{0}\right\rangle\right| \\
& =\left\|H_{\bar{f}} h\right\|
\end{aligned}
$$

and similarly,

$$
\sup _{h_{0} \in H}\left|\left\langle h h_{0}, g\right\rangle\right|=\left\|H_{\bar{g}} h\right\| .
$$

Recall ([Ab, Lemma 1]) that if $\varphi=f+\bar{g} \in L^{\infty}\left(f \in H^{2}, g \in z H^{2}\right)$ then the following are equivalent:
(a) T_{φ} is hyponormal;
(b) $\left\|H_{\bar{f}} h\right\| \geq\left\|H_{\bar{g}} h\right\|$ for every $h \in H^{2}$.

Therefore we can see that for $f \in H^{2}$,

$$
\begin{equation*}
G_{f}^{\prime}=\left\{g \in z H^{2}: f+\bar{g} \in L^{\infty} \text { and } T_{f+\bar{g}} \text { is hyponormal }\right\} \tag{2}
\end{equation*}
$$

We call G_{f}^{\prime} the reduced Cowen set for f. To avoid some technical difficulties using the original definition of G_{f}^{\prime} when dealing with hyponormality of $T_{f+\bar{g}}$, hereafter we assume that $f+\bar{g} \in L^{\infty}$ and adopt (2) as our definition of G_{f}^{\prime}; this appears to
be natural when studying the set G_{f}^{\prime}. We can easily see that G_{f}^{\prime} is balanced and convex. Write

$$
\nabla G_{f}^{\prime}:=\left\{g \in G_{f}^{\prime}: \lambda g \notin G_{f}^{\prime}(\text { all } \lambda \in \mathbb{C},|\lambda|>1)\right\}
$$

and $\operatorname{ext} G_{f}^{\prime}$ for the set of all extreme points of G_{f}^{\prime}. In [Co1] the following question was posed:

Question. Is $\nabla G_{f}^{\prime} \subseteq \operatorname{ext} G_{f}^{\prime}$?

In [CCL] an affirmative answer to the above question was given in case f is an analytic polynomial. In this note we answer the above question in the negative, and give a general sufficient condition for the answer to be affirmative: If rank $H_{\bar{f}}<\infty$ then $\nabla G_{f}^{\prime} \subseteq \operatorname{ext} G_{f}^{\prime}$. In [CCL], our ploy was to use the Carathéodory-Schur Interpolation Problem to deal with the case of an analytic polynomial f. By comparison, we here resort to the classical Hermite-Fejér Interpolation Problem.

2. Main results

If $\varphi \in L^{\infty}$, write $\varphi_{+}=P(\varphi) \in H^{2}$ and $\varphi_{-}=\overline{(I-P)(\varphi)} \in z H^{2}$. Thus $\varphi=\varphi_{+}+\overline{\varphi_{-}}$is the decomposition of φ into its analytic and co-analytic parts. We first reformulate Cowen's Theorem. Suppose that $\varphi \in L^{\infty}$ is of the form $\varphi(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ and that $k(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ is in H^{2}. Then $\varphi-k \bar{\varphi} \in H^{\infty}$ if and only if

$$
\left(\begin{array}{cccccc}
\overline{a_{1}} & \overline{a_{2}} & \overline{a_{3}} & \ldots & \overline{a_{n}} & \ldots \tag{3}\\
\overline{a_{2}} & \overline{a_{3}} & \ldots & \overline{a_{n}} & \ldots & \\
\overline{a_{3}} & \ldots & \ldots & \ldots & & \\
\vdots & \overline{a_{n}} & \ldots & & & \\
\overline{a_{n}} & \ldots & & & & \\
\vdots & & & & &
\end{array}\right)\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
\vdots \\
\vdots \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
a_{-1} \\
a_{-2} \\
a_{-3} \\
\vdots \\
\vdots \\
\vdots
\end{array}\right)
$$

that is, $H_{\overline{\varphi_{+}}} k=\bar{z} \widetilde{\varphi_{-}}$. Thus by Cowen's Theorem we have:
Lemma $1([\mathrm{CuL}])$. If $\varphi \equiv \varphi_{+}+\overline{\varphi_{-}} \in L^{\infty}$, then $\mathcal{E}(\varphi) \neq \emptyset$ if and only if the equation $H_{\overline{\varphi_{+}}} k=\bar{z} \widetilde{\varphi_{-}}$admits a solution k satisfying $\|k\|_{\infty} \leq 1$.

Recall that a function $\varphi \in L^{\infty}$ is of bounded type (or in the Nevanlinna class) if it can be written as the quotient of two functions in $H^{\infty}(\mathbb{D})$, that is, there are functions ψ_{1}, ψ_{2} in $H^{\infty}(\mathbb{D})$ such that

$$
\varphi(z)=\frac{\psi_{1}(z)}{\psi_{2}(z)} \quad \text { for almost all } z \in \mathbb{T}
$$

For example, rational functions in L^{∞} are of bounded type. By an argument of M. Abrahamse [Ab, Lemma 3], the function φ is of bounded type if and only if ker $H_{\bar{\varphi}} \neq\{0\}$. Thus if $\varphi \equiv \varphi_{+}+\overline{\varphi_{-}} \in L^{\infty}$ and $\bar{\varphi}$ is not of bounded type then $\operatorname{ker} H_{\overline{\varphi_{+}}}=\operatorname{ker} H_{\bar{\varphi}}=\{0\}$, so that the equation $H_{\overline{\varphi_{+}}} k=\bar{z} \widetilde{\varphi_{-}}$has a unique solution whenever it is solvable; in other words, if $\bar{\varphi}$ is not of bounded type, and T_{φ} is hyponormal, then $\mathcal{E}(\varphi)$ has exactly one element.

We now have:

Theorem 2. Suppose that $\psi \in H^{\infty}$ is such that $\bar{\psi}$ is not of bounded type, and let $f:=z^{3} \psi$. Then $\nabla G_{f}^{\prime} \nsubseteq \operatorname{ext} G_{f}^{\prime}$.

Proof. By assumption, $f \in H^{\infty}$ and \bar{f} is not of bounded type; indeed, if \bar{f} were of bounded type then $\bar{f}=\frac{g}{h}\left(g, h \in H^{\infty}(\mathbb{D})\right)$, and so $\bar{\psi}=\frac{z^{3} g}{h}$ would be of bounded type. Observe now that by definition and Lemma 1,

$$
G_{f}^{\prime}=\left\{g \in z H^{2}: f+\bar{g} \in L^{\infty} \text { and } H_{\bar{f}} k=\bar{z} \widetilde{g} \text { for some } k \in H^{\infty} \text { with }\|k\|_{\infty} \leq 1\right\}
$$

Since $f \in z^{3} H^{\infty}$, we have that $\bar{z} f, \bar{z}^{2} f, \frac{1}{2}\left(\bar{z}+\bar{z}^{2}\right) f$ all are in $z H^{\infty}$. A straightforward calculation shows that

$$
H_{\bar{f}}(q)=\overline{z q} \widetilde{f} \quad \text { for } q=z, z^{2}, \frac{1}{2}\left(z+z^{2}\right)
$$

Since $\|q\|_{\infty} \leq 1$ and $\bar{q} \widetilde{f}=\widetilde{\bar{q} f} \in z H^{\infty}$ we have that $\left\{\bar{z} f, \bar{z}^{2} f, \frac{1}{2}\left(\bar{z}+\bar{z}^{2}\right) f\right\} \subseteq G_{f}^{\prime}$. We will now show that $\frac{1}{2}\left(\bar{z}+\bar{z}^{2}\right) f \in \nabla G_{f}^{\prime}$, which proves $\nabla G_{f}^{\prime} \nsubseteq \operatorname{ext} G_{f}^{\prime}$. Since \bar{f} is not of bounded type (so ker $H_{\bar{f}}=\{0\}$), we know that for $|\lambda|>1$ and $q:=\frac{1}{2}\left(z+z^{2}\right)$, the unique solution of the equation $H_{\bar{f}} k=\overline{\lambda z q} \tilde{f}$ is $k=\bar{\lambda} q$. But $\|\bar{\lambda} q\|_{\infty}>1$, so $\lambda \bar{q} f \notin G_{f}^{\prime}$ and therefore $\frac{1}{2}\left(\bar{z}+\bar{z}^{2}\right) f \equiv \bar{q} f \in \nabla G_{f}^{\prime}$.

For a concrete example satisfying the hypotheses of Theorem 2 , let ψ be a Riemann mapping of the unit disk onto the interior of the ellipse with vertices $\pm i(1-\alpha)^{-1}$ and passing through $\pm(1+\alpha)^{-1}$, where $0<\alpha<1$. Then ψ is in H^{∞}, and $\bar{\psi}$ is not of bounded type ([CoL, Corollary 2$]$).

In [CCL], an affirmative answer to Cowen's Question was given in case f is an analytic polynomial. We now establish that the answer is also affirmative in the more general instances of $\operatorname{rank} H_{\bar{f}}<\infty$.

To see this we need the following auxiliary lemma.
Lemma 3. Let q be a finite Blaschke product, let $k \in H^{\infty}$, and let

$$
G \equiv G(q, k):=\left\{b \in k+q H^{\infty}:\|b\|_{\infty} \leq 1\right\}
$$

If G contains at least two functions then it contains a function b with $\|b\|_{\infty}<1$.
Proof. Write

$$
q \equiv e^{i \theta} \prod_{i=1}^{n} b_{i}^{n_{i}}, \quad \text { where } \quad b_{i} \equiv \frac{z-\alpha_{i}}{1-\overline{\alpha_{i}} z}, \quad \theta \in[0,2 \pi)
$$

and $\alpha_{1}, \cdots, \alpha_{n}$ are distinct points in \mathbb{D}. If we define

$$
\mathbf{x}_{i, j}:=\frac{z^{j}}{\left(1-\overline{\alpha_{i}} z\right)^{j+1}} \quad \text { for } \quad 1 \leq i \leq n \text { and } 0 \leq j<n_{i}
$$

then the functions $\mathbf{x}_{i, j}$ form a basis for $H^{2} \ominus q H^{2}$ (cf. [FF, Lemma X.1.1]). Write $k=k_{1}+k_{2}$, where $k_{1} \in H^{2} \ominus q H^{2}$ and $k_{2} \in q H^{2}$. Note that k_{1} is entirely determined by the values of $k_{1}^{(j)}\left(\alpha_{i}\right)\left(1 \leq i \leq n, 0 \leq j<n_{i}\right)$, and also that

$$
k^{(j)}\left(\alpha_{i}\right)=k_{1}^{(j)}\left(\alpha_{i}\right) \quad \text { for } 1 \leq i \leq n \text { and } 0 \leq j<n_{i}
$$

Therefore the problem of finding a function b in $k+q H^{\infty}$ with $\|b\|_{\infty} \leq 1$ is equivalent to the problem of finding a function $b \in H^{\infty}$ satisfying
(a) $b^{(j)}\left(\alpha_{i}\right)=k_{1}^{(j)}\left(\alpha_{i}\right)$ for $1 \leq i \leq n$ and $0 \leq j<n_{i}$;
(b) $\|b\|_{\infty} \leq 1$.

This is exactly the classical Hermite-Fejér Interpolation Problem (HFIP) (If $n=1$, this is the Carathéodory-Schur Interpolation Problem and if $n_{i}=1$ for all i, this is the Nevanlinna-Pick Interpolation Problem; cf. [FF]). Then by [FF, Theorem X.5.6 and Corollary X.5.7], there exists a solution to HFIP if and only if the HermiteFejér matrix $M_{k_{1}}$ associated with k_{1} is a contraction, and furthermore the solution is unique if and only if $\left\|M_{k_{1}}\right\|=1 .\left(M_{k_{1}}\right.$ is the $d \times d$ lower triangular matrix whose entries involve the values of $k_{1}^{(j)}\left(\alpha_{i}\right)$, where $d=\sum_{i=1}^{n} n_{i}$.) Suppose that G contains two functions. Then the Hermite-Fejér matrix $M_{k_{1}}$ has norm less than 1. We can then choose a positive number $\lambda>1$ for which $\left\|M_{\lambda k_{1}}\right\|<1$. This implies that $\left\|\lambda k_{1}+q h\right\|_{\infty} \leq 1$ for some $h \in H^{\infty}$. Let $b:=k_{1}+\frac{1}{\lambda} q h$; then $b \in k+q H^{\infty}$ and $\|b\|_{\infty} \leq \frac{1}{\lambda}<1$. This proves Lemma 3.

In Section 1 we noticed that if $\varphi \equiv \varphi_{+}+\overline{\varphi_{-}} \in L^{\infty}$ is such that T_{φ} is a hyponormal operator then $\operatorname{ker} H_{\overline{\varphi_{+}}}=\operatorname{ker} H_{\bar{\varphi}} \subseteq \operatorname{ker}\left[T_{\varphi}^{*}, T_{\varphi}\right]$. Thus we can see that if $\varphi=f+\bar{g}$, where $f \in H^{\infty}$ and $g \in G_{f}^{\prime}$ and if $\operatorname{rank} H_{\bar{f}}<\infty$ then $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \leq \operatorname{rank} H_{\bar{f}}^{*}=$ rank $H_{\bar{f}}$.

We now have:
Theorem 4. If $f \in H^{\infty}$ is such that $\operatorname{rank} H_{\bar{f}}<\infty$ then $\nabla G_{f}^{\prime} \subseteq \operatorname{ext} G_{f}^{\prime}$.
Proof. Suppose that $\operatorname{rank} H_{\bar{f}}=N$. By the above considerations, if $g \in G_{f}^{\prime}$ and $\varphi:=f+\bar{g}$ then $\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \leq N$. We observe that if $g \in \nabla G_{f}^{\prime}$ then every solution k of the equation $H_{\bar{f}} k=\bar{z} \widetilde{g}$ has exactly norm 1 ; for, if k is a solution of the equation $H_{\bar{f}} k=\bar{z} \widetilde{g}$ with $\|k\|_{\infty}<1$ then $\frac{k}{\|k\|_{\infty}} \in \mathcal{E}(\psi)$ for $\psi:=f+\overline{g /\|k\|_{\infty}}$, and hence $\frac{1}{\|k\|_{\infty}} \cdot g=\frac{g}{\|k\|_{\infty}} \in G_{f}^{\prime}$, a contradiction. We now claim that if $g \in \nabla G_{f}^{\prime}$ then $\mathcal{E}(f+\bar{g})$ consists of exactly one finite Blaschke product. To see this observe that by Beurling's Theorem, $\operatorname{ker} H_{\bar{f}}=q H^{2}$ for some inner function q. (Recall that the second identity in (1) implies that $z\left(\operatorname{ker} H_{\varphi}\right) \subseteq \operatorname{ker} H_{\varphi}$ for all $\varphi \in L^{\infty}$.) Since $\operatorname{rank} H_{\bar{f}}<\infty, q$ must be a finite Blaschke product. Furthermore if k is in $\mathcal{E}(f+\bar{g})$, that is, k is a solution of the equation $H_{\bar{f}} k=\bar{z} \widetilde{g}$ and $\|k\|_{\infty} \leq 1$, then $\mathcal{E}(f+\bar{g})=G(q, k)=\left\{b \in k+q H^{\infty}:\|b\|_{\infty} \leq 1\right\}$. By the above considerations and Lemma $3, \mathcal{E}(f+\bar{g})$ then contains exactly one element. Since $\left[T_{\varphi}^{*}, T_{\varphi}\right]$ is of finite rank it follows from an argument of T. Nakazi and K. Takahashi [NT, Theorem $10]$ that $\mathcal{E}(f+\bar{g})$ contains a finite Blaschke product, and consequently, $\mathcal{E}(f+\bar{g})$ consists of one finite Blaschke product.

To prove $\nabla G_{f}^{\prime} \subseteq \operatorname{ext} G_{f}^{\prime}$, we now assume, without loss of generality, that g_{1}, $g_{2}, \frac{1}{2}\left(g_{1}+g_{2}\right) \in \nabla G_{f}^{\prime}$; it will suffice to show that $g_{1}=g_{2}$. By what we have just discussed, there exist finite Blaschke products b_{1} and b_{2} corresponding to g_{1} and g_{2}, respectively. Since $H_{\bar{f}} b_{i}=\bar{z} \widetilde{g}_{i}$ for $i=1,2$, it follows that $\frac{1}{2}\left(b_{1}+b_{2}\right)$ is a solution of the equation $H_{\bar{f}} k=\frac{1}{2} \bar{z}\left(\widetilde{g_{1}}+\widetilde{g_{2}}\right)$. Further since $\left\|\frac{1}{2}\left(b_{1}+b_{2}\right)\right\|_{\infty} \leq 1$, we have that $\frac{1}{2}\left(b_{1}+b_{2}\right) \in \mathcal{E}\left(f+\overline{\frac{1}{2}\left(g_{1}+g_{2}\right)}\right)$. But since $\frac{1}{2}\left(g_{1}+g_{2}\right) \in \nabla G_{f}^{\prime}$, it follows that $\frac{1}{2}\left(b_{1}+b_{2}\right)$ is a finite Blaschke product. However since Blaschke products are extreme points of the unit ball of H^{∞} (cf. [Ga, p. 179]), we can conclude that $b_{1}=b_{2}$, which implies $g_{1}=g_{2}$. (In fact, by an argument of K. deLeeuw and W. Rudin [dLR], if $f \in H^{\infty},\|f\|_{\infty}=1$, then f is an extreme point of the unit ball of H^{∞} if and only if $\int \log \left(1-\left|f\left(e^{i \theta}\right)\right|\right) d \theta=-\infty$.) This completes the proof of Theorem 4.

References

[Ab] M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604, MR 55 \#1126, Zbl 0332.47017.
[CCL] M. Chō, R. E. Curto and W. Y. Lee, Triangular Toeplitz contractions and Cowen sets for analytic polynomials, preprint 2000.
[Co1] C. C. Cowen, Hyponormal and subnormal Toeplitz operators, Surveys of Some Recent Results in Operator Theory, I (J.B. Conway and B.B. Morrel, eds.), Pitman Research Notes in Mathematics, Vol 171, Longman, 1988; pp. 155-167, MR 90j:47022, Zbl 0677.47017.
[Co2] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812, MR 89f:47038, Zbl 0668.47021.
[CoL] C. C. Cowen and J. J. Long, Some subnormal Toeplitz operators, J. Reine Angew. Math. 351 (1984), 216-220, MR 86h:47034.
[CuL] R. E. Curto and W. Y. Lee, Joint Hyponormality of Toeplitz Pairs, Memoirs Amer. Math. Soc. no. 712, Amer. Math. Soc., Providence, 2001, CMP 1810770.
[dLR] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H_{1}, Pacific J. Math. 8 (1958), 467-485, MR 20 \#5426, Zbl 0084.27503.
[FF] C. Foiaş and A. Frazho, The Commutant Lifting Approach to Interpolation Problems, Operator Theory: Adv. Appl., no. 44, Birkhäuser-Verlag, Boston, 1990, MR 92k:47033, Zbl 0718.47010.
[Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981, MR 83g:30037, Zbl 0469.30024.
[NT] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), 753-769, MR 93j:47040, Zbl 0798.47018.

Department of Mathematics, University of Iowa, Iowa City, IA 52242
curto@math.uiowa.edu http://www.math.uiowa.edu/~curto/
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea wylee@yurim.skku.ac.kr

This paper is available via http://nyjm.albany.edu:8000/j/2001/7-13.html.

[^0]: Received February 15, 2001.
 Mathematics Subject Classification. Primary 47B35; Secondary 47B20, 30D50.
 Key words and phrases. Toeplitz operators, Hankel operators, hyponormal operators, reduced Cowen sets, Hermite-Fejér interpolation problem.

 The work of the first author was partially supported by NSF research grant DMS-9800931.
 The work of the second author was partially supported by grant No. 2000-1-10100-002-3 from the Basic Research Program of the KOSEF.

