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Abstract� A pseudocharacter of a semigroup S is a real function � on S

satisfying the following conditions�
�� The set f��xy� � ��x�� ��y�� x� y � Sg is bounded�
�� For x � S and n � N �and n � Z if S is a group��

��xn�  n��x��

A description of the space of pseudocharacters on some extensions of free
groups is given�
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�� Introduction

In ���	 S� M� Ulam posed the following problem� Given a group G�
 a metric
group �G�� d� and a positive number �
 does there exist a � � 	 such that if f 
G� � G� satis�es d�f�xy�� f�x�f�y�� � � for all x� y � G�
 then a homomorphism
T  G� � G� exists with d�f�x�� T �x�� � � for all x� y � G�� See S� M� Ulam
����	� or ������ for a discussion of such problems
 as well as D� H� Hyers �����

�����
 D� H� Hyers and S� M� Ulam �����
 �����
 Th� M� Rassias ������
 J� Acz�el
and J� Dhombres �������

In case of a positive answer to the previous problem
 we say that the homomor�
phisms G� � C� are stable or that the Cauchy functional equation

��xy� � ��x���y����

is stable�
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The �rst a�rmative answer was given by D� H� Hyers ���� in ����� Consider the
additive Cauchy equation

��xy� � ��x� � ��y�����

Obviously this equation is exactly the same as equation ���
 but with the use of
the additive notation on the right�hand side we emphasize that the range of the
function is in an additive group�

Theorem � �D� H� Hyers�� Let E�� E� be Banach spaces and let f  E� � E�

satisfy the following condition there is � � 	 such that

jj f�x � y�� f�x� � f�y� jj � � for all x� y � E�����

Then there exists T  E� � E� such that

T �x � y�� T �x� � T �y� � 	 for all x� y � E����

and

jj f�x� � T �x� jj � � for all x � E�����

If we carefully look at the proof of Hyers� Theorem
 the existence of the ad�
ditive function T uniformly approximating f 
 we easily recognize that the result
remains true if we replace the additive group of the Banach space E� by a commu�
tative semigroup S� So we can conclude that the homomorphisms from an abelian
simigroup into the additive group of a Banach space are stable�

After Hyers� result a great number of papers on the subject have been published

generalizing Ulam�s problem and Hyers� Theorem in various directions� See ����

���������
 ����������

De�nition �� Let G be a semigroup and B a Banach space� We say that equa�
tion ��� is stable for the pair �G�B� if
 for every function f  G� B such that

jjf�xy� � f�x� � f�y�jj � �� x� y � G for some � � 	�

there exists a solution � of ��� such that

jjf�x� � ��x�jj � �� �x � G

for some � depending only on ��

In ���� it has been proved that B�� B� are Banach spaces
 then ��� is stable for
�G�B�� if and only if it is stable for �G�B���

Due to this remark we simply say that ��� is stable for a group or a semigroup
G� Thus Hyers�s Theorem says that ��� is stable for any commutative semigroup
G� A remarkable achievement was that of L� Sz�ekelyhidi who in ���� replaced the
original proof given by Hyers by a new one based on the use of invariant means�

Theorem � �L� Sz�ekelyhidi�� Let G be a left �right� amenable semigroup� then ���
is stable for G�

Now a question naturally arises do groups or semigroups exist for which equa�
tion ��� is not stable� In view of L� Sz�ekelyhidi�s Theorem we must look among
non�amenable groups or semigroups and in fact in ��
 �
 �
 �
 �	� it was proved
that on a free nonabelian group �or semigroup� the additive Cauchy equation ���
is not stable� We recall the example of Forti �see ��	��� Let F �	� 
� be the free
group generated by the two elements 	
 
� Let each word x � F �	� 
� be written in
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reduced form
 i�e�
 x does not contain pairs of the forms 		��
 	��	
 

��
 
��

and has no exponents di�erent from � and ��� De�ne the function f  F �	� 
� � R

as follows� If r�x� is the number of pairs of the form 	
 in x and s�x� is the number
of pairs of the form 
��	�� in x
 put f�x� � r�x� � s�x��

It is easily seen that for all x� y � F �	� 
� we have f�xy� � f�x� � f�y� �
f��� 	� �g
 i�e�
 f satis�es ���� Now
 assume that there is T  F �	� 
� � R such
that the relations ���
 and ��� hold� But T is completely determined by its values
T �	� and T �
�
 while f is identically zero on the subgroups A and B generated by
	 and 

 respectively� Indeed
 T �	n� � nT �	� and f�	n� � 	 for n � N� Since
T �	n� � f�	n� � nT �	� for n � N
 it follows that T �	� � 	� Similarly we have
T �
� � 	
 so that T is identically zero on F �	� 
�� Hence
 f � T � f on F �	� 
�
where f is unbounded� This contradiction proves that there is no homomorphism
T  F �	� 
� � R such that the relation ��� holds�

It turns out that the existence of mappings that are �almost homomorphisms�
but are not small perturbations of homomorphisms has an algebraic nature�

De�nition �� A quasicharacter of a semigroup S is a real�valued function f on S
such that ff�xy�� f�x� � f�y� jx� y � Sg is bounded�

De�nition �� By a pseudocharacter on a semigroup S �group S� we mean a qua�
sicharacter f such that for x � S and n � N �and for n � Z
 if S is group�


f�xn� � nf�x��

The set of quasicharacters of semigroup S is a vector space �with respect to the
usual operations of addition of functions and multiplication by scalars�
 which will
be denoted by KX�S�� The subspace of KX�S� consisting of pseudocharacters will
be denoted by PX�S� and the subspace consisting of real additive characters of the
semigroup S
 will be denoted by X�S��

We say that a pseudocharacter � of the group G is nontrivial if � �� X�G��
In connection with the example of Forti
 note that his function is a quasicharacter

of the free group F �	� 
� but not a pseudocharacter of F �	� 
�� In ��
 �� the set
of all pseudocharacters of free groups was described� In ������� a description of
the spaces of pseudocharacters on free groups and semigroups
 semidirect and free
products of semigroups was given�

For a mapping f of the group G into the semigroup of linear transformations
of a vector space
 su�cient conditions for the coincidence of the solution of the
functional inequality jjf�xy��f�x��f�y�jj � c with the solution of the corresponding
functional equation f�xy� � f�x� � f�y� � 	 were studied in the papers ��
 ��� In
the papers ���
 ���
 it was independently shown that if a continuous mapping f of
a compact group G into the algebra of endomorphisms of a Banach space satis�es
the relation kf�xy��f�x� �f�y�k � � for all x� y � G with a su�ciently small � � 	

then f is ��close to a continuous representation g of the same group in the same
Banach space �i�e�
 we have kf�x�� g�x�k � � for all x � G��

Let H be a Hilbert space and let U�H� be the group of unitary operators of
H endowed by operator�norm topology� If H is n�dimensional
 n � N
 we denote
U�H� by U�n��

De�nition �� Let 	 � � � �� Let T be a mapping of a group G into U�H�� We
say that T is an ��representation if for any x� y � G the relation

kT �xy�� T �x�T �y�k � �
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holds�

V� Milman raised the following question Let �  G � U�H� be an ��represen�
tation with small �� Is it true that � is near to an actual representation  of the
group G in H 
 i�e�
 does there exist some small � � 	 such that k��x� � �x�k � �
for all x � G � Answering this question Kazhdan in ���� obtained the following

Theorem � �D� Kazhdan�� There is a group � with the following property� For

any 	 � � � � and any natural number n � �
�
there exists an ��representation �

such that for any homomorphism   G� U�n� the relation

k�� k � supfk��x�� �x�k  x � �g �
�

�	

holds�

Note that the group � has the following presentation in terms of generators and
relations � � hx� y� a� b kx��y��xya��b��abi�

By using pseudocharacters a strengthening of Kazhdan�s Theorem was estab�
lished in ��� as follows�

We say that a group G belongs to the class K if every nonunit quotient group of
G has an element of order two�

Theorem � �V� Fa!iziev�� Let H be a Hilbert space and let U�H� be its group of

unitary operators� Suppose the groups A and B belong to the class K and the order

of B is more than two� Then the free product G � A�B has the following property�

For any � � 	 there exists a mapping T  G � U�H� satisfying the following

conditions�

�� kT �xy�� T �x� � T �y�k � �� for all x� y � G�

�� For any representation   G� U�H�� we have

supfkT �x�� �x�k  x � Gg � ��

There is the following connection of quasicharacters and pseudocharacters with
the theory of Banach algebra cohomology The de�nition of a quasicharacter co�
incides with that of a bounded ��cocycle on the semigroup� Hence
 if a semigroup
S has a nontrivial pseudocharacter
 i�e�
 PX�S� nX�S� 	� 

 then arguing as ����

Proposition ���
 we obtain H��S�C� 	� 	�

The aim of this paper is to establish an existence of nontrivial pseudocharacters
on some classes of extensions of free groups and to describe the set of pseudochar�
acters on some groups�

�� Pseudocharacters on some extensions of free groups

Let G be a group and let 	 be an automorphism of G� For any � � PX�G� we
set ���x� � ��x�� �x � G� It is clear that �� is a pseudocharacter of the group
G�

De�nition �� We shall say that � is invariant under 	 if �� � �� If this relation
is true for each a from H � AutG
 we shall say that � is invariant under H �

Denote by PX�G�H� the subspace of PX�G� consisting of a pseudocharacters
of the group G invariant under H �
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In this article by F we mean a free group with a set of free generators X such
that jX j � ��

Recall that a word v � x��i� x
��
i�
� � �x�nin ��i � f����g� is reduced if x�kik 	� x

��k��
ik��

for k � �� �� � � � � n� ��
By the length of v we mean the number n which we denote by jvj� If v is reduced

and the relation x��i� 	� x��nin
holds we say that v is cyclically reduced� Denote by

��X� the set of reduced words� And denote by c�X� the set of cyclically reduced
words� For a word v denote by ��v� an element from ��X� such that v � ��v�� Let
��v� � u��zu
 where z � c�X�� We set c�v� � z�

Each pseudocharacter of any group is invariant under its inner automorphisms
�see ��� Lemma �� �� Therefore if A is an automorphism group of the group F 

then PX�F�A� � PX�F�A � InnF �� Hence below without loss of generality
 we
can assume that InnF � A�

Denote by a the image of the element a � A under the natural epimorphism A�
A�InnF and denote by A the image of the group A under the same epimorphism�

De�nition 	� Two elements u� v from F are called A�conjugate if there is a � A
such that elements ua and v are conjugate in F �

We denote the relation of A�conjugacy by �A� It is clear that �A is an equiva�
lence relation�

De�nition 
� An element u of F is called simple if for each v � F and each n � �
the relation u 	� vn holds�

Denote by P the set of simple elements of the group F � The set P is divided
into classes of A�conjugacy�

Denote by P the set of A�conjugacy classes of elements of P � Denote by P� subset
of P consisting of classes such that in each of them there is a pair of mutually inverse
elements�

Let us verify that P� 	� P � Let x� y � X  x 	� y
 m � �� We check that
the element v � xmyxy�� is not A�conjugate to v��� For this we show that for
any a � AutF the element va is not conjugate to v�� in the group F � Indeed

suppose that for some b � AutF the element vb is conjugate to v�� in F � Then
there is 	 � AutF such that v� � v��� By Proposition ��� from ���� there is an
automorphism 
 of F which is nonidentity only on a �nite subset of X 
 and such
that v� � v��� Let us choose a �nite subset X �

� � fx�� x�� � � � � xkg of X such that
x� y � X �

� and the relations x� � x �x � X nX �
� hold� Let us add if necessary to

X �
� elements xk��� � � � � xq from X n X �

� such that all the words x�i 
 i � k
 can be
written in alphabet X� � fx�� x�� � � � � xk� xk��� � � � � xqg� Let X� � X n X�� And
let Fi be the subgroups of F generated by Xi
 i � �� � respectively� It is clear
that F is free product F � F� � F�� Since 
 is an automorphism of the group F

and F �
� � F�
 F �

� � F� we obtain that 
 is an automorphism of F� too� Direct
calculation shows that if � is a Whitehead automorphism of the group F� �see
����� such that jc�v� �j � jc�v�j
 then either � is a permutable automorphism or
there is an element a � X��

� such that v� � a��va�
 � � f��� �g� Similarly for
the word v�� from the equality jc��v���� �j � jc�v���j it follows that either � is a
permutable automorphism or for some g � X��

� the relation �v���� � g��iv��g�i 

�i � f��� �g is valid� It is clear that there is no Whitehead transformation that
transforms the word v into some cyclic permutation of the word v��� Hence
 by
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Proposition ���� from ���� we �nd that there is no element 	 from AutF� that
transforms v into v��� Futhermore
 there is no automorphism of the group F that
transforms v into v��� Hence
 the element v � xmyxy�� is not A�conjugate to v���

Let v � x
�i�
i�
x
�i�
i�

� � �x
�in��
in��

x
�in
in

be a reduced word� We recall �see ���� that the

set of �beginnings � H�v� and the set of �ends� K�v� of the word v is de�ned as
follows if n � �
 then H�v� � K�v� � fg
 where  is empty word� If n � �
 then

H�v� � f� x
�i�
i�
� x

�i�
i�
x
�i�
i�
� � � � � x

�i�
i�
x
�i�
i�

� � �x
�in
in��

g

K�v� � fx
�i�
i�

� � �x
�in
in

� � � � � x
�in��
in��

x
�in
in

� x
�in
in

�g�

Let Q � P n P��

Lemma �� There is a set of representatives T of the A�conjugacy classes belonging

to Q such that the following conditions hold�

�� T � c�X�
�� T�� � T �
�� H�w� �K�w� � fg for all w � T �
�� There exists T� � T such that T� � �T���� � 
 and T � T� � �T�����

Proof� The Lemmas � and � from ��� imply that there is a system of representatives
P of classes of conjugacy in F satisfying ����� with P in place of T �

It is clear if q � Q
then q is the union of conjugacy classes in F � Let us choose
as a representative of a class q an element from the set q � P � It is clear that we
can choose the system of representatives such that w is a representative if and only
if w�� is a representative too� Hence
 we can choose T� � T such that T� � P�

T� � �T���� � 
 and T � T� � �T����� �

Lemma �� Let � be a pseudocharacter of F such that j��uv� � ��u� � ��v�j � c
for any u� v � F and j��x�j � � for x � X� Then for any v with jvj � �� we have

j��v�j � �jvj � ��c � jvj��

Proof� For any u� v � F the inequality j��uv�j � j��u�j� j��v�j� c holds� Hence

by induction on the length of the word v we get j��v�j � �jvj � ��c � jvj�� �

Denote by BPX�FX � A� the subspace of PX�F�A� consisting of pseudocharac�
ters that are bounded on the set X � Let P be the set from the proof of Lemma ��
Now de�ne a system of measures on the set P � For any pair of reduced words u
and v and for any three reduced words a� b� c such that the word abc is reduced

too
 we de�ne the measures �u�v 
 �a�b�c �u�v and �a�b�c on the set P as follows�

It is easy to see that for any u� v � ��X� there is a uniquely de�ned triple of
words u�� v�� z from ��X� such that u � u�z
 v � z��v�
 u�v� � ��X�� Now set
���u� v� � u�
 ���u� v� � v�
 	�u� v� � z� We set �u�v�w� � � if and only if there
are nonempty words t and � such that

t � K����u� v��� � � H����u� v��� w � t�  

otherwise we set �u�v�w� � 	� We set �a�b�c�w� � � if and only if b 	�  and there
are nonempty words t and � such that

t � K�a�� � � H�c�� w � tb�  

otherwise we set �a�b�c�w� � 	� Now we set

�u�v�w� � �u�v�w� � �u�v�w���� �a�b�c�w� � �a�b�c�w� � �a�b�c�w
����
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Let v � ��X�� Then there is a uniquely de�ned pair of words v
 z�v� from �
such that v � z�v���vz�v� and the word v is cyclically reduced� Furthermore
 for
each pair of reduced words u� v from the group F we de�ne three measures "u�v

�u�v
 #u�v on P as follows

"u�v�w� � ����u�v�����u�v��w� � ����u�v����u�v��w� � ���u�v�������u�v��w� 

�u�v�w� � �
��uv����uv��w� � �

z���uv�������uv��w� � �
��uv��z���uv���w�

� �
z���uv�������uv��z���uv���w� � �u�u�w� � �z�u����u�w�

� �u�z�u��w� � �z�u����u�z�u��w� � �v�v�w�

� �z�v����v�w� � �v�z�v��w� � �z�v����v�z�v��w� 

#u�v�w� � "u�v�w� � �u�v�w��

For any two words u� v we set #u�v�w� � #��u����v��w��

Let w � P� and let v � ��X�� Then either v has no subwords equal to w or
w��
 or

v � t�w
i� t�w

i� � � � tkw
ik tk������

Here � denotes graphical equality of the words
 ij � Z n f	g
 and the words tj
have no occurrences of subwords equal to w or w��� And in this presentation each
occurrence of the words w and w�� in v is �xed�

The presentation of v in the form ��� we shall call its w�decomposition�
Now for each element w � P de�ne a function ew on the set of words in the

group alphabet X � First we de�ne ew on cyclically reduced words� Let u be a
cyclically reduced word� Suppose that u has occurrences of w�
 � � f����g and
u � t�w

i� � � � tkw
ik tk�� is its w�decomposition
 then we set

ew�u� �

kX
j��

ij � �tk���t��w��

Suppose that u has no occurrences of w�
 � � f����g� Consider two cases�

�� If among the cyclic permutations of u there are no words containing occur�
rences of w or w��
 we set ew�u� � 	�

�� If among the cyclic permutations of u there is a word containing w�
 � �
f����g
 we set ew�u� � ��

Now let v � ��X� then v is uniquely representable in the form v � z�v���vz�v�

where v � c�X�� In this case we set ew�v� � ew�v�� Finally for an arbitrary word
v we set ew�v� � ew���v���

Lemma �� The system of pseudocharacters few  w � P�g has the following prop�

erties�

�� jew�uv� � ew�u� � ew�v�j � �� for any u� v � F and w � P��

�� If jw�j � jw�j� then ew��w�� � 	�
�� If jw�j � jw�j and w� 	� w�� then ew��w�� � 	�
�� ew�w� � � for each w � P��

Proof� See ���
 Theorem �� �

From these properties we obtain that if w�� w� � T�
 w� 	� w� and jw�j � jw�j

then ew��w�� � 	�



��� Valeri�i Fa�iziev

De�nition �� Let w � T�� We shall say that w satis�es the condition of boundness

�a� if for any v � F there is c�w� v� � 	 such that

cardf	 � A j ew�v�� 	� 	g � c�w� v�����

Let M be a subset of T�� We shall say that M satis�es the condition of boundness

�a�
 if for any w �M and any v � F there is c�w� v� � 	 such that the relation ���
holds�

For w � T� satisfying the condition of boundness �a� we de�ne a function �w by
setting

�w�v� �
X
��C

ew�v�� v � F�

where C denotes a system of representatives of cosets of the quotient group A
by InnF � Since any pseudocharacter is invariant under inner automorphisms we
obtain that the de�nition of the function �w does not depend on the system of
representatives of the cosets of the quotient group A by InnF � Hence
 we can
write

�w�v� �
X
��A

ew�v���

By formula �� from ��� we have

#u�v�w� � ew�uv� � ew�u�� ew�v� for all w � P� and u� v � F ����

Starting from the measures #u�v we de�ne measures #A
u�v and #

A

u�v on the set

T� as follows

#A
u�v�w� �

X
��A

#u��v��w�� #
A

u�v �
�

�w�w�
#A
u�v�

De�nition �� Let w � T�� We shall say that w satis�es the condition of boundness

�b� if there is dw � 	 such that

cardf	 � A jw � supp#u��v�g � dw for all u� v � F ����

We shall say that M � T� satis�es the condition of boundness �b� if for each w �M
there is dw � 	 such that the relation ��� holds�

Lemma �� Let w � T� satisfy the conditions of boundness �a� and �b�� Then the

function �w is an element of PX�F�A��

Proof� The condition of boundness �a� is used in the de�nition of the function �w�
From the conditions of boundness �b� we have

j�w�uv�� �w�u� � �w�v�j � j
X
a�A

ew��uv��� �
X
a�A

ew�u�� �
X
a�A

ew�v��j

� j
X
a�A

�ew�u�v�� � ew�u��� ew�v���j

�
X
a�A

j#u��v��w�j � �� � dw

for any u� v � F � �
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De�nition �� Let T�
n � fw  w � T�� jwj � ng�

�� We shall say that the set T�
n satis�es the condition of boundness �b�� if there

is d�n� � 	 such that for each w � T�
n 


cardf	 � A jw � supp#u��v�g � d�n� for all u� v � F �

�� We shall say that the set T�
n satis�es the condition of boundness �c� if there

is c�n� � 	 such that

jT�
n � supp#A

u�vj � c�n� for all u� v � F �

�� We shall say that the set T� satis�es the condition of boundness �d� if for
any w � T� and any v � F such that v �A w


jc�v�j � jwj�

Lemma �� Let w�� w� be distinct elements from the set T� satisfying the condi�

tions of boundness �a�� �c� and �d�� Then �w��w�� � 	� �w��w�� � ��

Proof� Let jw�j � jw�j� Then the conditions of the Lemma imply that jc�w�
� �j �

jw�j for all 	 � A� Hence
 from Lemma �
 assertion ��
 and from the fact that any
pseudocharacter is invariant under inner automorphisms it follows that �w��w�� � 	�
Now suppose that jw�j � jw�j and w� 	� w�� Then for each 	 from A the element w�

�

is conjugate in F neither to w�
 nor to w��� � Moreover
 the relation jc�w�
� �j � jc�w��j

holds� Hence
 from Lemma �
 assertions �� and ��
 we get ew��w�
� � � 	 for all 	 � A�

The de�nition of the set T� implies that elements w�
� 
 w��� are not conjugate in

F and the estimation jc�w�
� �j � jc�w��j holds� Hence
 from Lemma �
 assertions ��

and ��
 we get that if for some 	� from A the inequality ew��w
��
� � 	� 	 holds
 then

ew��w
��
� � � �� Now from relation ew��w�� � � we have �w��w�� � �� �

Note that the set f�w  w � T�g is linearly independent� Indeed
 let w�� � � � � wn

be pairwise distinct elements from T� and let ��� � � � � �n be nonzero numbers such
that

Pn
i�� �i�wi

� 	� We may assume that jw�j � � � � � jwnj� Then Lemma �
implies ��wn� � �n�wn

�wn� and we obtain a contradiction to the relation �n 	� 	�
Now set

�w�v� �
�

�w�w�
� �w�v��

It is clear that �w�w� � �� In general the function �w is not an integer�valued
pseudocharacter�

Lemma 	� Let w � T� and u� v � F � Then

�w�uv� � �w�u� � �w�v� � #A
u�v�w����	�

�w�uv�� �w�u� � �w�v� � #
A

u�v�w������

Proof� The equality ���� follows from ��	�� Let us verify ��	�� From

ew�u�v�� � ew�u�� � ew�v�� � #u��v��w��
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�see ��� formula ��� we get

�w�uv� � �w�u� � �w�v� �
X
��A

�e�w�uv� � e�w�u�� e�w�v��

�
X
��A

�ew�u�v�� � ew�u�� � ew�v���

�
X
��A

#u��v��w�

� #u�v�w��

�

Theorem �� Let n be a positive integer� Let the set T�
n satisfy the conditions of

boundness �a�� �b�� and �c� and let t be a bounded function on the set T�
n � Then

�� The functions

�t �
X
w�T�n

t�w��w

�t �
X
w�T�n

t�w��w����

belong to the space PX�F�A��
�� �t�w� � t�w�� for all w � T�

n �

Proof� It is obvious that for each 	 from A
 each integer n and each v from F 
 the
equalities

��t � �t � ��t � �t � ��t �vn� � n�t�v� � ��t �vn� � n�t�v�

hold� We verify that the set f�t�uv� � �t�u� � �t�v�  u� v � Fg is bounded� Let
c � 	 be such that supfjt�w�j  w � T�

n g � c� Then for any elements u� v from F
we have

�t�uv� � �t�u� � �t�v� �
X
w�T�n

t�w�#A
u�v����

�t�uv�� �t�u�� �t�v� �
X
w�T�n

t�w�#
A

u�v�����

Indeed


�t�uv�� �t�u� � �t�v� �
X
w�T�n

t�w��w�uv��
X
w�T�n

t�w��w�u� �
X
w�T�n

t�w��w�v�

�
X
w�T

�
n

t�w���w�uv�� �w�u� � �w�v��

�
X
w�T�n

t�w�#A
u�v �

Similarly ���� is established� Further
 from the conditions of boundness �b��
�c�
and ���� we have

j�t�uv� � �t�u� � �t�v�j � j
X
w�T�n

t�w�#A
u�v j � c � d�n�c�n��
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Similarly

j�t�uv� � �t�u�� �t�v�j � c � d�n�c�n��

Thus
 �t� �t � PX�F�A�� Let w� � T�
n 
 then Lemma � and the de�nition of �w

imply

�t�w�� �
X
w�T

�
n

t�w��w�w�� �
X
w�T

�
n

t�w�
�w�w��

�w�w�
�
�w��w��

�w��w��
� t�w���

�

De�nition ��� We shall say that the set T� satis�es the condition of boundness

�c�� if for any n � � the set T�
n satis�es the condition of boundness �c��

De�nition ��� We shall say that the set T� satis�es the condition of boundness

if it satis�es the conditions of boundness �a�
 �c��
 �d� and for any n � N the set
T�
n satis�es the condition of boundness �b���

Let the set T� satisfy the condition of boundness� Denote by E the set of
functions � on the group F that satisfy the following conditions�

�� ��xn� � n��x� for each x � F and each n � Z�
�� ��x�� � ��x� for any x � F and each 	 � A�
�� ��xy� � ��yx� for all x� y � F �
�� � is bounded on T�

i for each i � N�

Obviously
 E is a linear space under the usual operations� Let L�T � be a linear
space of a real functions t on T�
 satisfying the following condition

t is bounded on T�
i for each i � N�

Let us construct an isomorphism  between the linear spaces E and L�T �� Let
� � E� For any i � N let us de�ne a function ti  T�

i � R as follows� We set
t� � �

��
T�
�

� The function t� is bounded� By Theorem � the function

�t� �
X
w�T�

�

t��w��w

belongs to the space BPX�FX � A�� Now de�ne t� as follows for any w from T�
�

we set

t��w� � ��� �t���w��

It is clear that the function t� is bounded� Further
 the functions ti are de�ned
by induction if t�� � � � � tn have been already de�ned and are bounded
 then for each
w � T�

n�� we set

tn���w� � ��w� �
nX
i��

�ti�w�����

where the functions �ti are pseudocharacters
 which are constructed in Theorem �
by the formula ����� It is obvious that the function tn�� is bounded� Now de�ne
a function ���
 which we denote by t
 as follows if w � T�

i 
 then we set
t�w� � ti�w�� It is clear that t � L�T�� and that the mapping  is linear� Let us
show that the following equality holds
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� �

�X
i��

�ti �����

If w � T�
� 
 then ���� and Lemma � imply that for each i � � the equality

�ti�w� � 	 holds� Hence
 ��w� � �t��w� � t��w� and the equality ���� is valid�
Suppose the equality ���� has been already established for all w from �ni��T

�
i � Let

us prove it for w from T�
n��� Suppose that w � T�

n��� Then from ���� and the
de�nition of the functions tn�� and �tn�� we obtain

�tn���w� � ��w� �
nX
i��

�ti�w��

i�e�


��w� �

n��X
i��

�ti�w��

Now from the relation �tn���w� � 	 for i � n � � we get

��w� �

�X
i��

�ti�w��

Thus the formula ���� is true for all w from T � The functions from the left and
right sides of the equality ���� satisfy conditions �� and �� from the de�nition of
the space E� Hence this equality will be true for all elements of F � Note that if
the �i are bounded functions on T�

i 
 i � N and ��i are pseudocharacters of F 
 that
are de�ned by formula ����
 then the function � �

P�

i�� ��i belongs to E and the
following equation

���
��
T�
i

� �i� for each i � N����

holds� Indeed
 suppose that 
i are functions de�ned on the set T�
i 
 i � N such that


� � �
��
T�
�

and that for n � � the function 
n�� is de�ned by the formula


n�� � ���
nX
i��

��i�
��
T
�

n��

�

Then 
� � �
��
T�
�

� ��
 
��w� � ��w� � ����w� � ���w� for each w � T�
� �

Suppose that 
i � �i for i � n� Then using the relation �i�w� � 	 for i � n� �
 for
w � T�

n�� we obtain


n���w� � ��w� �
nX
i��

��i�w�

�

�X
i��

��i�w� �
nX
i��

��i�w�

�
�X

i�n��

��i�w�

� ��n���w�

� �n���w��
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Thus the equality ���� is established� In particular the equality ���� implies that
the mapping  is an epimorphism� Let us show that ker � 	� Indeed
 suppose
that � � ker then from ���� and ���� we obtain

���
��
T�
k

�

�X
i��

�ti
��
T�
k

� tk � 	 for all k � N�

Hence
 for any k � N we have �
��
T�
k

� 	 and � � 	� Thus
 ker � 	 and  is an

isomorphism�
Denote by K�T�� the space of real function 
 on the set T� satisfying the

following conditions�

�� 

��
T�
I

is a bounded function for all i � N�

�� There is an � � ��
� � 	 such that for each pair of reduced words u� v from
F the following inequality holds�� Z

T�

 d#

A

u�v

�� � ��

It is clear that K�T�� is a subspace of L�T��� Let us verify that BPX�FX � A�
is subspace of E� It is clear from the conditions de�ning the space E that we
must verify only ��� Let us show that this follows from Lemma �� Indeed
 if
� � BPX�FX � A�
 then the function �

��
T�
�

is bounded� From the fact that � is a

pseudocharacter it follows that there is c � 	 such that for any u� v from F the
inequality j��uv� � ��u� � ��v�j � c holds� Let j��x�j � � for all x � X � Then
Lemma � implies that j��v�j � jvj ����jvj��� �c for all v � F � Hence
 BPX�FX � A�
is a subspace of E�

Theorem 	� Let the set T� satisfy the condition of boundness� Then�

�� The mapping  is an isomorphism between the spaces BPX�FX � A� and

K�T���
�� Each element � from BPX�FX � A� is uniquely representable in the form

� �
X
w�T�


�w��w�

where 
 � K�T���

Proof� �� Suppose that � � BPX�FX � A� and that j��uv� � ��u� � ��v�j � � for
some � � 	 and any u� v � F � Let ��� � 
 and 
i � 


��
T�
i

for i � N� Using ����

we obtain the following equation that is valid for any u� v � F �
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Z
T�


 d#
A

u�v �

�X
i��

Z
T�
i


 d#
A

u�v����

�
�X
i��

X
w�T�

i


�w�#
A

u�v�w�

�

�X
i��

X
w�T�

i


�w���w�uv� � �w�u�� �w�v��

�

�X
i��

X
w�T�

i


�w��w�uv� �
�X
i��

X
w�T�

i


�w��w�u�

�
�X
i��

X
w�T�

i


�w��w�v��

Now using formula ����
 the de�nition of pseudocharacters ��i and formula ����
we get

�� Z
T�


 d#
A

u�v

�� �
�� �X
i��

Z
T�
i


 d#
A

u�v

��
�
�� �X
i��

��i�uv� �
�X
i��

��i�u��
�X
i��

��i�v�
��

� j��uv� � ��u� � ��v�j � ��

Thus
 ��� � K�T��� Now let 
 � K�T�� and 
i � 

��
T�
i

� Then as was shown

above
 if ��i are the pseudocharacters de�ned by the formula ���� and if

� �
�X
i��

��i �

then ��� � 

 i�e�
 � � ���
�� Let us show that � belongs to BPX�FX � A�� Let

� � 	 such that
�� R

T�

 d#

A

u�v

�� � � for any u� v � F � Then

j��uv� � ��u� � ��v�j �
�� �X
i��

��i�uv� �
�X
i��

��i�u��
�X
i��

��i�v�
��

�
�� �X
i��

���i�uv� � ��i�u� � ��i�v��
��

�
�� �X
i��

X
w�T

�

i


i�w���w�uv� � �w�u� � �w�v��
��

�
�� �X
i��

X
w�T�

i


i�w�#
A

u�v�w�
��

�
�� Z

T�

 d#

A

u�v

�� � ��
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Hence
 � � BPX�FX � A� and  is an isomorphism between BPX�FX � A� and
K�T��

The assertion �� follows from assertion ��� �

The following result was obtained in ����

Theorem 
� Suppose that f is a quasicharacter of a semigroup S and that c � 	
is such that

jf�xy� � f�x� � f�y�j � c

for all x� y � S� Then the function

bf�x� � lim
n��

�

�n
f�x�

n

�����

is well�de�ned and is a pseudocharacter of S such that

j bf�xy� � bf�x� � bf�y�j � �c for all x� y � S�

Corollary �� Suppose that f is a quasicharacter of a group G and that c � 	 is

such that

jf�xy� � f�x� � f�y�j � c

for all x� y � G� Then the function

bf�x� � lim
n��

�

�n
f�x�

n

�

is well�de�ned and is a pseudocharacter of G such that

j bf�xy� � bf�x� � bf�y�j � �c for all x� y � G�

Proof� Theorem � implies that in order to prove that bf is a pseudocharacter of

group G it remains to verify that for each x � G the equality bf�x��� � � bf�x�

holds� From the relation bf�xn� � n bf�x� for all x � G and n � N
 we obtain

n bf��� � bf��n� � bf���� The latter is possible only if bf��� � 	� Hence
 j bf��� �bf�x� � bf�x���j � �c for all x � G and j bf�x� � bf�x���j � �c for all x � G� Whence

follows the inequality nj bf�x�� bf�x���j � j bf�xn�� bf��x���n�j � �c for all x � G

and n � N� This is possible only if bf�x��� � � bf�x�� Now let k � 	� Then we havebf�x�k� � bf��xk���� � � bf�xk� � �k bf�x�� �

Proposition �� Let A be a �nite group� Then there exists T� satisfying the con�

dition of boundness�

Proof� Let k be the order of the group A� It is clear that each class of A�conjugacy
is the union of at most k classes of conjugacy in F � From this fact we �nd that
the set q � P contains at most k elements� Hence
 one can choose an element of
maximal length in the set q�P � Hence
 there is a set of representatives T of classes
of A�conjugacy belonging to q such that the following relations hold�

�� w � T if and only if w�� � T �
�� Every element w � T has maximal length among the elements belonging to

the set c�X� and A�conjugated to w�

Hence
 in the set T we can choose subset T� such that T� � P�
 T� �
�T���� � 
 and T � T� � �T����� Now it easy to verify that the set T� satis�es
the condition of boundness� �
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Proposition �� Let H be an invariant subgroup of �nite index k in a group G�

Then PX�G� � PX�H�G��

Proof� Let us show that each element from PX�H�G� may be uniquely extended
to a pseudocharacter of the group G� Let � be an element from PX�H�G� and
c � 	 be such that

j��xy� � ��x� � ��y�j � c

for all x� y � H � Suppose that A is a system of representatives of cosets of G by H 

then each element g � G is uniquely representable in the form

g � 	�g�h�g�

where 	�g� � A
 h�g� � H � By hypothesis the set

f	�	�	��  	�� 	� � Ag

is �nite� Hence
 there is � � 	 such that

j��	�	�	���j � � for all 	�� 	� � A���	�

Now let �� the function on G de�ned by formula ���	h� � ��h�
 h � H� 	 � A�
Let us verify that �� belongs to KX�G�� We have

j���	�h�	�h��� ���	�h��� ���	�h��j

� j���	�	�h
��
� h� � ���	�h�� � ���	�h��j

� ���	�	�	��h�	�	��h��� h��� ���	�h��� ���	�h��j

� ���h�	�	��h
��
� h�� � ���h��� ���h��j

� ��h�	�	��h��� h��� ��h�� � ��h��j

� ��h�	�	��h��� h��� ��h��� �� ��h�� � ��h�	�	���

� ��h�	�	��� � ��h��� h�� � ��h��� h��j

� j��h�	�	��h��� h��� ��h�	�	��� � ��h��� h��j

� j��h��� h�� � ��h��� � � ��h��j � j��h�	�	���j

Now from ��	� we get

j���	�h�	�h�� � ���	�h�� � ���	�h��j � �c � ��

Thus �� � KX�G�
 hence �� � b�� is a pseudocharacter of the group G� Hereb�� is de�ned by ����� It is clear that ��
��
H

� �� Let us verify that the mapping

�� �� is one�to�one and maps PX�H�G� �onto� PX�G�� Indeed
 if f � PX�G�

then � � f

��
H
� PX�H�G� and �� coincides with f on subgroup H � Hence
 the

pseudocharacter � � f � �� vanishes on H � From the equality ��gk� � k��g�
for all g � G we obtain � � 	 on G and f � ��� Similarly we verify that if
��� �� � PX�H�G� and �� 	� ��
 then ��� 	� ���� �

Corollary �� If a group G is a �nite extension of a free group F of �nite rank�

then its space of pseudocharacters is described by Theorem ��

Proof� Let X � fx�� x�� � � � � xkg be a set of free generators of the group F and let
T� be the set from Proposition �� Let A be the group of automorphisms of the
group F that are induced by conjugation by elements from G� From the condition
we have that the group A � A�InnA is �nite and we can apply Proposition ��
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From the �niteness of the set X it is clear that every element of PX�F�G�
is bounded on the set X � Hence PX�F�G� � BPX�FX � G�� By Proposition �
we have PX�G� � PX�F�G� � BPX�FX � G� and we obtain that the space of
pseudocharacters of the group G is described by Theorem �� �

We note that Theorem � may be used to describe the space of pseudocharacters
of certain in�nite extensions of free groups of in�nite rank�

Example� Suppose that F is the free group with free generators X � fxi  i � Zg

and that A is an in�nite cyclic group with generator a� Let G � A � F be the
semidirect product such that F � G where A acts on F as follows

xai � xi��� i � Z�����

By Theorem � from ��� we have PX�G� � X�A� $�PX�F�A�
 where X�A� is a space
of additive characters of the group A� Let � be an arbitrary element from the space
PX�F�A�� From ���� it follows that � is constant on the set X � Hence
 we have
PX�F�A� � BPX�FX � A� and the problem of describing of the space PX�G� is
reduced to the problem of describing of BPX�FX � A�� Let T� be some set satisfying
the conditions of Lemma � and belonging to P�� It is easy to verify that T� satis�es
the condition of boundness� From this fact we obtain that the Theorem � describes
the space BPX�FX � A� and therefore the space of pseudocharacters of the group
G too�
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