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KK�Equivalence and Continuous Bundles of

C��Algebras

Klaus Thomsen

Abstract� A structural description is given of the separable C��algebras that
are contractible in KK�theory or E�theory� Subsequently it is shown that two
separable C��algebras A and B are KK�equivalent if and only if there is a
bundle of separable C��algebras over ��� �� which is piecewise trivial with no
more than six points of non�triviality such that the kernel of each �ber map is
KK�contractible all �ber maps are semi�split and such that the �bers at the
endpoints of the interval are A and B�
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�� Introduction

Through the work directed at classiying C��algebras it has become apparent
that the KK�theory of Kasparov� including the E�theory of Connes and Higson� of�
fers much more than a convenient setup for dealing with topological K�theory� Al�
though KK�theory was rst invented and developed� from the late seventies through
the eighties� as a tool to attack topological questions �the Novikov conjecture� and
calculate the K�theory of group C��algebras �the Baum�Connes conjecture�� it has
found some of its most profound applications in the classication program of the
nineties� And although it is clear that KK�theory as a carrier of information about
the structure of C��algebras can not in general stand alone when we seek to classify
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C��algebras up to isomorphism� it must necessarily play a major role in such e�orts�
As a consequence of this understanding it has become important to decide in which
way the structures of two C��algebras are related when they are KK�equivalent
and�or equivalent in E�theory� Dadarlat has obtained one answer to this question
in �D�� Two separable C��algebras are equivalent in E�theory if and only if their
stable suspensions are shape equivalent� The purpose of the present paper is to
use recent results of the author on KK�theory and E�theory to give an alternative
answer� and this time for KK�theory�

First of all we must decide what it means for a C��algebra to be KK�contractible�
i�e�� KK�equivalent to �� We do this rst for E�theory in Section � and then modify
the approach to handle KK�theory in Section �� The central notion in the de�
scription of which C��algebras are KK�contractible is called semi�contractibility� A
C��algebra is semi�contractible when the identity map of the algebra can be con�
nected to � by a continuous path of completely positive contractions such that the
maps in the path are almost multiplicative up to an arbitrary small toleration on
any given nite subset� It turns out that a separable and stable C��algebra A is
KK�contractible if and only it is the quotient of a semi�contractible C��algebra by
a semi�contractible ideal� In order to identify semi�contractible C��algebras in later
parts of the paper we give a description of them involving generalized inductive
limits in Section 
� The notion of a generalized inductive system of C��algebras
was introduced by Blackadar and Kirchberg in �BK� and the notion is a corner�
stone in the approach here� The idea behind such systems comes clearly from the
approximate intertwining of Elliott� �E�� but it is also inspired by the E�theory of
Connes and Higson� and it is only natural that we can use it in Section � to transfer
KK�theory information� encoded in two completely positive asymptotic homomor�
phisms� into an isomorphism between two C��algebras which are closely related to
the two given KK�equivalent separable C��algebras� A and B� The result is that
we obtain a continuous bundle of C��algebras which connects SA� K to SB �K
and has several quite special properties��

In the last section we glue the bundle from Section � together with other bundles�
notably a bundle considered by Elliott� Natsume and Nest in �ENN�� to obtain our
main result which says that two separable C��algebras� A and B� are KK�equivalent
if and only if they can be connected by a bundle of C��algebras over ��� �� of a
particular form� Specically� the bundle is a piecewise trivial bundle with no more
than six points of non�triviality such that the kernel of each ber map is KK�
contractible� all ber maps are semi�split and such that the bers at the endpoints
of the interval are A and B� In particular� it follows that all the ber algebras are
KK�equivalent to the bundle C��algebra� As an immediate corollary we get that A
and B are KK�equivalent if and only if there is a separable C��algebra D and two
surjective ��homomorphisms � � D � A and � � D � B� both of which admit a
completely positive section and have KK�contractible kernels� Any KK�equivalence
between separable C��algebras can therefore be realized by the Kasparov product
of a surjective ��homomorphism with the inverse of a surjective ��homomorphism�

�I have chosen to follow the lead from �KW� and use the word �bundle� instead of ��eld��
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�� Locally contractible C��algebras and triviality in E�theory

De�nition ���� A C��algebra D is called locally contractible when the following
holds� For every nite set F � D and every � � � there is a pointwise norm
continuous family of homogeneous maps� �s � D � D� s � ��� ��� such that �� � ��
�� � idD� k�s�a

�� � �s�a�
�k � �� k�s�a� � �s�b� � �s�a � b�k � �� k�s�a��s�b� �

�s�ab�k � � and k�s�a�k � kak� � for all s � ��� �� and all a� b � F �

Recall from �MT� that an extension of C��algebras

� �� J �� E
p

�� A �� �

is asymptotically split when there is an asymptotic homomorphism 	t � A� E� t �
������ such that p � 	t � idA for all t� If one can choose 	 � f	tgt������ to
be a completely positive asymptotic homomorphism� we say that the extension is
completely positive asymptotically split�

Theorem ���� Let A be a separable C��algebra� Then the following conditions are

equivalent�

a� A is contractible in E�theory �i�e�� ��SA�K� SA�K�� � ���
b� The canonical extension

� �� S�A�K �� cone�SA�K� �� SA�K �� �

is asymptotically split�

c� SA�K is locally contractible�

d� There is an extension

� �� J �� E �� A�K �� ����

of separable C��algebras where J is locally contractible and E is contractible�

e� There is an extension ��� of separable C��algebras where J and E are locally

contractible�

For the proof of this we need to go from information about discrete asymptotic
homomorphisms to information about genuine asymptotic homomorphisms� Let A
and B be arbitrary separable C��algebras� As in �Th�� we denote by ��A�B��N the
homotopy classes of discrete asymptotic homomorphisms from A to B� The shift

� given by 
���n � �n��� denes an automorphism of the group ��SA� SB��N� Let
��SA� SB���

N
denote the xed point group of 
� By Lemma ��� of �Th�� there is a

short exact sequence

� �� ��SA� SB��� �� ��SA� SB�� �� ��SA� SB���
N

�� �����

Here ��SA� SB��� is the subgroup of ��SA� SB�� consisting of the elements which can
be represented by an asymptotic homomorphism � � f�tg which is sequentially
trivial in the sense that the sequence ��� ��� ��� � � � converges pointwise to zero� i�e��
limn�� �n�x� � � for all x � SA� The surjective map ��SA� SB��� ��SA� SB���

N
is

obtained by restricting the parameters of the asymptotic homomorphisms from R

to N�
Besides the extension ��� from �Th�� we need the observation that the composi�

tion product of two elements from �������� is always zero�
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Lemma ���� Let � � f�gt�R � B � C and � � f�tgt�R � A � B be asymptotic

homomorphisms which are sequentially trivial� i�e�� satisfy that limn�� �n�b� �
�� b � B� and limn�� �n�a� � �� a � A� It follows that ��� 	 ��� � � in ��A�C���

Proof� Choose equicontinuous sequentially trivial asymptotic homomorphisms �� �
B � C and �� � A � B such that limt�� k�t�b� � ��t�b�k � �� b � B� and
limt�� k�t�a� � ��t�a�k � �� a � A� Let D be a countable dense subset of A� By
denition of 	 there is a parametrization r � ����� � ����� such that ��� 	 ��� is
represented by any equicontinuous asymptotic homomorphism � which satises that
limt�� �t�a�� ��s�t� � �

�
t�a� � �� a � D� for some parametrization s 
 r� We leave

the reader to construct a parametrization s 
 r with the property that s�t� � N for
all t outside a neighbourhood of N � ����� and such that limt�� ��

s�t� ��
�
t�a� � �

for all a � D� By equicontinuity of � this implies that limt�� �t�a� � � for all
a � A� �

We can now give the proof of Theorem ����

Proof� a� � b�� Set B � A � K� Since �idSB � � � in ��SB� SB��� it follows from
Theorem ��� of �Th�� that there is an asymptotic homomorphism  � ftgt������ �

cone�B�� SB and a norm continuous path� Ut� t � ������ of unitaries inM��SB�
�

such that

lim
t��

�
b

t�b�

�
� Ut

�
�

t�b�

�
U�t � �

for all b � SB� Let V�� V� be isometries in the multiplier algebra M�SB� of SB
such that V�V

�
� � V�V

�
� � � and consider a strictly continuous path Ws� s � ��� ���

of isometries in M�SB� such that W� � � and W� � V�� Let Tt be the image
of Ut under the isomorphism M��M�SB�� � M�SB� obtained from V�� V�� Let
�s � cone�B� � cone�B�� s � ��� ��� be the canonical trivialization of cone�B�� i�e��
�s�f��t� � f�st�� Dene �ts � SB � SB� s � ��� 
�� by

�ts�a� �

�����
����

WsaW
�
s � s � ��� ��

V�aV
�
� � V�t��s���a��V

�
� � s � ��� ��

��� s��V�aV
�
� � V�t�a�V

�
� � � �s� ��TtV�t�a�V

�
� T

�
t � s � ��� ��

TtV�t��	�s�a��V
�
� T

�
t � s � ��� 
�

Dene 	t � SB � cone�SB� by 	t�x��s� � �t	�	s�x��
b� � c�� Let 	 � f	tgt������ � SA � K � cone�SA � K� be an asymptotic

homomorphism such that 	t�x���� � x for all t and all x� Fix a t 
 �� If a
nite subset F � SA � K and � � � are given� dene �s � SA � K � SA � K
by �s�x� � 	t�x��s�� If t is large enough f�sgs�����
 will meet the requirements of
Denition ����

c� � d�� The canonical extension

� �� SA�K �� cone�A�K� �� A�K �� �

has the stated properties�
d� � e�� This is trivial�
e� � a� � Thanks to excision in E�theory it su�ces to show that a separable

locally contractible C��algebra D is contractible in E�theory� We rst show that
SD � K is locally contractible when D is� Let F� � F� � F� � � � � be nite
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subsets with dense union in D� Since D is locally contractible we can construct
homogeneous maps �n � D � cone�D� such that �n�d���� � d for all n � N� d � D�
and k�n�a��n�b���n�ab�k  �

n
� k�n�a����n�a��k  �

n
� k�n�a�b���n�a���n�b�k 

�
n
� k�n�a� � �n�b�k  ka � bk � �

n
for all a� b � Fn� The sequence f�ng denes a

��homomorphism � � D �
Q

n cone�D�� �n cone�D� in the obvious way� By
the Bartle�Graves selection theorem there is a continuous and homogeneous lift
� � D �

Q
n cone�D� of �� Set �n�d� � ��d��n�� Then f�ng � D � cone�D� is an

equicontinuous family of maps forming a discrete asymptotic homomorphism such
that limn�� k�n�d���� � dk � � for all d � D� The tensor product construction
from �CH� gives us now an equicontinuous discrete asymptotic homomorphism �� �
D � SK � cone�D� � SK such that limn�� k��n�d � x� � �n�d� � xk � � for
d � D� x � SK� In particular it follows that limn���ev� � idSK� � �

��z� � z when
ev� � cone�D�� D denotes evaluation at �� It follows then readily that SD�K �

D� SK is locally contractible� Write SD�K �
S
n Fn where F� � F� � F� � � � �

are nite subsets� Since SD�K is locally contractible we can construct a pointwise
norm continuous path �s� s � ������ of homogeneous maps �s � SD�K � SD�K
such that �n � idSD�K and �n� �

�
� � for all n � N� and k�s�a

�� � �s�a�
�k �

�
n
� k�s�a� � �s�b� � �s�a � b�k � �

n
� k�s�a��s�b� � �s�ab�k �

�
n
� k�s�a� � �s�b�k �

ka� bk� �
n
� s � �n� n� ��� a� b � Fn� There is then an asymptotic homomorphism

� � f�sgs������ � SD �K � SD �K such that lims�� k�s�a�� �s�a�k � � for all

a � SD�K� In particular� ��jN� � �idSD�K� in ��SD�K� SD�K���
N
� It follows then

from ��� that ���� �idSD�K� � ��SD�K� SD�K���� Since limn�� �n� �
�
�a� � � for

all a � SD �K we have also that ��jN� � � in ��SD �K� SD �K���
N
� Consequently

�idSD�K� � ��SD�K� SD�K��� by ��� and hence �idSD�K� � �idSD�K�	 �idSD�K� �
� by Lemma ���� �

It follows from Theorem ��� that the class of separable E�contractible C��
algebras is the least class of separable C��algebras which contains the locally con�
tractible C��algebras and is closed under stabilization and under the formation of
quotients A�I where both A and the ideal I are in the class�

�� Semi�contractible C��algebras and triviality in KK�theory

De�nition ���� A C��algebra D is called semi�contractible when the following
holds� For every nite set F � D and every � � � there is a pointwise norm
continuous family of completely positive contractions� �s � D � D� s � ��� ��� such
that �� � �� �� � idD and k�s�a��s�b���s�ab�k � � for all s � ��� �� and all a� b � F �

The results of �Th�� and �Th�� which were used in the last section all have
analogues for completely positive asymptotic homomorphisms which were also pre�
sented in �Th�� and �Th��� It is therefore easy to use the same arguments to prove
the following result�

Theorem ���� Let A be a separable C��algebra� Then the following conditions are

equivalent �

a� A is contractible in KK�theory �i�e�� KK�A�A� � ���
b� The canonical extension

� �� S�A�K �� cone�SA�K� �� SA�K �� �
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is completely positive asymptotically split�

c� SA�K is semi�contractible�

d� There is a semi�split extension

� �� J �� E �� A�K �� ����

of separable C��algebras where J is semi�contractible and E is contractible�

e� There is a semi�split extension ��� of separable C��algebras where J and E
are semi�contractible�

It follows from Theorem ��� that the class of separable KK�contractible C��
algebras is the least class of separable C��algebras containing the semi�contractible
C��algebras and closed under stabilization and under the formation of quotients
A�I when both A and the ideal I are in the class� and there is a completely positive
section for the quotient map A� A�I �

Clearly�

fcontractible C��algebrasg � fsemi�contractible C��algebrasg

� flocally contractible C��algebrasg�

The following examples show that both inclusions are strict� also when we restrict
attention to separable C��algebras that are stable suspensions�

Example ���� We give here an example of a class of separableC��algebrasE which
are KK�contractible� and whose stable suspension SE �K are not contractible��

Let B be a unital separable innite dimensional simple C��algebra which is KK�
equivalent to an abelian C��algebra A� The KK�equivalence is represented by a
semi�split extension of SA by B�K as an element of Ext���SA�B�� By stabilizing
and suspending the extension becomes

� �� SB �K �� SE �K �� S�A�K �� ��

The algebra E is KK�contractible� This is because the connecting maps of the six�
term exact sequence arising by applying the functor KK�SE��� to the extension is
given by taking the Kasparov product with theKK�equivalence which the extension
represents and hence are isomorphisms� Another way to see this is to use the UCT�
theorem of Rosenberg and Schochet� �RS�� However� SE � K is not contractible
because the properties of B ensure that Hom�SB�K� � � so that also Hom�SB �
K� S�A�K� � �� Consequently� any ��endomorphism of SE �K must leave SB �
K � SE �K globally invariant� So when SB �K is not contractible �as can easily
be arranged by requiring K��B� �� ��� SE �K will not be contractible�

Example ���� In �S� Skandalis gave an example of a separable C��algebra A which
is trivial in E�theory� but not inKK�theory� Hence by Theorems ��� and ���� SA�K
is locally contractible� but not semi�contractible�

�� The structure of semi�contractible C��algebras

To construct and study semi�contractible C��algebras we need the notion of a
generalized inductive system of C��algebras and the inductive limit of a such a
system� This was dened by Blackadar and Kirchberg in �BK� and we shall use
their terminology and results� Given a contractible C��algebra D� a trivialization

�I am grateful to Mikael R�rdam for pointing examples of this kind out to me�
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of D will be a pointwise norm continuous path� �s� s � ��� ��� of endomorphisms of
D such that �� � � and �� � idD �

De�nition ���� A separable C��algebra B is called approximately contractible
when there is a sequence

B�
�� �� B�

�� �� B�
�� �� � � ��
�

of contractible C��algebras Bn with trivializations �ns � s � ��� ��� and completely
positive contractions �n � Bn � Bn��� pn � Bn�� � Bn� such that

�� for k � N� a� b � Bk and � � �� there is a N � N such that

k�m�n��
n
s � �n�k�a���m�n��

n
s � �n�k�b��� �m�n��

n
s ��n�k�a��n�k�b���k � �

for all s � ��� �� and all N  n  m�
�� pk�� � �k�� � �k � �k for all k�

and B � lim���Bn� �n�k��

Here �n�k is the composite map �n�� � � � ���k � Bk � Bn when n � k� �Observe
that we use an index convention which the is the reverse of the one used in �BK���
Note that condition �� of Denition 
�� ensures that the sequence �
� is a generalized
inductive system in the sense of Blackadar and Kirchberg� cf� Denition ����� of
�BK��

Proposition ���� Let D be a separable C��algebra� Then the following conditions

are equivalent�

a� D is semi�contractible�

b� D � lim���cone�D�� �n�k�� where �n � cone�D� � cone�D� is a sequence of

completely positive contractions such that �� of De�nition 
�� holds relative

to the canonical trivialization of cone�D�� and there are completely positive

contractions pk � cone�D�� cone�D� such that �� of De�nition 
�� holds�

c� D is approximately contractible�

Proof� a� � b� � Let �s� s � ��� ��� be the canonical trivialization of cone�D�� Let
F� � F� � F� � � � � be a sequence of nite sets with dense union in cone�D��
Since D is semi�contractible we can construct� recursively� a sequence �n of paths
�ns � D � D� s � ��� ��� of completely positive contractions such that k�ns �a��

n
s �b��

�ns �ab�k � �
n
for all s � ��� �� and all a� b � f�js�Fn� � s � ��� ��� j � ng� Dene

�n � D � cone�D� by �n�d��s� � �ns �d�� s � ��� ��� and  � cone�D� � D by
�f� � f���� Set �n � �n�� �  and note that the diagram

D

��

��

D

��

��

D

��

��

� � �

cone�D�
��

��

�

��
r
r
r
r
r
r
r
r
r
r
r

cone�D�
��

��

�

��
r
r
r
r
r
r
r
r
r
r
r

cone�D�
��

��

�

��
v
v
v
v
v
v
v
v
v

� � �

commutes� Since �n�k � �n�� n � k� it follows easily that �cone�D�� �n�k� satises
�� of Denition 
�� and the above diagram shows that D � lim���cone�D�� �n�k�� cf�

�BK�� Dene pk � cone�B� � cone�B� by pk�g��s� � �ks �g����� Then the pk�s are
completely positive contractions such that �� of Denition 
�� holds�

b� � c� � This is trivial�
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c�� a� � LetD � lim���Bn� �n�k� where the Bn�s are contractibleC
��algebras with

trivializations �ns � s � ��� ��� and completely positive contractions pk � Bk�� � Bk

such that �� and �� of Denition 
�� hold� Set pn�m � pn � pn�� � � � � � pm�� and let
q �
Q

i Bi �
Q

iBi� �i Bi be the quotient map� Let x � �x�� x�� x�� � � � � �
Q

i Bi

be an element such that q�x� � lim���Bn� �n�k�� We assert that limm�� pn�m�xm�

exists in Bn� By an obvious �
� �argument we may assume that q�x� � ���l�y�

for some y � Bl� l � n� In this case we see from �� of Denition 
�� that
limm�� pn�m�xm� � pn�l�� � �l�y�� It follows that there is a completely positive
contraction pn � lim���Bn� �n�k� � Bn such that pn � ���l�y� � pn�l�� � �l�y�� y �
Bl� l � n� For l � n we nd that

pn � ���l�x� � lim
m��

pn�m � �m�l�x� � �n�l�x�����

x � Bl� It follows that limn�� ���n � pn�x� � x for all x � lim���Bn� �n�k�� Fur�

thermore� it follows from ���� the density of
S
l ���l�Bl� in lim���Bn� �n�k� and �� of

Denition 
�� that when F is a nite subset of lim���Bn� �n�k� and � � �� then there is

a n so large that �ns � ���n��
n
s �pn� s � ��� ��� is a pointwise norm continuous path of

completely positive contractions on lim���Bn� �n�k� such that �
n
� � �� k�n� �a��ak � �

and k�ns �ab���ns �a��
n
s �b�k � � for all a� b � F � It follows that lim���Bn� �n�k� is semi�

contractible� �

�� Generalized inductive limits and continuous bundles

Let A�� A�� A�� � � � be a sequence of C
��algebras� For each n let �nt � An � An���

t � ��� ��� be a pointwise norm continuous path of completely positive contractions�
For n � m� set �m�n

t � �m��t � �m��t � � � � � �nt � An � Am� Assume that the
following holds�

For k � N� a� b � Ak and � � �� there is a M � N such that

sup
t�����


k�n�mt ��m�k
t �a��m�k

t �b��� �n�kt �a��n�kt �b�k � ����

for all M  m � n�

For any C��algebra A� set IA � C��� ���A� Given the above� dene �m�n � IAn �
IAm by

�m�n�f��t� � �m�n
t �f�t���

Then �IAn� �n�m� is a generalized inductive system of C��algebras in the sense of
�BK�� We consider the corresponding inductive limit C��algebras lim���IAn� �m�n��

Lemma ���� �� For each t � ��� �� there is a surjective ��homomorphism

	t � lim���IAn� �m�n�� lim���An� �
m�n
t ��

�� ker	t � lim���ItAn� �m�n�� where ItAn � ff � IAn � f�t� � �g�

�� For every x � lim���IAn� �m�n�� kxk � supt�����
 k	t�x�k�


� lim���IAn� �m�n� is a C��� ���module such that 	t�fx� � f�t�	t�x�� f � C��� ���

x � lim���IAn� �m�n��

Proof� �� Let et � IAn � An denote evaluation at t � ��� ��� Then et � �m�n �
�m�n
t � et and we get a ��homomorphism 	t � lim���IAn� �m�n� � lim���An� �

m�n
t � by

��� of �BK�� 	t is surjective since each et is�
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�� Clearly� lim���ItAn� �m�n� � ker	t� Let x � ker	t� � � �� There is a k � N

and an element f � IAk such that kx � ���k�f�k � �� Then k	t����k�f��k � �

which implies that there is a m 
 k such that k�m�k�f��t�k � k�m�k
t �f�t��k � ��

There is therefore an element g � ItAm such that kg � �m�k�f�k � �� It follows
that ���m�g� � lim���ItAn� �m�n� and kx� ���m�g�k � ���

�� It su�ces to show that 	t�x� � � �t � ��� �� � x � �� So let f � IAn and
assume that k	t����n�f��k � � for all t � ��� ��� For a xed t � ��� �� there is then a
k � n and an open neighbourhood Ut of t such that k�k�ns �f�s��k � � for all s � Ut�
Since �m�k

s is a contraction we nd that k�m�n
s �f�s��k � � for all s � Ut and all

m 
 k� By compactness of ��� �� we can then nd a N � N such that k�m�n�f�k � �
for all m 
 N � proving that k���n�f�k � ��


� follows immediately from the observation that �m�n�fa� � f�m�n�a�� a �
IAn� f � C��� ��� m 
 n� �

It follows from Lemma ��� that lim���IAn� �m�n� is a bundle of C��algebras over

��� �� in the sense of �KW�� The bundle is always upper semi�continuous� but to
obtain a continuous bundle we need to add an additional assumption�

For n � N� a � An and � � �� there is a m � n such that

k�m�n
t �a�k � � � k�k�nt �a�k���

for all k 
 m and all t � ��� ���

Lemma ���� Assume that ��� holds� Then �lim���IAn� �m�n�� ��� ��� 	� is a continu�

ous bundle of C��algebras�

Proof� By Lemma ��� it only remains to establish the continuity of t �� k	t�x�k
for an arbitrary element x � lim���IAn� �m�n�� Let � � �� There is a n � N and an

element g � IAn such that kx����n�g�k � �� Then k	t����n�g��k � k���n
t �g�t��k

for all t � ��� ��� Since fk�k�nt �a�kgk�n decreases towards k���n
t �a�k for all a � An

and since fg�t� � t � ��� ��g is a compact subset of An� it follows from ��� that there
is a m � n such that jk���n

t �g�t��k � k�m�n
t �g�t��kj � � for all t � ��� ��� Then

jk	t�x�k � k�m�n
t �g�t��kj � �� for all t and t �� k�m�n

t �g�t��k is continuous� so we
are done� �

De�nition ���� Two continuous bundles of C��algebras� �A� X� 	� and �A�� Y� 	���
are weakly isomorphic when there is a homeomorphism � � Y � X and a ��
isomorphism � � A � A� such that ��fa� � f � ���a�� f � C�X�� a � A� When
X � Y and � can be taken to be the identity map we say that the bundles are
isomorphic�

Let �A� ��� ��� 	� be a continuous bundle of C��algebras� When U � ��� �� is a
relatively open subset we set

AU � C��U�A � fx � A � 	t�x� � �� t �� Ug�

which is a closed twosided ideal in A� When X � U � F where U and F are
relatively open and closed in ��� ��� respectively� we set AX � AU�AU�F c � For
each t � X the map 	t � A � At induces a surjective ��homomorphism AX � At

which we again denote by 	t� In this way �AX � X� 	� becomes a continous bundle
of C��algebras over X � Up to isomorphism this construction does not depend on
the way X is realized as the intersection of a closed and an open subset of ��� ���
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De�nition ���� Let �A� ��� ��� 	� be a continuous bundle of C��algebras� A point
� � ��� �� is called a point of triviality for the bundle when there is an open
neighborhood U of � in ��� �� such that �AU � U� 	� is a trivial bundle� A point
� ���� �� is called a point of right�sided �resp� left�sided� non�triviality when there
is an � � � such that �A
	���	
� �� � �� ��� 	� and �A
	�	���� ��� � � ��� 	� �resp�
�A
	���	�� �� � �� ��� 	� and �A�	�	���� ��� � � ��� 	�� are trivial bundles� A point of
non�triviality is a point which is either a right�sided or a left�sided point of non�
triviality��

De�nition ���� A continuous bundle of C��algebras� �A� ��� ��� 	�� is called piece�

wise trivial when there is a nite set of points x� � x� � � � � � xk in ��� �� each
of which is a point of non�triviality� while all points of ��� ��nfx�� x�� � � � � xkg are
points of triviality for the bundle�

De�nition ��	� An extension of C��algebras

� �� J �� E
p

�� A �� �

is discrete asymptotically semi�split when there is a discrete completely positive
asymptotic homomorphism �n � A� E� n � N� such that limn�� p ��n�a� � a for
all a � A� A bundle of C��algebras �A� ��� ��� 	� is called discretely asymptotically
semi�split �resp� semi�split� when

� �� ker	t �� A

t �� At

�� ����

is discrete asymptotically semi�split �resp� semi�split� for all t � ��� ���

Note that it follows from Theorem � of �A� that an extension �and hence also a
bundle of C��algebras� which is discrete asymptotically semi�split is also semi�split�

Now we strengthen the assumptions on the given sequence �nt in order to use
Lemma ��� to produce continuous bundles which are piecewise trivial and discrete
asymptotically semi�split� and at the same time arrange that the kernels of the ber
maps are all semi�contractible� For m � n and t � �t�� t�� t�� � � � � � ��� ���� set

�m�n
t � �m��tm��

� �m��tm��
� � � � � �ntn �

We can then consider the following properties of which the two rst are stronger
than ��� and ���� respectively�

For k � N� a� b � Ak and � � �� there is a M � N such that

sup
t�����
�

k�n�mt ��m�k
t �a��m�k

t �b��� �n�kt �a��n�kt �b�k � ��	�

for all M  m � n�

For n � N� a � An and � � �� there is a m � n such that

k�m�n
t �a�k � � � k�k�nt �a�k����

for all k 
 m and all t � ��� ����

	I apologize for the fact that with this terminology an interior point of triviality is also a point
of non�triviality and that a point of non�triviality may in fact be a point of triviality� Note that
we need not consider points of two�sided non�triviality�
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There are completely positive contractions pk � Ak�� � Ak such that

pk�� � �
k��
s � �kt � �kt����

for all s� t � ��� ��� s 
 t� and all k�

Proposition ��
� Assume that �	�� ���� and ���� hold and let �A� ��� ��� 	� be the

continuous bundle from Lemma ���� There is then a piecewise trivial and discrete

asymptotically semi�split continuous bundle �A�� ��� ��� 	�� with only one point of

non�triviality �a right�sided non�triviality� such that 	��A� � 	���A
��� 	��A� �

	���A
��� and such that ker	t is semi�contractible for all t � ��� ���

Proof� For each n � N let hn � ��� ��� ��� �� be the function

hn�t� �

���
��
�� t � ��� �� �

�nt� n� t � � �� �
�
� �

�
�n �

�� t � � �� �
�
�n � ��

Set �nt � �nhn�t�� It follows from �	� and ���� that the sequence �nt also satises

�	� and ����� and in particular also ��� and ���� Thus �lim���IAn� �m�n�� ��� ��� 	� is
a continuous bundle of C��algebras by Lemma ���� In order not to confuse it with
the original bundle we denote it by �A�� ��� ��� 	��� It follows from �� of Lemma ���
that ker	�t is the inductive limit of the sequence

ItA�
�� �� ItA�

�� �� ItA�
�� �� � � �

By using that hn�� 
 hn� it follows from ���� that the completely positive contrac�
tions �pk � ItAk�� � ItAk given by �pk�g��s� � pk�g�s�� satisfy that �pk����k����k �
�k� Hence the above sequence satises condition �� of Denition 
��� To see that
also condition �� of Denition 
�� holds� observe that we can dene a trivialization
f��g of ItAn of the form ���f��s� � f�H��s��� where the H��s are appropri�
ately chosen functions H� � ��� �� � ��� ��� Therefore condition �� of Denition

�� follows from �	�� Consequently ker	�t is approximately contractible� and hence
semi�contractible by Proposition 
��� Since hn��� � �� hn��� � � for all n� it
is clear that 	��A� � 	���A

��� 	��A� � 	���A
��� To prove triviality over ��� �� �

and � �� � �� note rst that C���
�
� � ���A � lim���C���

�
� � ��� An�� �

m�n�� It follows that

A��� �� 

� A�A
 �� ��


� lim���C���� �� �� An�� �
m�n� and since �m�n

t � �m�n
� � t � ��� �� �� we

nd that A��� �� 

� C���� �� �� D� where D � lim���An� �

m�n
� �� also as C��� �� ��modules�

To prove triviality over � �� � ��� consider a n � N and an element a � C���
�
� � ��� An��

It is then clear that there is an m 
 n such that

sup
t�
 �� ��


k�k�mt � �m�n
t �a�t��� �k�m� � �m�n

t �a�t��k � �

and
sup

t�
 �� ��


k�k�mt � �m�n
� �a�t��� �k�m� � �m�n

� �a�t��k � �

for all k 
 m� It follows that the identity maps on C���
�
� � ��� An� serves to give

us an approximate intertwining in the sense of �BK�� ���� and hence we see that
A
 �� ��


� C���
�
� � ��� B�� also as C���

�
� � ����modules� where B � lim���An� �

m�n
� ��

It remains to prove that the extensions ��� are all discrete asymptotically semi�
split� Fix a t � ��� ��� By ���� there is a sequence of completely positive contractions
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pk � Ak�� � Ak such that pk�� � �
k��
t � �kt � �kt for all k� As observed in the

proof of Proposition 
�� this gives us a sequence of completely positive contractions

pn � At � lim���An� �
m�n
t � � An such that pn � �

��l
t � �n�lt when n � l� Let

cn � An � IAn be the embedding which identies an element of An with the
corresponding constant An�valued function on ��� �� and dene �n � At � A by
�n�x� � ���n�cn�pn�x�� To see that f�ng is a discrete asymptotic homomorphism�

let x� y � Al� For any � � � there is then a m � l so large that k���l
t �x����l

t �y��

���m
t ��m�l

t �x��m�l
t �x��k � �� Set x� � �m�l

t �x�� y� � �m�l
t �y�� For n � m we have

that

k�n��
��l
t �x���n��

��l
t �y��� �n��

��l
t �x����l

t �y��k

 lim sup
k��

sup
s�����


k�k�ns � �n�mt �x���k�ns � �n�mt �y��� �k�ns � �n�mt �x�y��k� �

 lim sup
k��

sup
t�����
�

k�k�nt ��n�mt �x����k�nt ��n�mt �y���� �k�mt �x�y��k� ��

It follows from �	� that the last expression is  �� if just n is large enough and

hence f�ng is a discrete asymptotic homomorphism� Since 	t � �n � �
��l
t �x� �

���n
t � �n�lt �x� � ���l

t �x� for x � Al� l � n� we see that limn�� 	t � �n�z� � z for
all z � At� This shows that ��� is discrete asymptotically semi�split� �

Observe that if all the An�s are separable and�or nuclear C
��algebras it follows

that the continuous bundles obtained here� in Lemma ��� and in Proposition ����
are separable and�or nuclear �in the sense that the bundle C��algebra is separable
and�or nuclear�� For the nuclearity part of this assertion� use Proposition ����� of
�BK��

�� From KK�equivalence to continuous bundles

In this section we consider two separable C��algebras A and B� For simplicitiy
of notation we assume rst that both are stable� Recall from Theorem 
�� of �Th��
that there is a completely positive asymptotic homomorphism �A � cone�A�� SA
with the property that when �� � � SA � SA are completely positive asymptotic
homomorphisms such that ��� � ��� in ��SA� SA��cp� then there is a norm continuous
path Ut� t � ������ of unitaries in M��SA�

� and an increasing continuous function
r � ������ ����� such that

lim
t��

Ut

�
�t�a�

Ar�t��a�

�
U�t �

�
�t�a�

Ar�t��a�

�
� �

for all a � SA�

Lemma 	��� �� limt�� k�At �a�k � kak for all cone�A��
�� Every element of ��SA�B��cp is represented by a completely positive asymp�

totic homomorphism � � ��t�t������ � SA � B with the property that

limt�� k�t�a�k � kak for all a � SA�

Proof� We prove �� and �� in one stroke� Let � � cone�A�� B be the completely
positive asymptotic homomorphism which features in Theorem 
�� of �Th��� Since
����� � ��� in ��SA�B��cp it su�ces to show that limt�� k�t�a�k � kak for all a �
cone�A�� �With B � SA this will prove ���� � has the form �t�a� � pt	�a�pt� where
	 � cone�A� � M�B� is an absorbing ��homomorphism and �pt�t������ is a norm
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continuous path of positive elements in M�B� with properties described in Theo�
rem ��� of �Th��� Since 	 is absorbing and there is an injective ��homomorphism
cone�A� � M�B� �because B is stable� it follows that 	 is injective� Let a �
cone�A� and � � �� There is then an element b � B� kbk  �� such that
kak � � � k	�a�bk� Since limt�� ptb � b and limt�� pt	�a� � 	�a�pt � � it
follows that k�t�a�k 
 kpt	�a�ptbk � kak � � for all large t� �

Remark 	��� It follows from Lemma ��� and �L� that for any pair of separable
C��algebras it holds that the stable suspension of any one of them is a deformation
of the stable suspension of the other�

A map  � D � C is said to be ��multiplicative on a subset F � D when
k�a��b�� �ab�k � � for all a� b � F �

Lemma 	��� Let � � SA � SB and � � SB � SA be completely positive as�

ymptotic homomorphisms such that ��� 	 ��� � �idSA� in ��SA� SA��cp� It follows

that there is a continuous function r � ����� � ����� with the following property�
When F � SA and G � cone�A� are compact subsets� � � � and t� � ������
there is a t� 
 t�� and for each s 
 r�t�� a unitary Ts � M��SA�

� and a com�

pletely positive contraction s � cone�A� � SA such that s is ��multiplicative on

G� ks�a�k 
 kak � �� a � G� and

kTs

�
�s � �t��a�

s�a�

�
T �s �

�
a

s�a�

�
k � �

for all a � F �

Proof� By denition of the composition product there is a continuous function
r � ����� � ����� such that ��� 	 ��� is represented by f�r��t� � �tgt������ for
any continuous function r� � ����� � ����� such that r� 
 r� We may assume
that r is convex� We claim that r then has the stated property� and we prove it
by contradiction� So assume F�G� � and t� � ����� is a quadruple for which the
stated property fails� There is then a sequence t� � t� � t� � t� � � � � in �����
such that limi�� ti �� and for each i a si 
 r�ti� with the property that

sup
a�F

kT

�
�si � �ti�a�

�a�

�
T � �

�
a

�a�

�
k 
 �����

for every unitary T � M��SA�
� and every completely positive contraction  �

cone�A� � SA which is ��multiplicative on G and satises that k�a�k 
 kak �
�� a � G� For s � �ti� ti���� write s � �ti�� � �� � ��ti� where � � ��� ��� and
set �s � �	si������	�si � �	ti������	�ti � Since �si�� � �� � ��si 
 �r�ti��� �
��� ��r�ti� 
 r��ti�� � ��� ��ti� it follows that � � ��s�s��t���� is a completely
positive asymptotic homomorphism� In fact �t � �v�t� � �t� t 
 t�� where v �
�t����� �s���� is a continuous function such that v�t� 
 r�t�� t 
 t�� and hence
��� � ���	��� in ��SA� SA��cp� By Theorem 
�� of �Th�� there is a completely positive
asymptotic homomorphism � � ��t�t������ � cone�A�� SA and a path of unitaries

�Tt� �M��SA�
� such that

lim
t��

Tt

�
�t�a�

�t�a�

�
T �t �

�
a

�t�a�

�
� �
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for all a � SA� By �� of Lemma ���� � can be chosen such that limt�� k�t�a�k � kak
for all a � cone�A�� In particular� it follows that for i large enough� �ti is ��
multiplicative on G� k�ti�a�k 
 kak � �� a � G� and

sup
a�F

kTti

�
�si � �ti�a�

�ti�a�

�
T �ti �

�
a

�ti�a�

�
k � ��

contradicting ����� �

Now assume that A and B are KK�equivalent� This means that there are com�
pletely positive asymptotic homomorphisms � � f�tg � SA � SB and � � f�tg �
SB � SA such that ��� 	 ��� � �idSB � in ��SB� SB��cp and ��� 	 ��� � �idSA�
in ��SA� SA��cp� By �� of Lemma ��� we may assume that limt�� k�t�a�k �
kak� a � SA� and limt�� k�t�b�k � kbk� b � SB� Choose a continuous func�
tion r � ����� � ����� having the property described in Lemma ��� and a con�
tinuous function s � ����� � ����� with the same property relative to ��� ��
instead of ��� ��� To proceed we need to introduce some notation and terminol�
ogy� Set D � A � B� We will consider SA� SB� cone�A� and cone�B� as C��
subalgebras of cone�D�� Observe that cone�A�� cone�B�� SA� SB and cone�D� are
stable since A and B are� When E is any of these stable C��algebras we choose
isometries� V�� V�� in M�E� such that V�V

�
� � V�V

�
� � �� For e�� e� � E we can

then dene e� � e� � V�e�V
�
� � V�e�V

�
� � E� A completely positive contraction

SA � cone�D� � SB � cone�D� is said to be of ��type when it has the form
�a� d� �� �V ��t�a���d��V �� a� d� for some t � ������ some unitary V � �SB��

and some completely positive contraction  � cone�D� � SB� Similarly� we de�
ne a completely positive contraction SB � cone�D� � SA � cone�D� to be of
��type when it has the form �b� d� �� �W ��s�b� � ��d��W �� b � d� for some
s � ������ some unitary W � �SA�� and some completely positive contraction
� � cone�D� � SA� A map  � SA � cone�D� � SA � cone�D� is called an al�

most identity map when it has the form �a� d� � �a � ��a� d�� ��a� d� � d� where
� � SA � cone�D� � cone�D� and � � cone�A� � cone�D� � SA are completely
positive contractions� For each s � ��� ��� let hs � ��� �� � ��� �� be the contin�
uous function such that hs�t� � t� t � ��� s�� and hs�t� � s� t � �s� ��� Dene
�Ds � cone�D�� cone�D� by �Ds �f��t� � f�hs�t��� Note that with a natural choice
of isometries V�� V� to dene � we have that �Dt �a � d� � �Dt �a� � �Dt �d�� Given
an almost identity map  as above we can use f�Ds gs�����
 and f�

A
s gs�����
 to dene

maps �s�� s � ��� ��� by

�s��a� d� � �a� ���As �a�� �
D
s �d��� �

D
s ���a� �

D
s �d��� � �Ds �d�� �

Given C��algebras X�Y and Z and compact subsets F � X� G � Y� H � Z� a
diagram of the form

�X�F �

�

��

�
�� �Y�G�

�

��yy
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y
y

�Z�H�

���������
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will mean that � � �� that �� � and � are completely positive contractions such that
� and � are ��multiplicative on F � � is ��multiplicative on G� ��F � � ��G� � H �
��F � � G� and k��x� � � � ��x�k � �� x � F �

Let q� � SA�cone�D�� SA� q� � SB�cone�D�� SB be the projections to the
rst coordinate and q� � SA� cone�D� � cone�D�� q� � SB � cone�D�� cone�D�
the projections to the second�

Lemma 	��� Let �� � �� � �� � � � � be a sequence in ��� �� and let F �
� � F �

� � F �
� �

� � � � G�
� � G�

� � G�
� � � � � be compact subsets of SA� cone�D� and SB� cone�D��

respectively� There is then an in�nite diagram

�SA� cone�D�� F��

	
�������

��

��

�� �� �SB � cone�D�� G��

�

��

��

yyrr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

�SA� cone�D�� F��

	
�������

�� ��

��

��

�SB � cone�D�� G��

	
�������

�

��

��

yyrr
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

�SA� cone�D�� F��

	
�������

��

��

�� �� �SB � cone�D�� G��

�

��

��

yyss
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s

	
�������

���
���

	
�������

where the �i�s are of ��type� the �i�s of ��type� the i�s and �i�s are almost identity

maps and

F �
n �

	
j�n

	
�t������tn�j������
n�j


�t��
n�� � 

�t��
n�� � � � � � 

�tn�j�
j �F �

n� � Fn�

G�
n �

	
j�n

	
�t������tn�j������
n�j

�
�t��
n�� � �

�t��
n�� � � � � � �

�tn�j�
j �G�

n� � Gn

for all n� Furthermore� we arrange that sn and �sn are �n�multiplicative on Fn and

Gn� respectively� and

kq� � 
�s�
n �x�k 
 k�s�n �x�k � �n� x � Fn�

kq� � �
�s�
n �x�k 
 k��s�n �x�k � �n� x � Gn�

for all n and all s � ��� ���

Proof� To simply notation� set

G�n � G�
n �

	
j�n

	
�t������tn�j������
n�j

�
�t��
n�� � �

�t��
n�� � � � � � �

�tn�j�
j �G�

n�
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and
F �n � F �

n �
	
j�n

	
�t������tn�j������
n�j


�t��
n�� � 

�t��
n�� � � � � � 

�tn�j�
j �F �

n�

We proceed by induction� So assume that we have constructed everything up to n�
i�e�� that we have a nite diagram as above ending with

�SA� cone�D�� Fn�
�n �� �SB � cone�D�� Gn�

Here �n is of ��type� i�e�� is given by �a� d� �� �V ��k�a���d��V �� a�d� for some
k � ������ some unitary V � �SB�� and some completely positive contraction
 � cone�D�� SB� In addition we shall assume that

A�  is �n
� �multiplicative on �Dt �q��Fn��� t � ��� ���

B� for all y 
 r�k� there is a unitary Ty � �SA�� and a completely positive
contraction � � cone�D� � SA which is �n

� �multiplicative on f�Dt �a � d� �

�a� d� � Fng � q��Fn� � �
D
t �q��Gn��� t � ��� ��� and satises that

k���Dt �a� d��k 
 k�Dt �d�k � �n� �a� d� � Fn� t � ��� ��� and

kTy��y � �k�a�� ��a� d��T �y � a� ��a� d�k �
�n
�
� �a� d� � Fn�

This is allright if we make sure that �n�� satises the corresponding n� ��conditions�
and we will� Choose y 
 r�k� so large that there is a unitary W � �SA�� such that

kW�y��k�a��� �y��d���W
� � �y�V ��k�a�� �d��V ���k �

�n
�

����

for all �a� d� � Fn� This is possible because V � �SB�� and � is an asymptotic
homomorphism� By B� there is a unitary U � �SA�� and a completely positive
contraction � � cone�D�� SA which is �n

� �multiplicative on f�
D
t �a� d� � �a� d� �

Fng�q��Fn���
D
t �q��Gn��� t � ��� ��� and satises that k���Dt �a�d��k 
 k�Dt �d�k�

�n� �a� d� � Fn� t � ��� ��� and kU��y � �k�a� � ��a � d��U� � a � ��a � d�k � �n
�

for all �a� d� � Fn� Set

X �
	
j�n

	
�t������tn�j������
n�j


�t��
n�� � 

�t��
n�� � � � � � 

�tn�j�
j �F �

n��� � and

X � � fq� ��n�a� �
D
t �d�� � a� �Dt �d� � �a� d� � X� t � ��� ��g�

Then X and X � are both compact subsets of SA � cone�D� and cone�D�� respec�
tively� By Lemma ��� we can arrange� by increasing y further� that

C� For all z 
 s�y� there is a unitary Tz � �SB�� and a completely positive
contraction �� � cone�D� � SB which is �n��

� �multiplicative on �Dt �fb � d �

�b� d� � Gng� fq� ��n�a� d�� a� d � �a� d� � Fng� q��Gn��X
� � q��F

�
n�����

t � ��� ��� and satises that k����Dt �b�d��k 
 k�Dt �d�k��n��� for �b� d� � Gn�
t � ��� ��� and

kTz��z � �y�b�� ���b� d��T �z � b� ���b� d�k �
�n
�

for all �b� d� � Gn�

In addition we can arrange that �y is
�n
� �multiplicative on q��Gn����

D
t �q��Fn����

t � ��� ��� Observe that there is a unitary T � �SA�� such that

kT ��y � �k�a�� �y � �d�� ��a� d��T � � a� �y � �d�� ��a� d�k �
�n
�

��
�
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for all �a� d� � Fn� Dene �n � SB � cone�D�� SA� cone�D� by

�n�b� d� � �T �W ��y�b�W � ��d��T �� b� d� �

and n � SA� cone�D�� SA� cone�D� by

n�a� d� � �a� �y � �d�� ��a� d�� V ��k�a�� �d��V � � a� d� �

Then �n is of ��type and n is an almost identity map� It is straightforward to
see that �n and n are �n�multiplicative on Gn and Fn� respectively� so ��
� and
���� give us the diagram

�SA� cone�B�� Fn�

�n

��

�n �� �SB � cone�A�� Gn�

�n

xxqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

�SA� cone�B�� Fn���

	
������n

where Fn�� � �n�Gn� � n�Fn� �
S
t�����
 

�t�
n �X� � F �

n��� To check that the ad�

ditional requirements on n� concerning 
�s�
n � s � ��� ��� are also satised� observe

rst of all that F �n�� � Fn��� Combine the fact that �y is �n
� �multipliciative on

��Bt �q��Fn��� with A� to see that �a� d� �� �y ���
D
t �d�� is �n�multiplicative on Fn

for all t� It follows from A� that �a� d� �� V ��k�a����
D
t �d���V

� is �n�multiplicative
on Fn for all t� and one of the requirements on � was that �a� d� �� ���Dt �a � d��
is �n�multiplicative on Fn for all t� By putting all of this together we see that


�s�
n is �n�multiplicative on Fn for all s � ��� ��� Another requirement on � was

that k���Dt �a � d��k 
 k�Dt �d�k � �n for all t and all �a� d� � Fn� It follows that

kq� � 
�s�
n �x�k 
 k

�s�
n �x�k � �n for all x � Fn and all s � ��� ��� We claim that

A�� � is �n�multiplicative on �Dt �q��Gn��� t � ��� ���
B�� for all z 
 s�y� there is a unitary Tz � �SB�� and a completely positive

contraction �� � cone�D� � SB which is �n��

� �multiplicative on f�Dt �b � d� �

�b� d� � Gng � q��Gn� � �
D
t �q��Fn����� t � ��� ��� and satises that

k����Dt �b� d��k 
 k�Dt �d�k � �n��� �b� d� � Gn� and

kTz��z � �y�b�� ���b� d��T �z � b� ���b� d�k �
�n��
�

� �b� d� � Gn�

A�� was one of the requirements on �� To see that B�� holds� note that q���n�Gn�� �
fb� d � �b� d� � Gng� that q��n�Fn�� � fq� � �n�a� d� � a� d � �a� d� � Fng and

that q��
�t�
n �X�� � �Dt �X

��� Therefore B�� follows from C��
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Now we can exchange the role of � and � and construct in the same way a
diagram

	
������n

�SB � cone�D�� Gn�

n

��

�n

xxqqq
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

�SA� cone�D�� Fn���
�n��

�� �SB � cone�D�� Gn���

where G�n�� � Gn��� Furthermore by using Lemma ��� as it was used to obtain C�
above we can arrange that �n�� satises the n���version of B�� The n���version
of A� follows from the constructions by use of B��� In this way we obtain the desired
diagram by induction� �

Let F �
� � F �

� � F �
� � � � � and G�

� � G�
� � G�

� � � � � be sequences of nite sets
with dense union in SA� cone�D� and SB � cone�D�� respectively� By combining
Lemma ��
 with ��
 of �BK� we get sequences of almost identity maps� �n � SA �
cone�D� � SA � cone�D� and �n � SB � cone�D� � SB � cone�D�� such that
lim���SA� cone�D�� �m�n� � lim���SB � cone�D�� �m�n� and

I� �
�t�
n is ��n�multiplicative on Fn� t � ��� ���

II� kq� � �
�t�
n �x�k 
 k�

�t�
n �x�k � ��n� x � Fn� t � ��� ���

where

Fn � F �
n �

	
j�n

	
�t������tn�j������
n�j

�
�t��
n�� � �

�t��
n�� � � � � � �

�tn�j�
j �F �

n��

We arrange also that ��n� Gn� satisfy the analogues of I� and II�� In order to make

connection with the last section� set �nt � �
�t�
n � We check that �	� holds � Let

a� b � SA � cone�D�� k � N and � � � be given� It follows from the density ofS
m F �

m in SA� cone�D� that there is a M � N and elements x� y � F �
M such that

jk����x���y�� � ����x������y��k � k����a���b�� � ����a������b��kj �
�

�
����

for all linear contractions �� � � SA� cone�D�� SA� cone�D�� By increasing M
we may assume M � k and that ��M�� � �

� � It follows from I� that

k�n�mt ��m�k
t �x��m�k

t �y��� �n�mt ��m�k
t �x���n�mt ��m�k

t �y��k 

nX
jm

��j �
�

�
����

for all n � m 
M and all t � ��� ���� By combining ���� and ���� we get �	��
To prove that ���� holds observe that by the nature of an almost identity map

and II� we have that k�n���nt �x�k 
 k�m�n
t �x�k 
 k�n���nt �x�k���n for all x � Fn�

all t � ��� ��� and all m � n� So if a � SA� cone�D�� n � N and � � � are given
we choose a m � n and an element x � F �

m such that ��m � �
� and ka� xk � �

� �
It follows then that

k�k�nt �a�k 
 k�k�nt �x�k �
�

�

 k�m���n

t �x�k �
��

�
� k�m���n

t �a�k � �

for all t � ��� ��� and all k � m� Finally� we must consider ����� It is apparent
from the denition of an almost identity map that there is a completely positive
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contraction p � SA�cone�D�� SA�cone�D� with the property that p��nt �a� d� �
�a� �Dt �d��� t � ��� ��� �a� d� � SA� cone�D�� Since �Ds ��

D
t � �Dt � s 
 t� it follows

from the form of �nt � that p � �
n��
s � �nt � �nt for s 
 t� We can therefore use p as

pk for all k in �����
Having established both �	�� ���� and ����� Proposition ��� gives us a contin�

uous bundle of C��algebras� �A� ��� ��� 	�� which is discrete asymptotically semi�
split and piecewise trivial with only one point of non�triviality such that ker	t
is semi�contractible for all t � ��� �� and such that the bers at � and � are

lim���SA � cone�D�� �
���
m�n� and lim���SA � cone�D�� �m�n�� respectively� Note that

lim���SA�cone�D�� �
���
n�m� � SA since SA is stable and �

���
n has the form �

���
n �a� d� �

�V aV �� �� for the same isometry V �M�SA�� Therefore� when we apply the same
procedure to SB � cone�D�� we get all together the following result�

Theorem 	��� Let A and B be KK�equivalent separable C��algebras� It follows

that there are separable continuous bundles� �A� ��� ��� 	� and �A�� ��� ��� 	��� of C��
algebras� which are discrete asymptotically semi�split and piecewise trivial with only

one point of non�triviality� such that ker	t and ker	�t are semi�contractible for all

t � ��� ��� 	��A� � SA�K� 	���A
�� � SB �K and 	��A� � 	���A

���

�� Concatenation of bundles

De�nition 
��� Let A be a C��algebra� A �nite semi�split decomposition series

for A consists of a series of ideals

A � In � In�� � In�� � � � � � I� � I� � f�g

such that the corresponding extensions � � Ik�� � Ik � Ik�Ik�� � � are semi�
split for k � �� �� � � � � n� The length of the decomposition series is said to be n� and
the C��algebras Ii�Ii��� i � �� �� � � � � n� will be called the succesive quotients of the
decomposition series� When n � � we say that A is a semi�split extension of I��I�
by I��

The proof of the following is left to the reader�

Lemma 
��� Let

� �� J �� E
p

�� A �� �

be a semi�split extension and J � Jn � Jn�� � Jn�� � � � � � J� � J� � f�g�
A � Am � Am�� � Am�� � � � � � A� � A� � f�g �nite semi�split decomposition

series for J and A� respectively� Set Jn�i � p���Ai�� i � �� �� � � � �m� Then

E � Jm�n � Jm�n�� � � � � � J� � J� � f�g

is a semi�split decomposition series for E such that Jk�Jk�� � Ak�n�Ak�n�� for

k � n�

Lemma 
��� Let �A� ��� ��� 	� and �A�� ��� ��� 	�� be piecewise trivial and semi�split

continuous bundles such that A� � A��� There is then a piecewise trivial and semi�

split continuous bundle �B� ��� ��� 	��� with the following properties�

�� �B��� �� 
� ���
�
� �� 	

��� and �B� �� ��
� �
�
� � ��� 	

��� are weakly isomorphic to �A� ��� ��� 	�

and �A�� ��� ��� 	��� respectively�



��
 Klaus Thomsen

�� for t � ��� �� � there an s � ��� �� and a semi�split extension

� �� ker	�� �� ker	��t �� ker	s �� ��

and for t � � �� � �� there is an s � ��� �� and a semi�split extension

� �� ker	� �� ker	��t �� ker	�s �� ��

Proof� Let � � A� � A�� be a ��isomorphism� The C��algebra B � f�a�� a�� �
A � A� � � � 	��a�� � 	���a��g is the bundle C��algebra for a bundle with the
described properties� In particular� the part about the extensions being semi�split
follows from the triviality of the bundles in a neighbourhood of the endpoints� �

Theorem 
��� Let A and B be KK�equivalent separable C��algebras� It follows

that there is a separable continuous bundle of C��algebras� �A� ��� ��� 	�� which is

semi�split and piecewise trivial with no more than � points of non�triviality such

that 	��A� � SA � K� 	��A� � SB � K� and ker	t is a semi�split extension of

semi�contractible C��algebras for all t � ��� ���

Proof� Concatenate the two bundles from Theorem ��� by using Lemma ��� and
apply Lemma ���� �

De�nition 
��� A separable C��algebraD is called crossed�contractible when there
is a C��dynamical system �A�R� �� with A contractible such that D � A�	 R�

It follows from �FS� that a crossed�contractible C��algebra isKK�contractible� It
is easy to see that a crossed�contractibleC��algebra need not be locally contractible�

Theorem 
�	 �Rie�el �R�� Elliott� Natsume� Nest �ENN��� Let A be a separable

C��algebra� There is then a separable semi�split and piecewise trivial continuous

bundle of C��algebras� �A� ��� ��� 	�� with no more than one point of non�triviality

such that 	��A� � A � K� 	��A� � S�A� and ker	t is crossed�contractible for all

t � ��� ���

Proof� For � � ��� ��� dene an action �� � R � AutC��R� � A by ��s �f��t� �
f�t � �� � ��s�� For � � ��� ��� set ��s � id for all s� Dene an action � � R �
Aut�C��� �� � C��R� � A� by �s�g���� � ��s �g����� � � ��� ��� It follows from �R�
that �C��� ���C��R��A��	 R is the bundle C��algebra for a bundle over ��� �� such
that ker	t is crossed�contractible for all t � ��� ��� It is well�known that the ber
over � is A � K and the ber over � is S�A� As pointed out in �ENN� the bundle
is trivial over ��� �� and it is clearly trivial over ��� ��� The fact that the bundle is
semi�split follows from the Choi�E�ros lifting theorem� �CE�� by observing that the
bundle in the general case is obtained from the nuclear bundle which results from
the special case where A � C by tensoring with A� �

By concatenation the bundle from Theorem ��� with the bundles from Theorem
��
� applied to SA and SB� we get the following result�

Theorem 
�
� Let A and B be separable and stable KK�equivalent C��algebras�
There is then a separable continuous bundle of C��algebras� �A� ��� ��� 	�� which is

semi�split and piecewise trivial with no more than four points of non�triviality� and

for each t � ��� �� there is a �nite semi�split decomposition series for ker	t of length
four whose succesive quotients are either semi�contractible or crossed�contractible�
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As a nal step we can also remove the stabilizations by introducing a little longer
decompostion series and slightly more general succesive quotients� When  � A� B
is a ��homomorphism between separable C��algebras which is an isomorphism in
KK� the mapping cone f�a� f� � A � cone�B� � f��� � �a�g is KK�contractible�
For our purposes here we need only consider the very special case where B � A�K
and the ��homomorphism is the canonical stabilizing ��homomorphism s � A �
A�K� Since s is injective we can consider A as a C��subalgebra of A�K and the
mapping cone can be described as

CA � ff � cone�A�K� � f��� � Ag �

Set A � ff � C���� ��� A � K� � f�t� � A� t 
 �
�g and let 	t be evaluation at

t � ��� ��� Then �A� ��� ��� 	� is a semi�split and piecewise trivial continuous bundle
of C��algebras connecting A � K to A� For each t � ��� ��� ker	t is a semi�split
extension� either of a contractible C��algebra by a contractible C��algebra� or of
CA by a contractible C��algebra�

Theorem 
��� Let A and B be separable C��algebras� Then A and B are KK�

equivalent if and only if there is a separable semi�split and piecewise trivial con�

tinuous bundle of C��algebras� �A� ��� ��� 	�� with no more than six points of non�

triviality� such that 	��A� � A� 	��A� � B� and for each t � ��� �� there is a �nite

semi�split decomposition series for ker	t of length eight whose succesive quotients

are either semi�contractible� crossed�contractible or isomorphic to CA or CB�

Proof� Concatenate the bundles just described� one for A and one for B� with
the bundle from Theorem ���� Apply Lemma ��� and Lemma ��� to prove the
�only if� part� For the �if� part observe that since the bundle is semi�split the
extensions ��� are semi�split� Furthermore� ker	t is contractible in KK�theory
since its decomposition series is semi�split and the succesive quotients are all KK�
contractible� the semi�contractible quotients by Theorem ���� Since KK�theory is
half�exact with respect to semi�split extensions by �K�� �CS�� it follows that 	t is a
KK�equivalence and that At is KK�equivalent to A for all t� �

Corollary 
��� Let A and B be separable C��algebras� Then A and B are KK�

equivalent if and only if there is a separable C��algebra D and surjective semi�split

��homomorphisms � � D � A and � � D � B such that ker� and ker� are

KK�contractible�
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