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The Three Point Pick Problem on the Bidisk

Jim Agler and John E. McCarthy

Abstract. We prove that a non-degenerate extremal 3 point Pick problem
on the bidisk always has a unique solution.
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0. Introduction

The original Pick problem is to determine, given N points λ1, . . . , λN in the unit
disk D and N complex numbers w1, . . . , wN , whether there exists a function φ in
the closed unit ball of H∞(D) (the space of bounded analytic functions on D) that
maps each point λi to the corresponding value wi. This problem was solved by
G. Pick in 1916 [9], who showed that a necessary and sufficient condition is that
the Pick matrix (

1− w̄iwj

1− λ̄iλj

)N

i,j=1

be positive semi-definite.
It is well-known that if the problem is extremal, i.e., the problem can be solved

with a function of norm one but not with a function of any smaller norm, then
the Pick matrix is singular, and the corresponding solution is a unique Blaschke
product, whose degree equals the rank of the Pick matrix [6, 5].

In [1], the first author extended Pick’s theorem to the space H∞(D2), the
bounded analytic functions on the bidisk; see also [4, 3, 2]. It was shown in [2]
that if the problem has a solution, then it has a solution that is a rational inner
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function; however the qualitative properties of general solutions are not fully un-
derstood. The example λ1 = (0, 0), λ2 = ( 1

2 ,
1
2 ), w1 = 0, w2 = 1

2 shows that even
extremal problems do not always have unique solutions.

The two point Pick problem on the bidisk is easily analyzed. It can be solved if
and only if the Kobayashi distance between λ1 and λ2 is greater than or equal to
the hyperbolic distance between w1 and w2. On the bidisk, the Kobayashi distance
is just the maximum of the hyperbolic distance between the first coordinates, and
the hyperbolic distance between the second coordinates. A pair of points in D

2 is
called balanced if the hyperbolic distance between their first coordinates equals the
hyperbolic distance between their second coordinates.

The two point Pick problem has a unique solution if and only if the Kobayashi
distance between λ1 and λ2 exactly equals the hyperbolic distance between w1 and
w2, and moreover (λ1, λ2) is not balanced. In this case the solution is a Möbius
map in the coordinate function in which the Kobayashi distance is attained. If
the distance between λ1 and λ2 equals the distance between w1 and w2, but the
pair (λ1, λ2) is balanced, then the function φ will be uniquely determined on the
geodesic disk passing through λ1 and λ2, but will not be unique off this disk. (For
the example λ1 = (0, 0), λ2 = ( 1

2 ,
1
2 ), w1 = 0, w2 = 1

2 , on the diagonal {(z, z)}
we must have φ(z, z) = z; but off the diagonal any convex combination of the two
coordinate functions z1 and z2 will work).

It is the purpose of this article to examine the three point Pick problem on the
bidisk. Our main result is the following:

Theorem 0.1. The solution to an extremal non-degenerate three point problem on
the bidisk is unique. The solution is given by a rational inner function of degree 2.
There is a formula for the solution in terms of two uniquely determined rank one
matrices.

In the next section, we shall define precisely the terms “extremal” and “non-
degenerate”, but roughly it means that the problem is genuinely two-dimensional,
is really a 3 point problem not a 2 point problem, and the minimal norm of a
solution is 1.

1. Notation and preliminaries

We wish to consider the N point Pick interpolation problem

φ(λi) = wi, i = 1, . . . , N, and(1.1)

‖φ‖H∞(D2) ≤ 1.

We shall say that a solution φ to (1.1) is an extremal solution if ‖φ‖ = 1, and no
solution has a smaller norm.

For a point λ in D
2, we shall use superscripts to denote coordinates:

λ = (λ1, λ2).

Let W, Λ1 and Λ2 denote the N -by-N matrices

W = (1− w̄iwj)
N
i,j=1

Λ1 =
(
1− λ̄1

iλ
1
j

)N

i,j=1

Λ2 =
(
1− λ̄2

iλ
2
j

)N

i,j=1
.
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A pair Γ,∆ of N -by-N positive semi-definite matrices is called permissible if

W = Λ1 · Γ + Λ2 ·∆.(1.2)

Here · denotes the Schur or entrywise product:

(A ·B)ij := AijBij .

The main result of [1] is that the problem (1.1) has a solution if and only if there
is a pair Γ,∆ of permissible matrices.

A kernel K on {λ1, . . . , λN}×{λ1, . . . , λN} is a positive definite N -by-N matrix

Kij = K(λi, λj).

We shall call the kernel K admissible if

Λ1 ·K ≥ 0 and

Λ2 ·K ≥ 0.

If the problem (1.1) has a solution and K is an admissible kernel, then (1.2)
implies that K ·W ≥ 0. We shall call the kernel K active if it is admissible and
K ·W has a non-trivial null-space. Notice that all extremal problems have an active
kernel.

If one can find a pair of permissible matrices one of which is 0, then the Pick
problem is really a one-dimensional problem because one can find a solution φ that
depends only on one of the coordinate functions. If this occurs, we shall call the
problem degenerate; otherwise we shall call it non-degenerate.

2. The three point problem

We wish to analyze extremal solutions to three point Pick problems. Fix three
points λ1, λ2, λ3 in D

2, and three numbers w1, w2, w3. Let notation be as in the
previous section. We shall make the following assumptions throughout this section:

(a) The function φ is an extremal solution to the Pick problem of interpolating
λi to wi, where i ranges from 1 to 3.

(b) The function φ is not an extremal solution to any of the three two point Pick
problems mapping two of the λi’s to the corresponding wi’s.

(c) The three point problem is non-degenerate.

Lemma 2.1. If K is admissible, then rank(K ·W ) > 1.

Proof. Suppose (Γ,∆) is permissible. By (1.2), we have

K ·W = K · Λ1 · Γ +K · Λ2 ·∆.
If rank(K ·W ) = 1, then either Γ = 0 (which violates (c)), or there exists t > 0
such that

K · Λ1 · Γ = tK ·W.
But then (1

tΓ, 0) is permissible, violating assumption (c). �

Lemma 2.2. If K is an admissible kernel with a non-vanishing column, then
rank(K · Λ1) ≥ 2 and rank(K · Λ2) ≥ 2.
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Proof. Suppose that rank(K · Λ1) = 1. As no entry of Λ1 can be 0, and some
column of K is non-vanishing, there is a column of K · Λ1 that is non-vanishing.
As K · Λ1 is self-adjoint and rank one and has non-zero diagonal entries, the other
two columns of K ·Λ1 must be non-zero multiples of this non-vanishing column. So
Q := K · Λ1 is a positive rank one matrix with no zero entries, and K has no zero
entries.

So

Λ2 =
(

1
K

)
· (K · Λ2

)

=
(

1
Q

· Λ1

)
· (K · Λ2

)

=
(

1
Q

·K · Λ2

)
· Λ1,

where by 1
K and 1

Q is meant the entrywise reciprocal. Now K · Λ2 is positive by
hypothesis, and 1

Q is positive because Q is rank one and non-vanishing; moreover
the Schur product of two positive matrices is positive [8, Thm 5.2.1]. Therefore
(Γ + ∆ · 1

Q ·K · Λ2, 0) is permissible, which violates assumption (c). �

Lemma 2.3. If K is an active kernel, it has a non-vanishing column.

Proof. By assumption (b), we cannot have both K(λ1, λ2) = 0 and K(λ1, λ3) = 0;
for then K restricted to {λ2, λ3} × {λ2, λ3} would be an active kernel for the two
point problem on λ2, λ3, and so any solution to the two point problem would have
norm at least one, so φ would be an extremal solution to the two point problem.

If neither of K(λ1, λ2) or K(λ1, λ3) are 0, we are done. So assume without loss of
generality that the first is non-zero and the second equals zero. But then K(λ2, λ3)
cannot equal zero, for then K restricted to {λ1, λ2} × {λ1, λ2} would be active,
violating assumption (b). Thus we can conclude that the second column of K is
non-vanishing. �

Lemma 2.4. If (Γ,∆) is a permissible pair, then rank(Γ) = 1 = rank(∆).

Proof. Let K be an active kernel. Then K ·W is rank 2, and annihilates some
vector

�γ =


 γ1
γ2
γ3


 .

Moreover, by assumption (b), none of the entries of �γ are 0.
Suppose rank(Γ) > 1. We have

K ·W = K · Λ1 · Γ +K · Λ2 ·∆.
As K ·Λ1 has non-zero diagonal terms, Oppenheim’s Theorem [7, Thm 7.8.6] guar-
antees that rank(K · Λ1 · Γ) ≥ rank(Γ). As K ·W has rank 2, and K · Λ2 ·∆ ≥ 0,
we must have rank(Γ) = 2. Write

Γ = �u⊗ �u+ �v ⊗ �v,
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where �u and �v are not collinear; if

�u =


 u1

u2

u3


 ,

then �u⊗ �u denotes the matrix

(�u⊗ �u)ij = uiūj .

Let
K · Λ1 = �w ⊗ �w + �x⊗ �x

if K · Λ1 is rank two, and

K · Λ1 = �w ⊗ �w + �x⊗ �x+ �y ⊗ �y
if it is rank three.

Notice that
(
K · Λ1 · Γ)

�γ = 0, because K · Λ1 · Γ is positive and

〈(K · Λ1 · Γ)
�γ,�γ〉 = −〈(K · Λ2 ·∆)

�γ,�γ〉
≤ 0.

Therefore all four of (�u⊗�u)·(�w⊗ �w), (�u⊗�u)·(�x⊗�x), (�v⊗�v)·(�w⊗ �w), (�v⊗�v)·(�x⊗�x)
annihilate �γ. Therefore

3∑
j=1

ūjw̄jγj = 0

=
3∑

j=1

ūj x̄jγj

=
3∑

j=1

v̄jw̄jγj

=
3∑

j=1

v̄j x̄jγj

Therefore the vectors 
 w1γ1
w2γ2
w3γ3


 and


 x1γ1
x2γ2
x3γ3




are both orthogonal to both �u and �v, and therefore are collinear (since �u and �v span
a two-dimensional subspace of C

3). As none of the entries of �γ are 0, it follows that
�w and �x are collinear. Therefore rank(K · Λ1) = 1, contradicting Lemmata (2.2)
and (2.3). �

Lemma 2.5. The matrices Γ and ∆ are unique.

Proof. If both (Γ1,∆1) and (Γ2,∆2) were permissible, then (
1
2
(Γ1 + Γ2),

1
2
(∆1 +

∆2)) would also be permissible. As all permissible matrices are rank one by
Lemma 2.4, it follows that Γ1 and Γ2 are constant multiples of each other, and
so are ∆1 and ∆2.
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So suppose

W = Λ1 · Γ + Λ2 ·∆ and

W = Λ1 · t1Γ + Λ2 · t2∆,
where both t1, t2 are positive, one is less than 1, and the other is bigger than 1.
Then

(1− t1)Λ1 · Γ + (1− t2)Λ2 ·∆ = 0.

Assume without loss of generality that t1 < 1 < t2. Then (
t2 − t1
1− t1 Γ, 0) is permissi-

ble, which contradicts Assumption (c). �

Theorem 2.6. The solution to an extremal non-degenerate three point problem
satisfying Assumptions (a)-(c) is unique. It is given by a rational inner function of
degree 2, and there is a formula in terms of Γ and ∆.

Proof. We have

W = Λ1 · Γ + Λ2 ·∆.(2.7)

Choose vectors �a and �b so that Γ = �a⊗ �a and ∆ = �b⊗�b.
Choose some point λ4 in D

2, distinct from the first three points. Let w4 be the
value attained at λ4 by some solution φ of the three point problem (1.1). Then
the four point problem, interpolating λi to wi for i = 1, . . . , 4 has a solution, so
we can find a pair of 4-by-4 permissible matrices Γ̃ and ∆̃ satisfying (1.2). As the
restriction of these matrices to the first three points satisfy (2.7), and Γ and ∆ are
unique by Lemma 2.5, we get that Γ̃ and ∆̃ are extensions of Γ and ∆. Therefore
we have

(∗)




1− w̄1w4

W 1− w̄2w4

1− w̄3w4

∗ ∗ ∗ 1− |w4|2




=




g1
Γ g2

g3
ḡ1 ḡ2 ḡ3 g4


 ·




1− λ̄1
1λ

1
4

Λ1 1− λ̄1
2λ

1
4

1− λ̄1
3λ

1
4

∗ ∗ ∗ 1− |λ1
4|2




+




d1
∆ d2

d3

d̄1 d̄2 d̄3 d4


 ·




1− λ̄2
1λ

2
4

Λ2 1− λ̄2
2λ

2
4

1− λ̄2
3λ

2
4

∗ ∗ ∗ 1− |λ2
4|2




As Γ̃ is positive, it must be that


 g1
g2
g3


 is in the range of Γ, so


 g1
g2
g3


 = s�a = s


 a1
a2
a3
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for some constant s. Similarly,

 d1
d2
d3


 = t�b = t


 b1
b2
b3




for some t.
Let

�v1 =


 (1− λ̄1

1λ
1
4)a1

(1− λ̄1
2λ

1
4)a2

(1− λ̄1
3λ

1
4)a3




�v2 =


 (1− λ̄2

1λ
2
4)b1

(1− λ̄2
2λ

2
4)b2

(1− λ̄2
3λ

2
4)b3




�v3 =


 w̄1

w̄2

w̄3


 .

Looking at the first three entries of the last column of Equation (∗), we get


 1

1
1


 = s�v1 + t �v2 + w4 �v3.(2.8)

Equation (2.8) has a unique solution for s, t and w4 unless

det


 (1− λ̄1

1λ
1
4)a1 (1− λ̄2

1λ
2
4)b1 w̄1

(1− λ̄1
2λ

1
4)a2 (1− λ̄2

2λ
2
4)b2 w̄2

(1− λ̄1
3λ

1
4)a3 (1− λ̄2

3λ
2
4)b3 w̄3


 = 0.(2.9)

Notice that the determinant in (2.9) is analytic in λ4. So if there is a single point
λ4 for which the determinant does not vanish, there is an open neighborhood of
this point for which the determinant doesn’t vanish. Consequently w4 (and hence
φ) would be determined uniquely on this open set, and hence on all of D

2.
Suppose the determinant in (2.9) vanished identically. Then there is a set of

uniqueness of λ4’s on which Equation (2.8) can be solved with either s or t equal
to 0. (If both s and t were uniquely determined, then �v3 would be 0, violating
Assumption (a)). Without loss of generality, take t = 0. Moreover, we can also
assume without loss of generality that w1 and w2 do not both vanish.

Then one can use the first component of Equation (2.8) to solve for s, and the
second one to get

w4 =
(1− λ̄1

1λ
1
4)a1 + (1− λ̄1

2λ
1
4)a2

(1− λ̄1
1λ

1
4)a1w̄2 + (1− λ̄1

2λ
1
4)a2w̄1

Then w4 is given uniquely as a rational function of degree 1 of λ1
4, violating both

Assumptions (b) and (c).
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Therefore we can assume that there is an open set on which Equation (2.8) has
a unique solution, so by Cramer’s rule we get

φ(λ4) = w4 =

det


 (1− λ̄1

1λ
1
4)a1 (1− λ̄2

1λ
2
4)b1 1

(1− λ̄1
2λ

1
4)a2 (1− λ̄2

2λ
2
4)b2 1

(1− λ̄1
3λ

1
4)a3 (1− λ̄2

3λ
2
4)b3 1




det


 (1− λ̄1

1λ
1
4)a1 (1− λ̄2

1λ
2
4)b1 w̄1

(1− λ̄1
2λ

1
4)a2 (1− λ̄2

2λ
2
4)b2 w̄2

(1− λ̄1
3λ

1
4)a3 (1− λ̄2

3λ
2
4)b3 w̄3



.(2.10)

Equation (2.10) gives a formula for φ that shows that φ is a rational function of
degree at most 2, whose second order terms only involve the mixed product λ1

4λ
2
4.

To show that φ is inner, we follow [2]. We can rewrite (1.2) as

1 + λ̄1
iλ

1
jaiāj + λ̄2

iλ
2
jbib̄j = w̄iwj + aiāj + bib̄j .(2.11)

Realizing both sides of (2.11) as Grammians, we get that there exists a 3-by-3
unitary U such that, for j = 1, 2, 3,

U


 1
λ1

j āj

λ2
j b̄j


 =


 wj

āj

b̄j


 .(2.12)

Writing

U =

C C
2

C

C
2

(
A B
C D

)
,

and letting

Eλ =
(
λ1 0
0 λ2

)
,

we can solve (2.12) to get

wj = A+BEλj
(1−DEλj

)−1C.

So the function
ψ(λ) = A+BEλ(1−DEλ)−1C

interpolates the original data. Moreover ψ is inner, because a calculation shows
that

1− ψ(λ)ψ(λ) = ((1−DEλ)−1C)∗(1− E∗
λEλ)((1−DEλ)−1C),

so |ψ| is less than 1 on D
2 and equals 1 on the distinguished boundary. By unique-

ness, we must have ψ = φ, and hence φ is inner.
Finally, we must show that the degree of φ is exactly two. This is because an

easy calculation shows that a rational function of degree one

c1 + c2z1 + c3z2

c4 + c5z1 + c6z2

is inner only if it is a function of either just z1 or just z2, i.e., either both c2 and c5
or both c3 and c6 can be chosen to be zero. This would violate Assumption (c). �
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3. Finding Γ and ∆

Formula (2.10) works fine, provided one knows Γ and ∆ (or, equivalently, a1, a2, a3
and b1, b2, b3). Lemma 2.5 assures us that Γ and ∆ are unique; how does one find
them?

First, let us make a simplifying normalization. One can pre-compose φ with
an automorphism of D

2, and post-compose it with an automorphism of D; so one
can assume that λ1 = (0, 0) and w1 = 0. Write λ2 = (α2, β2) and λ3 = (α3, β3).
Moreover, as Γij = aiāj and ∆ij = bib̄j , we can choose a1 ≥ 0 and b1 ≥ 0; again
without loss of generality we can assume that b1 > 0. Thus we have

(∗∗)

 1 1 1

1 1− |w2|2 1− w̄2w3

1 1− w2w̄3 1− |w3|2




=


 a21 a1ā2 a1ā3
a1a2 |a2|2 a2ā3
a1a3 ā2a3 |a3|2


 ·


 1 1 1

1 1− |α2|2 1− ᾱ2α3

1 1− α2ᾱ3 1− |α3|2




+


 b21 b1b̄2 b1b̄3
b1b2 |b2|2 b2b̄3
b1b3 b̄2b3 |b3|2


 ·


 1 1 1

1 1− |β2|2 1− β̄2β3

1 1− β2β̄3 1− |β3|2




Looking at the first column of (∗∗) we get

b1 =
1− a21√
1− a21

b2 =
1− a1a2√
1− a21

b3 =
1− a1a3√
1− a21

Thus we have three equations that uniquely determine a1, a2, a3:

(1− a21)(1− |w2|2) = (1− a21)|a2|2(1− |α2|2)(3.1)

+ |1− a1a2|2(1− |β2|2)
(1− a21)(1− w̄2w3) = (1− a21)a2ā3(1− ᾱ2α3)(3.2)

+ (1− a1a2)(1− a1ā3)(1− β̄2β3)

(1− a21)(1− |w3|2) = (1− a21)|a3|2(1− |α3|2)(3.3)

+ |1− a1a3|2(1− |β3|2)
Equation (3.2) can be used to solve for a3 as a rational function of a1 and ā2; then
one is left with two real algebraic equations in three real variables, a1,�(a2) and
�(a3). Provided the original data is really extremal, this system of two equations
will have a unique solution with a1 ≥ 0. If the original data is not extremal,
multiply w2 and w3 by a positive real number t, and choose the largest t for which
equations (3.1)–(3.3) can be solved. This will produce an inner function φ via
(2.10); then the function 1

tφ will be the unique function of minimal norm solving
the original problem.

Example 3.4. Let us consider a very symmetric special case. Let λ1 = (0, 0), λ2 =
(r, 0), λ3 = (0, r), w1 = 0, w2 = t and w3 = t, where t is to be chosen as large as
possible and r is a fixed positive number. Then by symmetry, we can assume that
a1 = b1 = 1√

2
and a2 = b3 = ā2.
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Equations (3.1)–(3.3) then reduce to:
1
2
(1− t2) = 1

2
a22(1− r2) + (1− 1√

2
a2)2

1
2
(1− t2) = a2(

√
2− a2)

Solving, one gets two solutions. One solution is

t =
r

2− r , a2 =
√
2

2− r ;
the other is

t =
r

2 + r
, a2 =

√
2

2 + r
.

The first of these is clearly the extremal solution, and formula (2.10) then gives

φ(z) =
z1 + z2 − 2z1z2

2− z1 − z2
as the extremal solution.

The second solution also corresponds to a pair of rank one matrices Γ and ∆ that
satisfy (2.7), even though the problem is non-extremal. If one plugs in to (2.10)
one gets the inner function

φ2(z) =
z1 + z2 + 2z1z2

2 + z1 + z2
.
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