Abstract. Suppose k_{n} denotes either $\phi(n)$ or $\phi\left(p_{n}\right)(n=1,2, \cdots)$ where the polynomial ϕ maps the natural numbers to themselves and p_{k} denotes the $k^{t h}$ rational prime. Let $\left(\frac{r_{n}}{q_{n}}\right)_{n=1}^{\infty}$ denote the sequence of convergents to a real number x and define the the sequence of approximation constants $\left(\theta_{n}(x)\right)_{n=1}^{\infty}$ by

$$
\theta_{n}(x)=q_{n}^{2}\left|x-\frac{r_{n}}{q_{n}}\right| . \quad(n=1,2, \cdots)
$$

In this paper we study the behaviour of the sequence $\left(\theta_{k_{n}}(x)\right)_{n=1}^{\infty}$ for almost all x with respect to Lebesgue measure. In the special case where $k_{n}=n(n=1,2, \cdots)$ these results are due to W . Bosma, H. Jager and F. Wiedijk.

