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On Metric Diophantine Approximation and
Subsequence Ergodic Theory

R. Nair

Abstract. Suppose kn denotes either φ(n) or φ(pn) (n = 1, 2, · · · ) where
the polynomial φ maps the natural numbers to themselves and pk denotes the
kth rational prime. Let ( rn

qn
)∞n=1 denote the sequence of convergents to a real

number x and define the the sequence of approximation constants (θn(x))∞n=1

by

θn(x) = q2
n

∣∣∣∣x − rn

qn

∣∣∣∣ . (n = 1, 2, · · · )
In this paper we study the behaviour of the sequence (θkn (x))∞n=1 for almost
all x with respect to Lebesgue measure. In the special case where kn = n
(n = 1, 2, · · · ) these results are due to W. Bosma, H. Jager and F. Wiedijk.
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1. Introduction

In this paper we study the behaviour of the regular continued fraction expansion
of a real number

x = c0 +
1

c1 +
1

c2 +
1

c3 +
1

c4
. . .

,
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which is also written more compactly as [c0; c1, c2, . . . ]. The terms c0, c1, . . . are
called the partial quotients of the continued fraction expansion and the sequence
of rational truncates

[c0; c1, . . . , cn] =
pn
qn
, (n = 1, 2, . . . )

are called the convergents of the continued fraction expansion. More particularly
recall the inequality ∣∣∣∣x − pn

qn

∣∣∣∣ ≤ 1
q2
n

,(1.1)

which is classical and well known [HW]. Clearly if for each natural number n we
set

θn(x) = q2
n

∣∣∣∣x − pn
qn

∣∣∣∣ ,
then for each x the sequence (θn(x))∞n=1 lies in the interval [0, 1]. The distribution
for almost all x with respect to Lebesgue measure of the sequence (θn(x))∞n=1 is
studied in [BJW]. In this paper extending work in [BJW] we use ergodic theory to
study some other functions of this sequence. In Section 2 we collect together some
ergodic theoretic prerequisites. In Section 3 we state and prove our main result
concerning the distribution of (θn(x))∞n=1 which refines the work in [BJW]. Finally
in Section 4 the method of Section 3 is adapted to study some other sequences
attached to the continued fraction expansion of x.

2. Basic Ergodic Theory

Here and throughout the rest of the paper by a dynamical system (X,β, µ, T ) we
mean a set X, together with a σ-algebra β of subsets of X, a probability measure
µ on the measurable space (X,β) and a measurable self map T of X that is also
measure preserving. By this we mean that if given an element A of β if we set
T−1A = {x ∈ X : Tx ∈ A} then µ(A) = µ(T−1A). We say a dynamical
system is ergodic if T−1A = A for some A in β means that µ(A) is either zero
or one in value. We say the dynamical system (X,β, µ, T ) is weak mixing (among
other equivalent formulations [Wa]) if for each pair of sets A and B in β we have

lim
N→∞

1
N

N∑
n=1

|µ(T−nA ∩B) − µ(A)µ(B)| = 0.

Weak mixing is a strictly stronger condition than ergodicity. A piece of terminology
that is becoming increasingly standard is to call a sequence k = (kn)∞n=1 of non-
negative integers Lp good universal if given any dynamical system (X,β, µ, T ) and
any function f in Lp(X,β, µ) it is true that

lim
N→∞

1
N

N∑
n=1

f(T knx) = `f (x),

exists almost everywhere with respect to the measure µ. Here and henceforth, for
each real number y let [y] denote the greatest integer less than y and let 〈y〉 =
y − [y]. The following theorem is a consequence of Theorem 2.3 in [Na2].
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Theorem 2.1. Suppose the sequence k = (kn)∞n=1 of non-negative integers is such
that for each irrational number α the sequence (〈knα〉)∞n=1 is uniformly distributed
modulo one and that for a particular p greater or equal to one that k = (kn)∞n=1

is Lp good universal. Then if the dynamical system (X,β, µ, T ) is weak mixing
`f (x) =

∫
X
f(t)dµ(t) almost everywhere with respect to µ.

If kn denotes either φ(n) or φ(pn) where φ denotes any non-constant polynomial
mapping the natural numbers to themselves and pn denotes the nth rational prime
then k is Lp good universal for any p greater than one. See [Bo2] and [Na1]
respectively for proofs, and the 1989 Ohio State Ph.D thesis of M. Wierdl for
related results. The fact that for each irrational number α the sequence (〈knα〉)∞n=1

is uniformly distributed modulo one in both instances are well known classical
results. See [We] and [Rh] respectively. Other sequences are known by the author
to satisfy the both hypotheses but these results have yet to appear in print [Na3].

We now consider the particular ergodic properties of the Gauss map, defined on
[0, 1] by

Tx =
〈

1
x

〉
x 6= 0 ; T0 = 0.

Notice that cn(x) = cn−1(Tx) (n = 1, 2, · · · ). The dynamical system (X,β, µ, T )
where X denotes [0, 1], β is the σ-algebra of Borel sets on X, µ is the measure on
(X,β) defined for any A in β by

µ(A) =
1

log 2

∫
A

dx

x+ 1
,

and T is the Gauss map is weak mixing. See [CFS] for details. The ergodic
properties of the dynamical system (X,β, µ, T ) are not quite enough to carry out
this investigation. We also need ergodic theoretic information about its natural
extention. In particular we need the following theorem from [INT]. See [CFS] for
a definition of the natural extention and [S] for other general background.

Theorem 2.2. Let Ω = ([0, 1) \Q) × [0, 1]. Now let γ be the σ-algebra of Borel
subsets of Ω and let ω be the probability measure on the measurable space (Ω, β)
defined by

ω(A) =
1

(log 2)

∫
A

dxdy

(1 + xy)2
.

Also define the map

T (x, y) = (Tx,
1

[ 1
x ] + y

).

Then the map T preserves the measure ω and the dynamical system (Ω, β, ω, T ) is
weak mixing.

Note that

T n(x, y) = (Tnx, [0; an, an−1, · · · , a2, a1 + y]) (0 ≤ y ≤ 1, n = 1, 2, · · · )
and in particular

T n(x, 0) = (Tnx,
qn−1

qn
).
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3. Statistical Properties of the Sequence (θn(x))∞n=1

The main result of this paper is the following.

Theorem 3.1. Suppose the sequence of integers k = (kn)∞n=1 satisfies the hypoth-
esis of Theorem 2.1. Let the function F1 : [0, 1] → [0, 1] be defined by F1(z) = z

log 2

on [0, 1
2 ] and F1(z) = 1

log 2 (1 − z + log 2z) on [1
2 , 1]. Then

lim
n→∞

1
n
|{1 ≤ j ≤ n : θkj (x) ≤ z}| = F1(z),(3.2)

almost everywhere with respect to Lebesgue measure.

In the special case kn = n (n = 1, 2, . . . ) this result was conjectured by H.
W. Lenstra Jr. and proved in [BJW].

Proof of Theorem 3.1. Denote by Ω(c) with c ≥ 1 that part of Ω on or above
the hyperbola 1

x + y = c. In [K, p. 29] it is noted that

θn(x) =
1

( 1
Tnx + qn−1

qn
)

(n = 1, 2, . . . ),

the statement θn(x) ≤ z for z ∈ [0, 1] is equivalent to the statement that
T n(x, 0) ∈ Ω( 1

z ). It is also readily verified there exists an integer n0(ε) such
that for all n greater than n0(ε) and all y in [0, 1] if

T n(x, y) ∈ Ω(
1
z

+ ε)

then

T n(x, 0) ∈ Ω(
1
z

).

Also if

T n(x, 0) ∈ Ω(
1
z

)

then

T n(x, y) ∈ Ω(
1
z
− ε).

From this it follows that for almost all (x, y) with respect to the measure µ we have

lim
n→∞

1
n
|{1 ≤ j ≤ n ; T kj (x, y) ∈ Ω(

1
z

+ ε)}|

≤ lim inf
n→∞

1
n
|{1 ≤ j ≤ n ; T kj (x, 0) ∈ Ω(

1
z

)}|

≤ lim sup
n→∞

1
n
|{1 ≤ j ≤ n ; T kj (x, 0) ∈ Ω(

1
z

)}|

≤ lim
n→∞

1
n
|{1 ≤ j ≤ n ; T kj (x, y) ∈ Ω(

1
z
− ε)}|.

Using the fact that k = (kn)∞n=1 is Lp good universal, both limits exist and are
µ(Ω( 1

z + ε)) and µ(Ω( 1
z − ε)) respectively. Since ε is arbitrary the limit (3.2)

exists and is equal to µ(Ω( 1
z )) for almost all x with respect to Lebesgue measure.

We straightforwardly verify that µ(Ω( 1
z )) = F (z). �
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Corollary 3.3. Suppose the sequence k = (kn)∞n=1 satisfies the hypothesis of
Theorem 2.1. Then

lim
n→∞

1
n

n∑
j=1

θkj (x) =
1

4 log 2
,

almost everywhere with respect to Lebesgue measure.

Proof. This follows immediately from the fact that the first moment
∫ 1

0
zdF1(z)

has the value 1
4 log 2 . �

4. Other Sequences Attached to the Regular Continued
Fraction Expansion

Theorem 4.1. Suppose z is in [0, 1] and for irrational x in (0, 1) set Qn(x) =
qn−1(x)
qn(x) for each positive integer n. Suppose also that k = (kn)∞n=1 satisfies the

hypothesis of Theorem 2.1. Then

lim
n→∞

1
n
|{1 ≤ j ≤ n : Qkj (x) ≤ z}| = F2(z) =

log(1 + z)
log 2

almost everywhere with respect to Lebesgue measure.

Proof. Using the fact that k = (kn)∞n=1 satisfies the hypothesis of Theorem 2.1,
we see that

lim
n→∞

1
n
|{1 ≤ j ≤ n : T kj (x) ≤ z}| =

1
log 2

∫ z

0

dx

1 + x
=

log(1 + z)
log 2

.

Now note that, for a set E in β if E denotes {(x, y) : (y, x) ∈ E} then µ(E) =
µ(E) and so (Qkj (x))∞n=1 is distributed identically to (T kjx)∞j=1 and the theorem
follows as a consequence. �

Theorem 4.2. For irrational x in (0, 1) set

rn(x) =
|x − pn

qn
|

|x − pn−1
qn−1
| . (n = 1, 2, . . . )

Further for z in [0, 1] let

F3(z) =
1

log 2
(log(1 + z) − z

1 + z
log z).(4.3)

Suppose also that k = (kn)∞n=1 satisfies the hypothesis of Theorem 2.1. Then

lim
n→∞

1
n
|{1 ≤ j ≤ n : rkj (x) ≤ z}| = F3(z),

almost everywhere with respect to Lebesgue measure.

Proof. It follows from the fact that

x − pn
qn

=
(−1)nTnx

qn(qn + qn−1Tnx)
(4.4)

[B, pp. 41–42] and the fact that

1
Tn−1x

= an + Tnx
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that rn(x) = qn−1
qn

Tnx. Arguing as in the proof of Theorem 3.1 we see that F3

exists for almost all x and that for z in [0, 1] the value of F3(z) is equal to the µ
measure of the part of Ω under the curve xy = z. A simple calculation shows that
F3 is given by (4.3) as specified. �

Corollary 4.5. Suppose the sequence k = (kn)∞n=1 satisfies the hypothesis of
Theorem 2.1. Then

lim
n→∞

1
n

n∑
j=1

rkj (x) =
π2

12 log 2
− 1,

almost everywhere with respect to Lebesgue measure.

Proof. The limit is
∫ 1

0
zdF3(z). �

Another well known inequality is the following∣∣∣∣x − pn
qn

∣∣∣∣ < 1
qnqn+1

(n = 1, 2, . . . )

which motivates the following result.

Theorem 4.6. For each irrational number x in (0, 1) define the function dn(x) for
each natural number n by the identity∣∣∣∣x − pn

qn

∣∣∣∣ =
dn(x)
qnqn+1

.(4.7)

Suppose the sequence k = (kn)∞n=1 satisfies the hypothesis of Theorem 2.1. Suppose
also F4 is defined on [0, 1] as F4(z) = 0 if z is in [0, 1

2 ] and

F4(z) =
1

log 2
(z log z + (1 − z) log(1 − z) + log 2)

if z is in [1
2 , 1]. Then

lim
n→∞

1
n
|{1 ≤ j ≤ n : dkj (x) ≤ z}| = F4(z),

almost everywhere with respect to Lebesgue measure.

Proof. From (4.4) and (4.7) we readily see that

dn(x) =
1

1 + qn
qn−1

Tn+1x
. (n = 1, 2, . . . )

Hence F4(z) equals the µ measure of the part of Ω above the curve xy = 1
z − 1.

Note that for z ≤ 1
2 this is an empty set. �

Finally in this section we consider the inequality∣∣∣∣x − pn
qn

∣∣∣∣ < 1
2qnqn−1

. (n = 1, 2, . . . )

This is sharper than (1.1) whenever cn = 1. That is for almost all x with frequency
2 − log 3

log 2 . See [B] for details. This motivates the following theorem.
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Theorem 4.8. For each irrational number x in (0, 1) define the function Dn(x)
for each natural number n by the identity∣∣∣∣x − pn

qn

∣∣∣∣ =
Dn(x)
qnqn−1

. (n = 1, 2, . . . )

Suppose the sequence k = (kn)∞n=1 satisfies the hypothesis of Theorem 2.1. Suppose
F5 is defined on [0, 1]

F5(z) =
1

log 2
(log z − z

2
log z − 2 − z

2
log(2 − z))

if z is in [0, 1]. Then

lim
n→∞

1
n
|{1 ≤ j ≤ n : Dkj (x) ≤ z}| = F5(z),

almost everywhere with respect to Lebesgue measure.

Proof. It is not difficult to verify that

Dn(x) =
2

( qn
qn−1

1
Tnx + 1)

. (n = 1, 2, . . . )

As earlier in the proof of Theorem 3.1 F5(z) denotes the µ measure of the part of
Ω under the hyperbola xy = z

2 − z when z is in [0, 1]. �

Corollary 4.9. Suppose the sequence k = (kn)∞n=1 satisfies the hypothesis of
Theorem 2.1. Then

lim
n→∞

1
n

n∑
j=1

Dkj (x) = 1 − 1
2 log 2

,

almost everywhere with respect to Lebesgue measure.

Proof. The limit is
∫ 1

0
zdF5(z) = 1 − 1

2 log 2 . �
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