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A Note on the Approximation by Continued
Fractions under an Extra Condition

Karma Dajani and Cor Kraaikamp

Abstract. In this note the distribution of the approximation coefficients Θn,
associated with the regular continued fraction expansion of numbers x ∈ [0, 1),
is given under extra conditions on the numerators and denominators of the
convergents pn/qn. Similar results are also obtained for S-expansions. Further,
a Gauss-Kusmin type theorem is derived for the regular continued fraction
expansion under these extra conditions.
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1. Introduction

A classical result by Hurwitz states that for every irrational number x there exist
infinitely many pairs of (co-prime) integers p and q, q > 0, such that∣∣∣∣x− p

q

∣∣∣∣ < 1√
5

1
q2

.(1)

In the past century a great number of papers appeared, aimed at reproving, refining
or generalizing Hurwitz’ result (1). Here we mention a theorem by Koksma [Kok],
which in itself was a refinement of a result by Hartman [H].

Theorem 1. (Koksma) Let x be an irrational real number, and let m ≥ 1, a and
b be integers. Then for every ε > 0 there exist infinitely many pairs of integers p
and q, q > 0, such that∣∣∣∣x− p

q

∣∣∣∣ < m2(1 + ε)√
5

1
q2

and p ≡ a(mod m), q ≡ b(mod m).(2)

The constant
√

5 is best possible, i.e., it can not be replaced by a larger one.
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The proof of this theorem, and also that of related results by Descombes and
Poitou [DP], rests on the strong approximation properties of the regular continued
fraction.

In this note we will determine for almost all1 x the asymtotic density of those
regular continued fraction convergents pn/qn of x satisfying (2). To be more precise,
let A(x, c,N) be the cardinality of the set A(x, c,N), defined as

{n ; 1 ≤ n ≤ N, qn|qnx− pn| < c, pn ≡ a(mod m) and qn ≡ b(mod m)} .
If (a, b,m) = 1, 1 ≤ a, b ≤ m, we show that for almost all x and for all c ≥ 0 one
has

lim
n→∞

1
N
A(x, c,N) =

F (c)
J(m)

.(3)

Here J is Jordan’s arithmetical totient function, defined by

J(m) := m2
∏
p|m

(1− 1
p2

) ,

(the product is taken over all the primes p for which p|m) and F is a distribution
function - the so-called Lenstra curve (see also [BJW]) - given by

F (z) =


z

log 2 , 0 ≤ z ≤ 1
2 ,

1
log 2 (−z + log 2z + 1), 1

2 ≤ z ≤ 1.

The above result (and several others) will be obtained from a suitable natural
extension of a skew product which was introduced and studied by H. Jager and
P. Liardet [JL]. In the last section we will extend these results to S-expansions,
which form a very large class of continued fraction expansions. In fact we will
see, that the results obtained by Jager and Liardet in [JL] on the numerators and
denominators of convergents hold for any S-expansion.

2. A Natural Extension of a Skew Product by Jager and
Liardet

Let the regular continued fraction expansion (RCF) of x ∈ [0, 1) be given by

x = [ 0; B1, . . . , Bn, . . . ] .(4)

This expansion is finite if and only if x is rational. Finite truncation in (4) yields
the sequence of RCF-convergents pn/qn = [ 0; B1, . . . , Bn], n ≥ 1. Underlying the
RCF is the operator T : [0, 1)→ [0, 1), defined by

T0 := 0 and Tx :=
1
x
− b 1

x
c , x 6= 0,

where bξc is the floor (or entier) value of ξ. Let µ be the so-called Gauss measure
on [0,1), i.e., µ is a probability measure on [0,1) with density

1
log 2

1
1 + x

.

It is well-known that the dynamical system ([0, 1)\Q, µ, T ) is ergodic, see e.g. [R-N].

1All almost all statements will be with respect to Lebesgue measure.
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For m ∈ Z, m ≥ 2, let G(m) be the group of 2 × 2 matrices with entries from
Z/mZ and determinant ±1, i.e.,

G(m) :=
{(

α β
γ δ

)
; α, β, γ, δ ∈ Z/mZ, αδ − βγ = ±1

}
.

In [JL] it was shown that

card G(m) =
{

2mJ(m), m ≥ 3,
mJ(m) = 6, m = 2.

Setting

An :=
(

0 1
1 Bn

)
; Mn := A1 · · ·An, n ≥ 1,

one has, see e.g. [K],

Mn :=
(
pn−1 pn
qn−1 qn

)
, n ≥ 1.

Notice that the well-known recursion relations for the pn’s and qn’s at once follow
from Mn+1 = MnAn+1.

Denoting by hm Haar measure on G(m), and setting |G(m)| := card G(m),
H. Jager and P. Liardet [JL] obtained the following theorem.

Theorem 2. (Jager & Liardet) Let m ∈ Z, m ≥ 2. For x ∈ (0, 1), let B1(x) = b 1
xc

and denote a (mod m) by a. Then the skew product

Γ := ([0, 1) \Q×G(m), µ⊗ hm, L) ,(5)

where the transformation L is given by

L(x, g) :=
(

1
x
−B1(x), g

(
0 1
1 B1(x)

))
, (x, g) ∈ Γ ,

is ergodic.
Furthermore, for almost all x ∈ [0, 1) the sequence of matrices

n 7→
(
pn−1 pn
qn−1 qn

)
, n ≥ 1,

is uniformly distributed over G(m).

From Theorem 2 and the Ergodic Theorem, Jager and Liardet [JL] were able
to draw a number of corollaries, some of which were previously obtained (in a
completely different way) by R. Moeckel [M]. Here we mention the follwing result.

Proposition 1. (Moeckel; Jager & Liardet) Let p, q and m be three integers, such
that m ≥ 2 and (p, q,m) = 1. Then for almost all x one has

lim
N→∞

1
N

#
{
n ; 1 ≤ n ≤ N,

(
pn
qn

)
≡
(
p
q

)
(mod m)

}
=

1
J(m)

.

Further interesting applications of Theorem 2 were obtained by V. Nolte in [No].
In order to show that for almost every x the limit in (3) exists and equals

F (c)/J(m), the above skew product is not sufficient. To see this, put

Θn = Θn(x) := qn|qnx− pn|, n ≥ 0,

and
(Tn, Vn) := (Tnx,

qn−1

qn
), n ≥ 0.
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Then one easily shows (see e.g. [K]), that

Θn−1 =
Vn

1 + TnVn
; Θn =

Tn
1 + TnVn

.(6)

Since qn−1/qn = [ 0; Bn, . . . , B1], we see that Θn depends on both ‘the future’ (i.e.,
Tn) and ‘the past’ (Vn) of x. In order to study these Θ’s, W. Bosma, H. Jager and
F. Wiedijk used in [BJW] a natural extension of ([0, 1) \Q, µ, T ), which was first
studied by H. Nakada, S. Ito and S. Tanaka in [NIT], see also [Na]. Here we will
study the skew product of this natural extension with G(m), and we will show that
this new skew product is actually the natural extension of the skew product used
by Jager and Liardet. We first recall the definition of natural extension, see also
[R] or [Br].

Definition 1. Let T and S be two measure preserving transformations of (X,B, µ)
and (Y, C, ν) respectively. The transformation S is said to be a factor map of T if
there exists a measurable map π : (X,B, µ)→ (Y, C, ν) such that

(i) ν = µ ◦ π−1; (ii) π ◦ T = S ◦ π .
Definition 2. An invertible, measure preserving transformation T on (X,B, µ) is
said to be the natural extension of the measure preserving transformation S on
(Y, C, ν) if there exists a factor map π : (X,B, µ) → (Y, C, ν) such that B =
∨∞n=0T

n(π−1C) (µ mod 0).

We have the following theorem.

Theorem 3. Let m be an integer, m ≥ 2, and let B1(x) and B1(x) be defined as
before. Let Ω := [0, 1) \Q× [0, 1], and let µ be the probability measure on Ω, with
density

d(x, y) :=
1

log 2
1

(1 + xy)2
, (x, y) ∈ Ω .

Finally, let T : Ω×G(m)→ Ω×G(m) be defined by 2

T (x, y, g) :=
(

1
x
−B1,

1
B1 + y

, g

(
0 1
1 B1

))
, (x, y, g) ∈ Ω×G(m) .

Then the skew product

(Ω×G(m), µ⊗ hm, T )(7)

is the natural extension of the skew product from (5), and is therefore ergodic.

Remarks
1. In fact, the skew product (7) has mixing properties far stronger than ergod-

icity. In [L], Liardet showed that (Γ, µ ⊗ hm, L) is exact, and therefore it
follows, see also [Br], p. 39, that (Ω×G(m), µ⊗ hm, T ) is a K-system.

2. The projection π̃ : Ω×G(m)→ Ω given by π̃(x, y, g) := (x, y) yields the afore-
mentioned natural extension (Ω, µ,N ) by Nakada-Ito-Tanaka of ([0, 1), µ, T ).
Clearly N (x, y) = (Tx, (B1(x) + y)−1) for (x, y) ∈ Ω.

Proof of Theorem 3. Let π : Ω×G(m)→ [0, 1)\Q×G(m) denote the projection
π(x, y, g) := (x, g). Then clearly one has

2We will suppress the dependence of B1 on x whenever possible.
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(i) πT = Lπ ;
(ii) (µ⊗ hm) ◦ π−1 = µ⊗ hm ;

(iii) ∨n≥0T n(π−1(B × F)) = B × F ;
where B is the Borel σ-algebra on [0, 1) \ Q, B is the Borel σ-algebra on Ω and
F is the Borel σ-algebra on G(m). Notice that (iii) is an immediate consequence
of Remark 2 with F the power set of G(m). Thus π satisfies the conditions of
Definition 2, and therefore T is the natural extension of L as given in (5). As
is well-known, see e.g. [R] or [Br], the natural extension T inherits all mixing
properties from S. Since Jager and Liardet showed that S is ergodic, the result
follows. �

Lemma 1. For almost every x ∈ [0, 1) and every g ∈ G(m) the sequence

(T n(x, 0, g))n≥0

is distributed over Ω×G(m) according to the probability measure µ⊗ hm, i.e., for
every Borel set D in Ω×G(m), for almost every x ∈ [0, 1) and for every g ∈ G(m)
one has

lim
n→∞

1
N

#{n; 1 ≤ n ≤ N, T n(x, 0, g) ∈ D} = µ⊗ hm(D) .

Proof. Notice, that if the sequence (Nn(x, y))n≥0 is distributed over Ω according
to the density d, i.e., if for every Borel set B ⊂ Ω one has

lim
n→∞

1
N

#{n; 1 ≤ n ≤ N, Nn(x, y) ∈ B} = µ(B) ,

then it follows from

µ⊗ hm(B × {g}) =
µ(B)
|G(m)| ,

where B ⊂ Ω is a Borel set and g ∈ G(m), that for every g ∈ G(m) the sequence
(T n(x, y, g))n≥0 is distributed over Ω×G(m) according to µ⊗ hm.

Next observe, that for all (x, y) ∈ Ω one has

|N n(x, y)−Nn(x, 0)| ≤ 1
FnFn+1

,

where (Fn)n≥0 is the Fibonacci-sequence 1, 1, 2, 3, 5, 8, · · · . Hence for all irrational
x and all y ∈ [0, 1]

lim
n→∞ |N

n(x, y)−Nn(x, 0)| = 0,

and the convergence is uniform. But then for all y ∈ [0, 1] the sequence (N n(x, y))n≥0

has the same distribution asNn(x, 0))n≥0. Thus, also the sequences T n(x, 0, g))n≥0

and T n(x, y, g))n≥0 have the same distribution for all y ∈ [0, 1] and all g ∈ G(m).
Now let E ⊂ [0, 1) \ Q be the set of those irrational x ∈ [0, 1), for which

(N n(x, 0))n≥0 is not distributed over Ω according to µ, then E := E × [0, 1]
is the set of points (x, y) ∈ Ω for which (N n(x, y))n≥0 is not distributed over Ω
according to µ. Now if E had, as subset of [0, 1), positive Lebesgue measure, so
would E as a subset of Ω. However, this is impossible since (Ω, µ,N ) is ergodic.

Thus we see that E is a null-set, and therefore we have for almost all x and for all
g ∈ G(m) that the sequence (T n(x, 0, g))n≥0 is distributed according to µ⊗hm. �

From Theorem 3, (6) and Lemma 1 we have the following results, (3) being one
of them.
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Corollary 1. Let a and m be two integers, m ≥ 2, and let (c1, c2) ∈ [0, 1]2. Fur-
thermore, let A(x, c1, c2, N) be the cardinality of the set A(x, c1, c2, N), given by

{n; 1 ≤ n ≤ N, Θn−1 < c1, Θn < c2, pn ≡ a(mod m) and qn ≡ b(mod m)} .
Then for almost all x one has

lim
N→∞

1
N
A(x, c1, c2, N) =

G(c1, c2)
J(m)

,

where G(c1, c2) is a distribution function with density g, given by

g(ξ, η) =


1

log 2
1√

1−4ξη
, ξ > 0, η > 0 and ξ + η < 1,

0, otherwise.

Remarks
1. Taking c1 equal to 1 in Corollary 1 at once yields (3).
2. Using some of the lemmas in [JL] on the number of elements of certain sets,

obtained from G(m) by imposing extra conditions on G(m), at once yield
several other corollaries, e.g., from Theorem 3, (6), Lemma 1 and Lemma
(3.10) from [JL] one has the following corollary.

Corollary 2. Let a and m be two integers, m ≥ 2, and let (c1, c2) ∈ [0, 1]2. Fur-
thermore, let B(x, c1, c2, N) be the cardinality of the set B(x, c1, c2, N), given by

{n; 1 ≤ n ≤ N, Θn−1 < c1, Θn < c2, qn ≡ a(mod m)} .
Then for almost all x one has

lim
N→∞

1
N
B(x, c1, c2, N) = G(c1, c2)

m

J(m)
ϕ((a,m))

(a,m)
.

Here ϕ(n) denotes the Euler ϕ-function.

In 1959, P. Erdös [E] showed, that for each z ≥ 0 and for almost all x one has

lim
N→∞

1
logN

#{(q, p); q|qx− p| < z, (q, p) = 1, q ≤ N} =
π2

12
z.

Using the method from [BJW], Ito and Nakada showed in [IN], that for 0 ≤ z ≤ 1
2

this result is an easy consequence of the fact that (Ω, µ,N ) is an ergodic system,
and from classical theorems by Legendre and Lévy. Their method can be extended
to 0 ≤ z ≤ 1, but then (Ω, µ,N ) should be replaced by a ‘suitable’ ergodic system,
see also [I]. The reason for this is, that there exist rational numbers p/q with
(q, p) = 1 and 1

2 < q|qx − p| < 1 which are not ‘picked up’ as convergents of x by
the RCF. This also ‘explains’ why the Lenstra-curve is not linear between 0 and 1,
but only between 0 and 1

2 .
Replacing (Ω, µ,N ) by (Ω×G(m), µ⊗ hm, T ) yields the following proposition.

Proposition 2. Let a, b and m be three integers, such that m ≥ 2 and (a, b,m) =
1. Then for almost all x and 0 ≤ z ≤ 1

2 one has that the limit

lim
N→∞

#{(q, p); q|qx− p| < z, (q, p) = 1, q ≤ N,
(
p
q

)
≡
(
a
b

)
(mod m)}

logN

equals π2

12J(m)z.
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The above results all deal with the pointwise convergence of ergodic averages.
Classically such results for continued fractions are like one face of a coin, the other
face being weak convergence of probability measures with a given speed of conver-
gence. To conclude this section, we will show that also in the present setting such
results are easily obtained.

Let K ⊂ Ω be a simply connected subset of Ω, such that ∂K = `1 ∪ . . . ∪ `k,
where k ∈ N and each `i is either a vertical line segment

`i = {(Ai, η); Ci ≤ η ≤ Di}
(where Ai ∈ [0, 1] and 0 ≤ Ci < Di ≤ 1), or by

`i = {(ξ, fi(ξ)); Ai ≤ ξ ≤ Bi}
(where 0 ≤ Ai < Bi ≤ 1 and fi : [Ai, Bi] → [0, 1] is monotone and continuous),
i = 1, . . . , k. Then setting

En(K) := {ξ ∈ [0, 1); (Tn, Vn) ∈ K} ,
it was shown in [DK] that

λ(En(K)) = µ(K) +O(gn),

where the constant in the big O-symbol is uniform and where g =
√

5−1
2 = 0.61 · · ·

is the so-called golden mean.
Now let L ⊂ G(m) be some subset of G(m), and put

En(K × L) := {(x, g) ∈ Γ; T n(x, 0, g) ∈ K × L} .(8)

In case the continued fraction expansion of x is given by (4) and the matrix Mn(x)
is given — as before — by

Mn(x) =
(

0 1
1 B1

)
. . .

(
0 1
1 Bn

)
,

one clearly has

En(K × L) = {(x, g) ∈ Γ; Nn(x, 0) ∈ K and gMn(x) ∈ L} .
Consequently one has, that

(λ⊗ hm)(En(K × L)) =
∫
En(K)

∫
LM−1

n (x)

dhmdλ(x)

=
∫
En(K)

hm(LM−1
n (x))dλ(x) =

∫
En(K)

hm(L)dλ(x)

= λ(En(K))hm(L) =
|L|
|G(m)|µ(K) +O(gn) .

Thus we find the following theorem.

Theorem 4. Let K ⊂ Ω and L ⊂ G(m) be as before. Furthermore, let En(K ×L)
be defined as in (8). Then

(λ⊗ hm)(En(K × L)) =
|L|
|G(m)|µ(K) +O(gn) ,

where the constant in the big O-symbol is uniform.

Several corollaries can be obtained easily. We mention here only one.
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Corollary 3. Let a, b and m be three integers, such that (a, b,m) = 1 and m ≥ 2.
Furthermore, let for 0 ≤ zi ≤ 1 (where i = 1, 2) the set Kn(z1, z2,m) be defined by

{(x, g) ∈ Γ; Θn−1(x) ≤ z1, Θn(x) ≤ z2 and pn ≡ a(mod m), qn ≡ b(mod m)} .
Then

λ(Kn(z1, z2,m)) =
G(z1, z2)
J(m)

+O(gn) ,

where the constant in the big O-symbol is uniform.

3. S-expansions

In [Ba], D. Barbolosi showed that the method of Jager and Liardet [JL] can be
extended to the continued fraction with odd partial quotients (OddCF). Essential
in [Ba] is, that in case m is even one should replace G(m) by G(m)′, which is a
subgroup of G(m) of index 2, generated by all matrices of the type(

0 1
ε a

)
,(9)

where ε ∈ {−1,+1} and a is an odd integer. We denote the set of all such matrices
from (9) by H ′. In case m is odd one has that G(m) = G(m)′. Heuristically
Barbolosi’s result can be understood as follows. In [JL] the following lemma was
obtained for the RCF.

Lemma 2. Let

H :=
{(

0 1
1 α

)
; α ∈ Z/mZ

}
, m ≥ 2.

Then the group G(m) is generated by H.

In case m is even H ′ does not contain those matrices in H for which a is even;
the remaining matrices generate the subgroup G(m)′ of G(m) instead of G(m).

Apart from the OddCF there are several other — classical and new — contin-
ued fraction algorithms. To mention a few: the nearest integer continued fraction
(NICF), Hurwitz’ singular continued fraction (SCF), Mikowski’s diagonal contin-
ued fraction (DCF), and more recently Hitoshi Nakada’s α-expansions and Wieb
Bosma’s optimal continued fraction (OCF). All these expansions are all examples
of a much larger class of continued fraction expansions, the so-called S-expansion,
which we will now briefly describe (for proofs and details, see [K]).

Each S-expansion is an example of a semi-regular continued fraction (SRCF)
expansion. In general a SRCF is a finite or infinite fraction

b0 +
ε1

b1 +
ε2

b2 +
.. . +

εn

bn +
.. .

= [ b0; ε1b1, ε2b2, · · · , εnbn, · · · ] ,(10)

with εn = ±1; b0 ∈ Z; bn ∈ N, for n ≥ 1, subject to the condition

εn+1 + bn ≥ 1, for n ≥ 1,

and with the restriction that in the infinite case

εn+1 + bn ≥ 2, infinitely often.
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Moreover we demand that εn + bn ≥ 1 for n ≥ 1.
Taking finite truncations in (10) yields a finite or infinite sequence of rational

numbers rn/sn, n ≥ 1, the convergents of (10). An SRCF-expansion (10) is an
SRCF-expansion of x if limn→∞ rn/sn = x.

Let x be an irrational number, and let (10) be some SRCF-expansion of x.
Suppose that we have for a certain k ≥ 0 : bk+1 = 1 , εk+2 = 1 . The operation by
which the continued fraction (10) is replaced by3

[ b0; ε1b1, . . . , εk−1bk−1, εk(bk + εk+1), −εk+1(bk+2 + 1), εk+3bk+3, . . . ] ,

which again is a SRCF-expansion of x, with convergents, say, (cn/dn)n≥−1, is called
the singularization of the partial quotient bk+1 equal to 1. As in case of the RCF,
setting

Ã0 :=
(

1 b0
0 1

)
; Ãn :=

(
0 εn
1 bn

)
; n ≥ 1,

and M̃n := A0A1 · · ·An, n ≥ 0, yields that

M̃n =
(
rn−1 rn
sn−1 sn

)
, n ≥ 0.

Similarly one has for the new sequence of convergents (cn/dn)n≥−1

M̂n =
(
cn−1 cn
dn−1 dn

)
, n ≥ 0.

In [K], Section 2, it was shown that

M̂n = M̃n for n = 1, . . . , k − 1; M̂n = M̃n+1 for n = k + 1, . . .

and

M̂k = M̃k+1

( −εk+1 0
εk+1 1

)
.

From this it follows that (cn/dn)n≥−1 is obtained from (rn/sn)n≥−1 by skipping
the term rk/sk. See also [K], Sections 2 and 4.

A simple way to derive a strategy for singularization is given by a singularization
area S.

Definition 3. A subset S from Ω is called a singularisation area if it satisfies

(i) S ∈ B and µ(∂S) = 0; (ii) S ⊂ ([
1
2
, 1) \Q)× [0, 1]; (iii) N (S) ∩ S = ∅ .

Definition 4. Let S be a singularisation area and let x be a real irrational number.
The S-expansion of x is that semi-regular continued fraction expansion converging
to x, which is obtained from the RCF-expansion of x by singularizing Bn+1 if and
only if N n(x, 0) ∈ S, n ≥ 0.

From these two definitions a whole theory of S-expansions can be developed.
See [K], where also several examples (as the aforementioned NICF, SCF etc.) are

3In case k = 0 this comes down to replacing (10) by the SRCF [ b0 + εk+1; −εk+1(b2 +

1), ε3b3, ε4b4, . . . ].
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discussed. Essential in the theory of S-expansions is, that if we denote Ω \S by ∆,
and if we define the map I : ∆→ ∆ by

I(x, y) :=

 N (x, y), N (x, y) 6∈ S,

N 2(x, y), N (x, y) ∈ S,
that — since I is an induced transformation with return time bounded by 2 — the
system

(∆, µ∆, I)

is ergodic. Here µ∆ is the probability measure on ∆ with density
1

µ(∆) log 2
1

(1 + xy)2
, (x, y) ∈ ∆.

From this, using elementary properties of the Nakada-Ito-Tanaka natural extension
of the RCF, one finds the two-dimensional ergodic system underlying every S-
expansion. To be more precise, let M : ∆→ R2 be defined by

M(x, y) :=

 (−x/(1 + x), 1− y), (x, y) ∈ ∆− := N (S),

(x, y), (x, y) ∈ ∆+ := ∆ \∆−,

let ΩS := M(∆) and let the operator τS : ΩS → ΩS be defined by τS(t, v) :=
MIM−1(t, v) for (t, v) ∈ ΩS . Then one has the following theorem.

Theorem 5. ([K]) Let ρ be the probability measure on ΩS with density

1
(1− µ(S)) log 2

1
(1 + tv)2

, (t, v) ∈ ΩS .

Then (ΩS , ρ, τS) forms an ergodic system. Furthermore, if b : ΩS → N is given by

b(t, v) =


B(t), if sgn(t) = 1, N (t, v) 6∈ S,
B(t) + 1, if sgn(t) = 1, N (t, v) ∈ S,
B(−t/(1 + t)) + 1, if sgn(t) = −1, N (M−1(t, v)) 6∈ S,
B(−t/(1 + t)) + 2, if sgn(t) = −1, N (M−1(t, v)) ∈ S,

(11)

then

τS(t, v) =
(∣∣∣∣1t

∣∣∣∣− b(t, v),
1

b(t, v) + sgn(t) · v
)
, (t, v) ∈ ΩS .

In view of (10) and Theorem 5 one has the following result.

Theorem 6. Let S ⊂ Ω be a singularization area, let m ≥ 2 be an integer, and let
ΩS and ρS be defined as before. Furthermore, let TS : ΩS × G(m) → ΩS × G(m)
be defined by

TS(t, v, g) :=
(∣∣∣∣1t

∣∣∣∣− b, 1
b+ ε · v , g

(
0 ε
1 b

))
,

where b = b(t, v) is defined as in (11) and ε = sgn(t). Then

(ΩS ×G(m), ρS ⊗ hm, TS)

forms an ergodic system.
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Proof. Define the map Ĩ : ∆×G(m)→ ∆×G(m) by

Ĩ(x, y, g) :=

 T (x, y, g), N (x, y) 6∈ S,

T 2(x, y, g), N (x, y) ∈ S.
Then (∆×G(m), µ⊗ hm, Ĩ) forms an ergodic system, which is — in view of (10),
Theorem 5 and the fact that in case of the RCF always εn = +1 — metrically
isomorphic to (ΩS ×G(m), ρS ⊗hm, TS) via the mapM : ∆×G(m)→ ∆×G(m),
given by

M(x, y, g) :=


(x, y, g), (x, y) ∈ ∆+,

(−x/(1 + x), 1− y, g
( −1 0

1 1

)
), (x, y) ∈ ∆−.

�

In case S ⊂ Ω is a singularization area, one has (see also [K], Section 4)

0 ≤ µ(S) ≤ 1− log(g + 1)
log 2

= 0.30575 · · · .

Conversely, for every s ∈ (0, 0.30575 · · · ] there exist infinitely many singulariza-
tion areas S ⊂ Ω such that µ(S) = s. For every irrational number x and every
singularization area S define the monotonically increasing arithmetical function
nS(k) = nS(k, x) by rk/sk = pnS(k)/qnS(k). Then for almost all x

lim
k→∞

nS(k)
k

=
1

1− µ(S)
,

see also [K], Theorem (4.13).
In spite of this, it follows from Theorem 6 that for any S-expansion and for

almost every x the sequence of numerators (rn)n≥−1 and denominators (sn)n≥−1

of the S-convergents (rn/sn)n≥−1 of x have — mod m — the same asymptotic
behaviour as the sequence of numerators (pn)n≥−1 and denominators (qn)n≥−1 of
the RCF-convergents of x.

To be more precise, we have the following corollary.

Corollary 4. Let r, s and m be three integers, such that m ≥ 2 and (r, s,m) = 1.
Then for almost all x one has

lim
N→∞

1
N

#
{
n ; 1 ≤ n ≤ N,

(
rn
sn

)
≡
(
p
q

)
(mod m)

}
=

1
J(m)

.
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