ABSTRACT. Let α be a \mathbb{Z}^{d} -action $(d \geq 2)$ by automorphisms of a compact metric abelian group. For any non-linear shape $I \subset \mathbb{Z}^{d}$, there is an α with the property that I is a minimal mixing shape for α . The only implications of the form "I is a mixing shape for $\alpha \implies J$ is a mixing shape for α " are trivial ones for which I contains a translate of J.

If all shapes are mixing for α , then α is mixing of all orders. In contrast to the algebraic case, if β is a \mathbb{Z}^{d} -action by measurepreserving transformations, then all shapes mixing for β does not preclude rigidity.

Finally, we show that mixing of all orders in cones — a property that coincides with mixing of all orders for \mathbf{Z} -actions — holds for algebraic mixing \mathbf{Z}^2 -actions.