
New York Journal of Mathematics
New York J. Math. 2 (1996) 86–102.

Hopf Galois Structures on Degree

p Cyclic Extensions of Local Fields
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Abstract. Let L be a Galois extension of K, finite field extensions of Qp, p odd,
with Galois group cyclic of order p2. There are p distinct K-Hopf algebras Ad,
d = 0, . . . , p− 1, which act on L and make L into a Hopf Galois extension of K. We
describe these actions. Let R be the valuation ring of K. We describe a collection of
R-Hopf orders Ev in Ad, and find criteria on Ev for Ev to be the associated order
in Ad of the valuation ring S of some L. We find criteria on an extension L/K for
S to be Ev-Hopf Galois over R for some Ev , and show that if S is Ev-Hopf Galois
over R for some Ev , then the associated order Ad of S in Ad is Hopf, and hence S
is Ad-free, for all d. Finally we parametrize the extensions L/K whose ramification
numbers are ≡ −1 (mod p2) and determine the density of the parameters of those
L/K for which the associated order of S in KG is Hopf.
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Let p be an odd prime, and let K be a finite extension of Qp which contains
a primitive p th root of unity ζ, and with valuation ring R. Let L be a Galois
extension of K with Galois group G and valuation ring S. Relative Galois module
theory seeks to understand S as a module over the group ring RG, or more generally
over the associated order A of S in KG, A = {α ∈ KG|αS ⊂ S}. Then A = RG
and S is RG-free of rank one if and only if L/K is tamely ramified. For wildly
ramified extensions, the only general criterion available is that if the associated
order A is a Hopf order over R in KG, then S is A-free of rank one [Ch87]. (The
converse is far from true.)

Since the work of Greither and Pareigis [GP87], one knows that L/K may be
a Hopf Galois extension with respect to different Hopf Galois actions on L. In
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fact, Byott has recently shown that for a Galois extension L/K with group G, the
classical Hopf Galois structure is unique if and only if the order g of G is coprime
to φ(g) (Euler’s function) [By96]. In case L is a cyclic Galois extension of K of
order pn, then L/K has exactly pn−1 distinct Hopf Galois structures [Ko96]. Thus
when n = 2 there are p distinct Hopf algebras Ad, d = 0, . . . , p − 1, which give a
Hopf Galois structure on L/K.

The existence of different Hopf Galois structures on L/K raises the possibility
that S may have different Galois module properties with respect to one structure
than another. For example, in [CM94] we found that the associated order of the

valuation ring of Q(2
1
4 ) in one Hopf Galois structure was Hopf and the associated

order in the other structure was not. N. Byott [By96b] found a cyclotomic Lubin-
Tate extension of local fields which has two Hopf Galois structures: one associated
order is Hopf, while the second associated order B is not Hopf and the valuation
ring is not free over B.

In this paper we describe as algebras the Hopf algebras Ad which make L/K
Hopf Galois, and their actions on L. Following [Gr92], we construct a collection of
Hopf orders Ev over R inside each Ad. We find criteria on L/K in order that S be
a Hopf Galois extension of R for some Ev. This implies, by [Ch87], that Ev is the
associated order of S in Ad. In contrast to the examples just described, however, it
turns out that if S is Hopf Galois over R for Ev, a Hopf order in Ad for some d, then
the associated order of S in Ad for every d is Hopf, in particular for A0 = KG. Thus
in the case of cyclic Galois extensions of degree p2, the non-classical Hopf Galois
structures on L do not “tame” the wild extension L/K better than the classical
structure given by the Galois group.

We apply Greither [Gr92] to find necessary and sufficient conditions on an order
Ev to be realizable: that is, to be the associated order of the valuation ring of some
extension L/K: the congruence condition on v is the same as for Hopf orders in
KG as found by Greither. Finally, we quantify the remark in [Gr92, Remark (c),
page 63] that congruence conditions on the ramification numbers of a cyclic totally
ramified extension L/K of degree p2 are “badly insufficient” for deciding whether
the valuation ring S of L is Hopf Galois over R.

The concept of Hopf Galois extension of commutative rings arose in [CS69] as
a merger of M. Sweedler’s work on Hopf algebras and the development of Galois
theory of commutative rings by S. U. Chase, D. K. Harrison and Alex Rosenberg
[CHR65].

1. Hopf Galois Structures on Galois Field Extensions

We begin by recalling the main result of Greither and Pareigis [GP87].

Greither-Pareigis. If L is a Galois extension of K with group G, then there is a
bijection between Hopf Galois structures on L/K and regular subgroups of Perm(G)
normalized by λ(G).

Here Perm(G) is the group of permutations of the set G, λ(G) is the image of
G in Perm(G) given by left translation, and a subgroup N of Perm(G) is regular
if N acts transitively, has order equal to the order of G, and the stabilizer in N of
any element of G is trivial. (Any two of these last conditions implies the third.)

If N is a regular subgroup of Perm(G), then the group ring LN acts on GL :=
Map(G,L) by aη(f)(σ) = af(η−1(σ)) for a in L, σ in G, f in GL, η in N . Thus if
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eσ is the function which sends σ to 1 and τ to 0 if τ 6= σ in G, and η is in N , then
η(eσ) = eη(σ). This yields a map

LN ×GL→ GL.

The Hopf Galois structure on L is obtained by taking the fixed rings of LN and
GL under the action of G, where G acts on GL by σ(aeτ ) = σ(a)eστ , and acts on
LN by σ(aη) = σ(a)σ(η): the action of σ in G on η in N is by conjugation by λ(σ)
in Perm(G).

Let G be cyclic of order pn. Then Kohl [Ko96] has shown that the only regular
subgroups N of Perm(G) normalized by λ(G) are isomorphic to G, and hence
(cf. also [By96, Lemma 1, (i)]) there are exactly pn−1 such N .

We restrict to the case n = 2. Then we have

Proposition 1.1. The subgroups of Perm(G) normalized by λ(G) are Nd for d =
0, 1, . . . , p− 1, where Nd = 〈η〉 with η(σi) = σ(i−1)(1+pd).

These groups were found by using [By96, Proposition 1], a refinement of [Ch89,
Proposition 1].

Proof. Clearly η is in Perm(G). One verifies by induction that for any r,

ηr(σi) = σ(i−r)+(ir− r(r+1)
2 )pd.

Hence η has order p2 and the stabilizer in Nd of any σi is trivial. So Nd is regular.
Also, for any d, Nd ⊂ Perm(G) is normalized by λ(G). In fact,

λ(σ)ηλ(σ−1) = η1+pd.

For

λ(σ)ηλ(σ−1)(σi) = λ(σ)η(σi−1)

= λ(σ)(σ(i−2)(1+pd))

= σ(i−1)+(i−2)pd,

while

η1+pd(σi) = σi−(1+pd)+(i−1)pd

= σ(i−1)+(i−2)pd.

�

Example 1.2. For p = 3, set d = 1, then η is the permutation which sends σi to
σ4(i−1); its cycle representation is

(0, 5, 7, 6, 2, 4, 3, 8, 1).
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We have an action LN × GL → GL, which we will describe below. Looking at
the fixed elements under the action of G, we have, first, that

(GL)G =

{∑
τ

aτeτ :
∑

aτeτ =
∑

σ(aτ )eτ

}

=

{∑
τ

aτeτ : aστ = σ(aτ )

}

=

{∑
σ

σ(a)eσ

}

This is isomorphic to L under the map sending a in L to
∑
σ(a)eσ.

Now identify σ in G with λ(σ) in Perm(G). Then,

LNG =
{∑

aiη
i :
∑

aiη
i =

∑
σ(ai)σ(ηi)

}
where σ(ηi) means the element η0 of N so that η0 = λ(σ)ηiλ(σ)−1 in Perm(G).
Now

σ(η) = σησ−1 = η1+pd

as we observed above, and hence σ(ηi) = ηi(1+dp), and so σk(ηi) = ηi(1+kdp). In
particular, ηp is fixed under the action of G.

Let Np = 〈ηp〉 and let

es = (1/p)

p−1∑
i=0

ζ−siηpi

in KNp. The es for s = 0, . . . , p − 1 are the pairwise orthogonal idempotents of
KNp corresponding to the distinct irreducible representations of KNp: ηpes = ζses
for all s.

For v in L, set av =
∑p−1
s=0 v

ses. These elements, defined by Greither [Gr92],
are the elements of LNp corresponding to the tuple (1, v, v2, . . . , vp−1) under the
isomorphism between LNp and L×L×· · ·×L induced by ηp → (1, ζ, ζ2, . . . , ζp−1).
Thus avw = avaw for all v, w in L.

Proposition 1.3. Let L〈σ
p〉 = M = K[z] where zp is in K and σ(z) = ζz. Let

LNG correspond to the embedding β of G into Hol(N) so that β(σ) = ηγ where
γηγ−1 = η1+pd. Then LNG = K[ηp, avη] where v = z−d.

Proof. We have that σk(η) = η1+kpd, so σp(η) = η1+p2d = η. So σp fixes the
elements of N , and LNG = MNG. Since G fixes ηp and

es = (1/p)

p−1∑
i=0

ζ−siηpi,
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G fixes the idempotents es for all s. Hence

σ(az−dη) = η1+pd

p−1∑
s=0

σ(z−ds)es

= η

p−1∑
s=0

ζ−dsz−dsηpdes

= η

p−1∑
s=0

ζ−dsz−dsζdses

= η

p−1∑
s=0

z−dses

= az−dη.

Thus K[ηp, avη] ⊂ LNG. But by Galois descent, LNG has rank p2 over K, and
since avp is in K[ηp], one easily sees that (avη)p is in K[ηp], hence K[ηp, avη] has
rank p2 over K, hence equality. �

We observe for later use that K[ηp, avη] = K[ηp, avcη] for any c in K. For
avc = avac, so avcη = ac · avη, and ac is in K[ηp].

Let Ad denote the K-Hopf algebra K[ηp, avη] with v = z−d. We examine the
action of Ad = LNG on L.

Since L/K is a Galois extension with Galois group G = Cp2 = 〈σ〉 and K

contains ζ, a primitive pth root of unity, we can assume that M = L〈σ
p〉 = K[z]

with zp in K and σ(z) = ζz, and L = M [x] with xp in M and σp(x) = ζx. Let
v = cz−d,with c in K and 0 ≤ d ≤ p− 1.

Proposition 1.4. Ad = K[ηp, avη] acts on L = K[z][x] by

ηp = σp

and for a in K[z]

(avη)(axm) = vmσ(axm).

In particular, A0 = K[η] with η(s) = σ(s) for s in L, the classical action by the
group ring of the Galois group G.

Proof. We identify L as a subset of GL = Map(G,L) via the isomorphism

a→
p−1∑
i=0

σi(a)ei

where ei = eσi . Then as we observed in the proof of Proposition 1.1,

ηr(ei) = e
i−r−pd(ir− r(r+1)

2 )
.
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In particular, ηpk(ei) = ei−pk, so

ηp
(∑

σi(a)ei

)
=
∑

σi(a)ei−p

=
∑

σi+p(a)ei

=
∑

σi(σp(a))ei

which corresponds to σp(a) in L.
Now for a in K[z],

(avη)(axm) =

∑
s,k

1

p
vsζ−ksηkp+1

 (axm)

=
∑
s,k

1

p
vsζ−ksηkp+1

(∑
i

σi(axm)ei

)

=
∑
i,s,k

1

p
vsζ−ksσi(axm)e(i−kp−1)+pd(i−1).

The subscript on e is mod p2, so if we set

j = i(1 + pd)− (1 + kp+ dp),

then

i ≡ j(1− pd) + (1 + kp) (mod p2)

= (j + 1) + p(k − jd)

and the sum becomes

=
∑
j,s,k

1

p
vsζ−ksσ(j+1)+p(k−jd)(axm)ej .

Since σp fixes a in M = K[z], this is

=
∑
j,s,k

1

p
vsζ−ksσj+1(axm)ζ(k−jd)mej

=
∑
j

∑
s

vs

(
1

p

∑
k

ζ−ks+km

)
σj+1(axm)ζ−jdmej .

The sum over k is p if s = m and 0 otherwise. So the sum over j and s becomes

=
∑
j

vmζ−jdmσj+1(axm)ej .
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Now v = cz−d, so

σj(vm) = cmζ−jdm(z−dm)

= ζ−jdmvm.

Thus the sum

=
∑
j

σj(vm)σj+1(axm)ej

=
∑
j

σj(vmσ(axm))ej

which corresponds to vmσ(axm) in L. That is,

(avη)(axm) = vmσ(axm).

�

2. Hopf Orders

Now suppose K is a finite extension of Qp, with valuation ring R and parameter
π. Let e be the absolute ramification index of K. Assume K contains a primitive
pth root of unity ζ. Then (ζ − 1)R = πe

′
R and (p− 1)e′ = e.

Let M = K[z] with zp = b in R, and let T be the valuation ring of M . Then we
may consider the K-Hopf algebras Ad = K[ηp, avη], where v = z−d, as described
in Section 1. (Recall that for any c in K, K[ηp, avη] = K[ηp, avcη]). In this section
we extend work of Greither [Gr92][GC96] to construct a collection of Hopf orders
over R in Ad for each d with 0 ≤ d ≤ p − 1. These Hopf orders are parametrized
by integers i, j with 0 ≤ i, j ≤ e′ and a unit c in R.

For i an integer, 0 ≤ i ≤ e′, let i′ = e′ − i.

Theorem 2.1. Let i, j be integers with 0 < i, j ≤ e′. Let Hi = R
[
ηp−1
πi

]
, a Hopf

order in K[ηp]. For v = z−dc, c in R, let y = avη−1
πj

. Then the R-algebra E = Hi[y]
is an R-Hopf order in Ad = K[ηp, avη] and a Hopf algebra extension of Hj by Hi

if and only if

ζb−dcp ≡ 1 (mod πi
′+pjR)

and
b−dcp ≡ 1 (mod πpi

′+jR).

Recall that the Hi for 0 ≤ i ≤ e′ are all the Hopf orders in the group ring K[ηp]
by Tate-Oort [TO70]. This description of the Hi goes back to Larson [La76].

Proof. The canonical map from K[N ] to K[N/Np] sends ηp to 1, and sends av to
1 and Hi to R, so the image of E is R[ η̄−1

πj
] = Hj . To show that E is a Hopf algebra

extension of Hj by Hi, we need to show that E ∩K[ηp] = Hi. This is equivalent
to showing that the monic polynomial of degree p satisfied by y over K[ηp] has
coefficients in Hi. We follow [GC96, Section 2] and utilize [Gr92, I, section 3].
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Now avη = 1 + πjy, so

(avη)p = (1 + πjy)p

= 1 +

p−1∑
r=1

(
p

r

)
πjryr + πjpyp,

hence

yp + π−jp
p−1∑
r=1

(
p

r

)
πjryr +

1− (avη)p

πjp
= 0.

Note that (avη)p = avpη
p, and ηp = aζ , so (avη)p = avpζ . Thus y satisfies a monic

polynomial with coefficients in Hi if and only if in Hi,

1) πjp divides pπjr for r = 1, . . . , p− 1;
2) πjp divides 1− avpζ .

Condition 1) is equivalent to jp ≤ e+ j, or j ≤ e′.
Condition 2) is the same as

avpζ ≡ 1 (mod πjpHi),

which, by [Gr92, I 3.2b], is equivalent to

vpζ ≡ 1 (mod πi
′+pjR),

or, since vp = b−dcp,

b−dcpζ ≡ 1 (mod πi
′+pjR).

Note that if j ≤ e′ then 1−(avη)p

πpj
∈ E∩K[ηp], so if 1−(avη)p

πpj
/∈ Hi then E∩K[ηp] 6=

Hi.
Now we show that E is closed under comultiplication if and only if vp ≡ 1

(mod πpi+jR).
Recall that Ad = K[ηp, avη] and T is the valuation ring of M . Let E = R[t][y] =

Hi[y] with t = ηp−1
πi

, y = avη−1
πj

. Since ∆ is an algebra homomorphism, to show E
is a coalgebra, it suffices to show that ∆(y) ∈ E ⊗ E.

Now ∆(y) ∈ Ad ⊗ Ad = K ⊗R (E ⊗R E) and R is integrally closed. If we show
that ∆(y) ∈ T ⊗R (E⊗R E) = TE⊗T TE, then, since E and therefore E⊗R E are
free R-modules,

(T ⊗R (E ⊗R E)) ∩ (K ⊗R (E ⊗R E)) = E ⊗R E,

and so ∆(y) ∈ E ⊗ E.
We will show, in fact, that

∆(y) ∈ C ⊗ C

where C = Hi · 1 +Hi · y. Again, it is enough to show that ∆(y) ∈ TC ⊗T TC.
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Now

∆(y) = ∆

(
avη − 1

πj

)
=

∆(αvη)− avη ⊗ avη

πj
+ y ⊗ (1 + πjy) + 1⊗ y

and the last two terms are in C ⊗ C. So it suffices to show that

∆(avη)− avη ⊗ avη

πj
∈ TC ⊗T TC.

Now av is a unit of THi. For since vp ∈ Upi′+j(R), then v ∈ Upi′+j(T ), hence

by [Gr92, I 3.2(b)], av ∈ 1 + πj/pHi. Since j > 0, av is a unit of THi. Since
avη = 1 + πjt ∈ THi · 1 + THi · t = TC, therefore η ∈ TC. So(

∆(av)− av ⊗ av
πj

)
(η ⊗ η) ∈ TC ⊗T TC

if and only if
∆(av)− av ⊗ av

πj
∈ THi ⊗T THi.

To decide if
∆(av)− av ⊗ av

πj
∈ THi ⊗T THi

we identify elements of M [ηp] ⊗M M [ηp] as p × p matrices as in [Gr92, I, Section
3].

We have

∆(av)− av ⊗ av
πj

=
1

πj

p−1∑
s=0

∆(vses)−
∑

0≤r,t<p,r+t≡s (mod p)

vrer ⊗ v
tet


=

p−1∑
s=1

vs
∑

r+t≥p,r+t≡s (mod p)

[
1− vp

πj
er ⊗ et

]
.

Let 1−vp

πj
= w. Then

∆(av)− av ⊗ av
πj

corresponds to the matrix M = {Ma,b} where Ma,b is the coefficient of ea ⊗ eb.
Here, Ma,b = 0 if a+ b < p, and Ma,b = wvs where a+ b = p+ s for a+ b ≥ p.

Now ∆(av)−av⊗av
πj

∈ THi ⊗ THi is equivalent, by [Gr92, I, Lemma 3.3] to: for

all k, k∗ with 0 ≤ k, k∗ < p, πi
′(k+k∗) divides

dk,k
∗

(M) =
k∑
a=0

k∗∑
b=0

(
k

a

)(
k∗

b

)
(−1)a+bMa,b

=
l∑

s=0

∑
a+b=p+s

(
k

a

)(
k∗

b

)
(−1)a+bMa,b
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where k + k∗ = p+ l. Since Ma,b = wvs for a+ b = p+ s, this is

= w

l∑
s=0

∑
a+b=p+s

(
k

a

)(
k∗

b

)
(−1)p+svs

= w

l∑
s=0

(
k + k∗

p+ s

)
(−1)p+svs.

Now since s < p, (
k + k∗

p+ s

)
=

(
p+ l

p+ s

)
≡

(
l

s

)
(mod p),

so

≡ w
l∑

s=0

(
l

s

)
(−1)p+svs (mod p)

≡ −w(1− v)l (mod p).

Thus M ∈ THi ⊗ THi if and only if πi
′(k+k∗) = πi

′(p+l) divides w(1 − v)l for all
l ≥ 0.

For l = 0 the condition is: πi
′p divides w = 1−vp

πj
, or vp ≡ 1 (mod πpi

′+j).

Assuming vp ≡ 1 (mod πpi
′+j), then, since v ∈ Upi′+j(T ),

v − 1 ∈ πi
′+ j

pT

(recall: π is the parameter for R), so

(v − 1)l ∈ πi
′l+ jl

p T.

Also w ∈ πpi
′
R, so

w(1− v)l ∈ πpi
′+i′l+ jl

p T.

Since i′(k + k∗) = pi′ + i′l, therefore πi
′(k+k∗) divides dk+k∗(M) for all k, k∗.

Thus
∆(av)− av ⊗ av

πj
∈ THi ⊗ THi

if and only if vp ≡ 1 (mod πpi
′+j). That completes the proof. �

Suppose i, j satisfy 0 < i, j ≤ e′ and consider the two conditions

vp ≡ 1 (mod πpi
′+j);

ζvp ≡ 1 (mod πi
′+pj).

Since

ζvp − 1 = ζvp − vp + vp − 1

= (ζ − 1)vp + (vp − 1)
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we must have two of ordR(ζvp−1), ordR(vp−1) and e′ equal, and both ≤ the third
(isosceles triangle inequality). For E to be a Hopf algebra and a free Hi-module
requires

ordR(ζvp − 1) ≥ i′ + pj

and

ordR(vp − 1) ≥ pi′ + j.

Thus i′ + pj ≤ e′ or pi′ + j ≤ e′. The first is equivalent to i ≥ pj; the second to
j′ ≥ pi′. Hence:

Corollary 2.2. In order that E be a Hopf algebra, i and j must satisfy: 0 < i, j ≤
e′ and i ≥ pj or j′ ≥ pi′. �

Note: i ≥ pj is the condition of [Gr92, I 3.6] and [Gr92, II], cf. [Un94].
If i+ j ≤ e′, then i′ + pj ≤ pi′ + j, so if ordR(vp − 1) ≥ pi′ + j, then

ordR(ζvp − 1) ≥ min{e′, ordR(vp − 1)}

≥ min{e′, pi′ + j} ≥ i′ + pj.

So we have

Corollary 2.3. If i, j > 0, i + j ≤ e′ and i ≥ pj, then E is a Hopf order with
E ∩K[ηp] = Hi if and only if ordR(vp − 1) ≥ pi′ + j. �

The Hopf algebras E presumably fit within the classification of [By93], but the
description of the E here is rather different that that of Byott.

3. Hopf Galois Structures

Now we consider a cyclic extension L/K with Galois group G = 〈σ〉 of order p2,
and see when S/R is Ev-Galois for some v.

We assume throughout this section that i, j > 0, 0 ≤ i + j ≤ e′ and i ≥ pj.
Under these hypotheses, p(i′ + j) ≤ pj′ + 1. For since pj ≤ i, we have

pi ≥ p2j > 2pj − 1

so

1− pj > −pi+ pj,

1 + pe′ − pj > pe′ − pi+ pj,

which is

pj′ + 1 > p(i′ + j).

Suppose S/R is Ev-Galois. Then T/R is Hj-Galois and S/T is T ⊗Hi-Galois,
by [Gr92]. Since i, j > 0, M/K and L/M are totally, hence wildly ramified.
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If T/R is Hj-Galois, then (cf. [Ch87]) M = K[z] with zp = 1 + uπpj
′+1 and

t = z−1
πj
′ is a parameter for T , so T = R[t]. Since σ(t) = ζ−1

πj
′ z + t = t + utpj for u

some unit of T , the ramification number t
G/H
1 = pj − 1. The converse also holds:

c.f [Ch87] or [Gr92]. By [Se62, Ch. V, Sec. 1, Cor. to Prop. 3], t
G/H
1 = tG1 , so

tG1 = pj − 1.
Similarly, if S/T is T ⊗Hi-Galois, M/K is totally ramified, and t is a parameter

for T , we may find x in L so that L = M [x] with σp(x) = ζx and xp = γ =

1 + utp
2i′+1 for some unit u of T . Then w = x−1

πi
′ is a parameter for S, and

σp(w) =
ζ − 1

πi
′ x+ w = w + wp

2iu′

for some unit u′ of S. So the ramification number for L/M is tH1 = p2i − 1, and
conversely. Since tH1 = tG2 , we have tG2 = p2i− 1.

Now L is a Galois extension of K with group G = 〈σ〉, cyclic of order p2, so
σ(x) = βx for some β in T with NM/K(β) = ζ. If ordT (xp − 1) = p2i′ + 1, then

σ(w) = β−1

πi
′ x+ w, so since tG1 = pj − 1, ordL(β−1

πi
′ ) = pj. Thus

ordL(β − 1) = p2i′ + pj

and so

ordM (βp − 1) = p2i′ + pj.

Lemma 3.1. β is unique modulo tpi
′+pjT .

Proof. Let γ = xp = 1 + utp
2i′+1 for some unit u of T .

Suppose we replace x by xα for some α ∈ T . Then

(xα)p = γαp = (1 + utp
2i′+1)αp.

If ordT ((xα)p − 1) = p2i′ + 1, then ordT (αp − 1) ≥ p2i′ + 1. If ordT (α − 1) = s,
then ordT (αp − 1) = ps unless pe′ ≤ s. Assuming s ≤ pe′, then we require

ps ≥ p2i′ + 1,

so

s ≥ pi′ + 1.

Now if we replace x by xα, then σ(xα) = β
σ(α)
α

(xα), so β is replaced by β σ(α)
α

. If
ordT (α− 1) = s then by [Wy69, Theorem 22],

ordT

(
σ(α)

α
− 1

)
≥ s+ pj − 1

≥ pi′ + 1 + pj − 1 = p(i′ + j).
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So β σ(α)
α
≡ β (mod tp(i

′+j)T ).

Thus β is unique modulo tp(i
′+j)T . �

Given L/K with ramification numbers tG1 = pj − 1 and tG2 = p2i − 1, when is
there some Ev so that S/R is Ev-Galois? Since the discriminant over R of S equals
the discriminant of the dual of Ev, S will be Ev-Galois if and only if Ev acts on S
(see [Gr92, II, Section 1]), that is, ξ · s is in S (not just in L) for all ξ ∈ Ev and
s ∈ S. Equivalently, Ev ⊂ A, the associated order of S in Ad.

We know A is an algebra. So to show Ev ⊂ A it suffices to show that

t =
ηp − 1

πi
∈ A

and

y =
avη − 1

πj
∈ A.

Now

∆(t) =
ηp ⊗ ηp − 1⊗ 1

πi

=

(
ηp − 1

πi

)
⊗ ηp + 1⊗

(
ηp − 1

πi

)
= t⊗ (1 + πit) + 1⊗ t.

Hence if

t

(
z − 1

πj
′

)
∈ S,

then since L is an Ad-module algebra,

t

(
R

[
z − 1

πj
′

])
⊂ S,

so tT ⊂ S. Also, if

t

(
x− 1

πi
′

)
∈ S

then

t

(
T

[
x− 1

πi
′

])
⊂ S,

so tS ⊂ S and t ∈ A. Hence Hi ⊂ A.
Similarly, we showed in the proof of Theorem 2.1 that C = Hi · 1 + Hi · y is a

subcoalgebra of Ev. If

y

(
z − 1

πj
′

)
∈ S

then

C

(
z − 1

πj
′

)
⊂ S,
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so CT ⊂ S. Also, if

y

(
x− 1

πi
′

)
∈ S

then

C

(
x− 1

πi
′

)
⊂ S,

so, since

S = R

[
z − 1

πj
′

] [
x− 1

πi
′

]
,

CS ⊂ S. So C ⊂ A. Since C generates Ev as an R-algebra, Ev ⊂ A.

Thus Ev acts on S if and only if t = ηp−1
πi

and y = avη−1
πj

map z−1
πj
′ and x−1

πi
′ into

S.
We see that

t

(
z − 1

πj
′

)
= 0,

y

(
z − 1

πj
′

)
=
σ−1(z)− z

πe
′ =

ζ−1 − 1

πe
′ z ∈ T,

and

t

(
x− 1

πi
′

)
=
ζ−1 − 1

πe
′ x ∈ S;

finally, by Proposition 1.4,

y

(
x− 1

πi
′

)
=
avη(x)− x

πi
′+j

=
vσ(x)− x

πi
′+j

=
vβ − 1

πi
′+j

x

is in S if and only if

β ≡ v−1 (mod πi
′+jT ).

From this we have

Proposition 3.2. Let L/K be a Galois extension with group G cyclic of order
p2 and with ramification numbers t1 = pj − 1 and t2 = p2i − 1, where i, j satisfy
the inequalities at the beginning of this section. Then the valuation ring S of L is
Ev-Hopf Galois over R, and hence the associated order of S in Ad is Hopf, if and
only if β ≡ v−1 (mod πi

′+jT ). �
Now we observe

Lemma 3.3. If v ≡ z−dc for some c in R, then v ≡ c (mod πi
′+jT ).

Proof. We have
z = 1 + utpj

′+1,

u a unit of T . Since pj′ + 1 > p(i′ + j),

z ≡ 1 (mod πi
′+jT = tp(i

′+j)T ).

�
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Corollary 3.4. With the hypotheses of Proposition 3.2, if S is Ev-Galois then p
divides j.

Proof. We have ordT (β−1) = pi′+j, and so ordT (v−1−1) = ordT (v−1) = pi′+j.
Hence ordR(vp − 1) = pi′ + j.

Since v = z−dc and pi′ + j < pj′ + 1, we have

ordR(vp − 1) = pi′ + j < pj′ + 1 = ordR(zp − 1),

so ordR(vp− 1) = ordR(cp− 1) = p ordR(c− 1). Hence ordR(c− 1) = i′+ j/p, and
p divides j. �

Corollary 3.5. With the hypotheses of Proposition 3.2, if S/R is Hopf Galois for
some Ev, then S is free over the associated order in Ad for all d.

Proof. We have that S/R is Hopf Galois for Ev, v = z−dc, if and only if

β ≡ (z−dc)−1 (mod πi
′+jT ).

But

z−d ≡ 1 (mod πi
′+jT ),

and hence

β ≡ (z−dc)−1 (mod πi
′+jT )

for every d, and so Ev acts on S when v = z−dc for every d. Hence for any d, S/R is
Ez−dc-Hopf Galois, and so Ez−dc is the associated order of S in Ad for every d. �

Corollary 3.6. Ev is realizable if and only if ordT (v − 1) = pi′ + j.

Proof. If L/K realizes Ev, that is, Ev is the associated order of the valuation ring

of the Galois extension L of K, then, as we showed, β ≡ v−1 (mod πi
′+jT ), so

ordT (v − 1) = pi′ + j. Conversely, if ordT (v − 1) = pi′ + j, then since v = cz−d for
some c ∈ R, ordT (c− 1) = pi′ + j, so Ec is realizable by some L/K by [Gr92, Part

II, Section 3]. But then, since cz−d ≡ c (mod πi
′+jT ), we see that the extension

L/K also realizes Ev by Proposition 3.2. �

The problem raised at the beginning of this section can be precisely answered
by the following corollary, in which the hypotheses on L are recapitulated.

Corollary 3.7. Let K be a finite extension of Qp containing ζp, a primitive pth
root of unity. Let L be a cyclic Galois extension of K with Galois group G = 〈σ〉
of degree p2 with intermediate field M and with ramification numbers tG1 = pj − 1
and tG2 = p2i− 1 where 0 < pj ≤ i, p divides j, and i+ j ≤ e′ = eK/Qp/(p− 1). Let
S, T and R be the valuation rings of L,M and K, respectively. Let L = M [x] with
ordM (xp − 1) = p2i′ + 1 and σ(x) = βx. Then S is an Ev-Hopf Galois extension

of R if and only if β is congruent to an element of R modulo tpi
′+pjT = πi

′+jT .
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Proof. The ramification conditions on L/K are equivalent to T/R being Hj- Hopf
Galois and S/T being T ⊗Hi-Hopf Galois. Then S is Ev-Hopf Galois for some v if

and only if β ≡ v−1 (mod tp(i
′+j)T ) by Proposition 3.2, and

v ≡ c (mod πi
′+jT )

with c ∈ R by Lemma 3.3. Thus S is Ev-Hopf Galois if and only if the element β
which by Lemma 3.1 is uniquely associated to L is congruent to an element of R
modulo πi

′+jT . �

Lemma 3.1 implies that there is a well-defined map from the set of cyclic exten-
sions L of K containing M satisfying the hypotheses of Corollary 3.7 to

Upi′+j(T )/Upi′+pj(T ),

and hence to
Upi′+j(T )/Upi′+j+p−1(T ).

Call that map φ.

Corollary 3.8. φ maps onto the classes Ū of Upi′+j(T )/Upi′+j+p−1(T ) represented
by β in T with ordT (β − 1) = pi′ + j.

Proof. Let β be any element of T with ordT (β − 1) = pi′ + j. We first show that
β may be modified by an element of Upi′+j+p−1(T ) to an element of norm ζ.

By [Wy69, Theorem 22], the map σ − 1 yields an isomorphism

Upi′+j+r−(pj−1)(T )/Upi′+j+r+1−(pj−1)(T )→ Upi′+j+r(T )/Upi′+j+r+1(T )

for all r such that pi′ + j + r − pj + 1 is not divisible by p. Since p divides j, we
obtain such an isomorphism for r = 0, 1, . . . , p−2. Thus any βr in Upi′+j+r(T ) is of

the form βr = σ(αr)
αr

βr+1 for some βr+1 ∈ Upi′+j+r+1(T ). Making that observation

for r = 0, 1, . . . , p − 2, we see that any β0 with ordT (β0 − 1) = pi′ + j may be

written as β0 = σ(α)
α
βp−1 for some α in U(T ) and some βp−1 in Upi′+j+p−1(T ).

Thus every β in T with ordT (β − 1) = pi′ + j may be multiplied by an element of
Upi′+j+p−1(T ) to obtain an element β′ of norm 1. That is, the class of any β0 in
Upi′+j(T )/Upi′+j+p−1(T ) contains an element of norm 1.

By [Gr92, Lemma 3.8], there exists an element δ ∈ Upi′+pj(T ) of norm ζ. Mul-
tiplying the representative in the class of β0 with norm 1 by δ gives an element β
in the class of β0 of norm ζ.

Any β with ordT (β− 1) = pi′+ j and norm = ζ is in the image of φ. For by the
proof of [Gr92, Lemma 3.9], we may find γ in U(T ) with ordT (γ − 1) = p2i′ + 1

and σ(γ)
γ

= βp; such a γ yields a cyclic extension L/K of degree p2 satisfying the

hypotheses of Corollary 3.7 with σ(x) = βx.
Thus any class in Upi′+j(T )/Upi′+j+p−1(T ) represented by an element β with

ordT (β) = pi′ + j is represented by such a cyclic extension. �

Let q = |R/πR|. Then the number of elements of Upi′+j(T )/Upi′+j+p−1(T ) of
order pi′+j is easily seen to be (q−1)qp−2 (expand elements of Upi′+j(T ) t-adically).
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Only q−1 of these have classes represented by units of R. Thus the field extensions
L/K satisfying the hypotheses of Corollary 3.7 map by φ onto Ū , but those whose
valuation rings S are Hopf Galois over R map onto a subset of Ū of density 1

qp−2 .

This may illuminate Greither’s remark [Gr92, Remark (c), p. 63] that congruence
conditions on the ramification numbers are badly insufficient for insuring that S/R
is Hopf Galois.
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