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Deformed Enveloping Algebras

Yorck Sommerhäuser

Abstract. We construct deformed enveloping algebras without using gen-
erators and relations via a generalized semidirect product construction. We
give two Hopf algebraic constructions, the first one for general Hopf algebras
with triangular decomposition and the second one for the special case that
the outer tensorands are dual. The first construction generalizes Radford’s
biproduct and Majid’s double crossproduct, the second one Drinfel’d’s Dou-
ble construction. The second construction is applied in the last section to
construct deformed enveloping algebras in the setting created by G. Lusztig.
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1. Introduction

Deformed enveloping algebras were defined by V. G. Drinfel’d at the Interna-
tional Congress of Mathematicians 1986 in Berkeley [2]. His definition uses a system
of generators and relations which is in a sense a deformation of the system of gener-
ators and relations that defines the enveloping algebras of semisimple Lie algebras
considered by J. P. Serre [15] in 1966 and known since then as Serre’s relations.
Serre’s relations consist of two parts, the first part interrelating the three types of
generators and thereby leading to the triangular decomposition, the second, more
important one being relations between generators of one type. In 1993, G. Lusztig
gave a construction of the deformed enveloping algebras that did not use the second
part of Serre’s relations [4]. Lusztig’s approach was interpreted by P. Schauenburg
as a kind of symmetrization process in which the braid group replaces the sym-
metric group [13]. In this paper, we give a construction of deformed enveloping
algebras without referring to generators and relations at all.
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The paper is organized as follows: In Section 2, we recall the notion of a Yetter-
Drinfel’d bialgebra and review some of their elementary properties that will be
needed in the sequel. In Section 3, we carry out the first construction which leads
to a Hopf algebra which has a two-sided cosmash product as coalgebra structure.
We show that many Hopf algebras with triangular decomposition are of this form.
As special cases, we obtain Radford’s biproduct and Majid’s double crossproduct.
In Section 4, we carry out the second construction which applies to a pair of Yetter-
Drinfel’d Hopf algebras which are in a sense dual to each other. In Section 5,
we explain how Lusztig’s algebra ′f which corresponds to the nilpotent part of
a semisimple Lie algebra is a Yetter-Drinfel’d Hopf algebra and how the second
construction can be used to construct deformed enveloping algebras.

2. Yetter-Drinfel’d modules

2.1. In this preliminary section we recall some very well known facts on Yetter-
Drinfel’d modules. Suppose that H is a bialgebra over a field K with comultiplica-
tion ∆H and counit εH . We use the following Sweedler notation: ∆H(h) = h1⊗h2.
Recall the notion of a left Yetter-Drinfel’d module (cf. [17], [7, Definition 10.6.10]):
This is a left H-comodule V which is also a left H-module such that the following
compatibility condition is satisfied:

h1v
1 ⊗ (h2 → v2) = (h1 → v)1h2 ⊗ (h1 → v)2

for all h ∈ H and v ∈ V . Here we have used the following Sweedler notation for
the coaction: δ(v) = v1 ⊗ v2 ∈ H ⊗ V . The arrow → denotes the module action.

2.2. We also define right Yetter-Drinfel’d modules, which are the left Yetter-
Drinfel’d modules over the opposite and coopposite bialgebra. They are right co-
modules and right modules that satisfy:

(v1 ← h1)⊗ v2h2 = (v ← h2)1 ⊗ h1(v ← h2)2

Of course one can also define left-right and right-left Yetter-Drinfel’d modules, but
they are not used in this article.

2.3. The tensor product of two Yetter-Drinfel’d modules becomes again a Yetter-
Drinfel’d module if it is endowed with the diagonal module and the codiagonal
comodule structure (cf. [7, Example 10.6.14], [12, Theorem 4.2]). The left Yetter-
Drinfel’d modules, and also the right ones, therefore constitute a monoidal category
(cf. [3]). But these categories also possess pre-braidings, which are in the left case
given by

σV,W : V ⊗W −→W ⊗ V

v ⊗ w 7→ (v1 → w)⊗ v2.

The corresponding formula in the right case reads: σV,W (v ⊗w) = w1 ⊗ (v ← w2).
These mappings are bijective if H is a Hopf algebra with bijective antipode, but
we do not assume this.
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2.4. Suppose that V is a left Yetter-Drinfel’d module and that W is a right
Yetter-Drinfel’d module. We define a Yetter-Drinfel’d form to be a bilinear form

V ×W → K, (v, w) 7→ 〈v, w〉

such that the following conditions are satisfied for all v ∈ V , w ∈W and h ∈ H:

(1) 〈h→ v, w〉 = 〈v, w ← h〉
(2) 〈v, w1〉w2 = v1〈v2, w〉

If V is a finite dimensional left Yetter-Drinfel’d module, then the dual vector space
W := V ∗ is in a unique way a right Yetter-Drinfel’d module such that the natural
pairing

V × V ∗ → K, (v, f) 7→ 〈v, f〉 := f(v)

is a Yetter-Drinfel’d form. The comodule structure is in this case given by the
formula:

δV ∗(f) =
n∑
i=1

v(i)∗ ⊗ f(v(i)
2)v(i)

1

where v(1), . . . , v(n) is a basis of V with dual basis v(1)∗, . . . , v(n)∗. However, in our
main application we consider the infinite dimensional case.

2.5. The transpose of an H-linear and colinear map between finite-dimensional
left Yetter-Drinfel’d modules is linear and colinear. If 〈·, ·〉1 : V1 ×W1 → K and
〈·, ·〉2 : V2 ×W2 → K are Yetter-Drinfel’d forms, then

(V1 ⊗ V2)× (W1 ⊗W2)→ K, (v1 ⊗ v2, w1 ⊗ w2) 7→ 〈v1, w1〉1〈v2, w2〉2

is also a Yetter-Drinfel’d form. The pre-braidings are mutually adjoint with respect
to this bilinear form.

2.6. Since we have the notion of a bialgebra inside a pre-braided monoidal cate-
gory (cf. [11], [7, p. 203]), it is meaningful to speak of left Yetter-Drinfel’d bialgebras
(or Hopf algebras). Suppose that A is a left Yetter-Drinfel’d bialgebra and that
B is a right Yetter-Drinfel’d bialgebra. We say that a Yetter-Drinfel’d form is a
bialgebra form if the following conditions are satisfied:

(1) 〈a⊗ a′,∆B(b)〉 = 〈aa′, b〉
(2) 〈a, bb′〉 = 〈∆A(a), b⊗ b′〉
(3) 〈1, b〉 = εB(b), 〈a, 1〉 = εA(a)

for all a, a′ ∈ A and all b, b′ ∈ B. The bilinear form on the tensor products is
defined as in Subsection 2.5. If B is the dual vector space of a finite-dimensional
Yetter-Drinfel’d bialgebra A, then the natural pairing considered in Subsection 2.4
is a bialgebra form. If A and B possess antipodes, they are interrelated as follows:

Proposition 2.1. If A and B are Yetter-Drinfel’d Hopf algebras with antipodes
SA resp. SB and 〈·, ·〉 : A×B → K is a bialgebra form, we have for all a ∈ A and
b ∈ B: 〈SA(a), b〉 = 〈a, SB(b)〉.

Proof. This follows from the fact that the mappings a⊗b 7→ 〈SA(a), b〉 and a⊗b 7→
〈a, SB(b)〉 are left resp. right inverses of the mapping a ⊗ b 7→ 〈a, b〉 inside the
convolution algebra (A⊗B)∗, and these two inverses must coincide. �
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2.7. We consider next the situation that the bilinear form is degenerate. We
consider the left radical RA = {a ∈ A | ∀b ∈ B : 〈a, b〉 = 0} and the right radical
RB = {b ∈ B | ∀a ∈ A : 〈a, b〉 = 0} of the form:

Proposition 2.2. We have:

(1) RA is an H-submodule and an H-subcomodule.
(2) RA is a two-sided ideal and a two-sided coideal.

Proof. We only prove the subcomodule-property. Suppose that a ∈ RA is nonzero.

We write δA(a) =
k∑
i=1

h(i)⊗a(i) where δA denotes the comodule operation. By choos-

ing k minimal we can assume that the h(i)’s and the a(i)’s are linearly independent.
We have for b ∈ B:

k∑
i=1

〈a(i), b〉h(i) = 〈a2, b〉a1 = 〈a, b1〉b2 = 0

and therefore 〈a(i), b〉 = 0 for all i. Therefore we have a(i) ∈ RA. �

Since εA(a) = 〈a, 1〉, the counit vanishes on the radical. It is now clear that Ā =
A/RA is a Yetter-Drinfel’d bialgebra.

Of course, one can show similarly that B̄ = B/RB is a right Yetter-Drinfel’d
bialgebra. The induced pairing Ā× B̄ → K, (ā, b̄) 7→ 〈a, b〉 is also a bialgebra form.

2.8. The following lemma is often useful in verifying that a certain bilinear form
is in fact a bialgebra form (cf. [4, Proposition 1.2.3]).

Lemma 2.3. Suppose that A (resp. B) is a left (resp. right) Yetter-Drinfel’d bial-
gebra. Suppose that B′ ⊂ B generates B as an algebra. We further assume that
a bilinear form 〈·, ·〉 : A× B → K is given which satisfies axiom (2) in Subsection
2.6 for all a ∈ A and all b, b′ ∈ B. Now suppose that the other axioms (1), (3) of
Subsection 2.6 and (1), (2) of Subsection 2.4 are satisfied for all a, a′ ∈ A and all
h ∈ H, but only for all b ∈ B′. Then the bilinear form is a bialgebra form.

Proof. Since these verifications are rather similar, we only show 2.6 (1). (However,
2.4 (1) and 2.4 (2) must be shown first.) Since among the assumptions we have in
2.6 (3) that 〈a, 1〉 = εA(a), this holds if b = 1. If 2.6 (1) holds for b, b′ ∈ B, it also
holds for bb′:

〈a⊗ a′,∆B(bb′)〉 = 〈a⊗ a′, b1b
′
1
1 ⊗ (b2 ← b′1

2)b′2〉

= 〈a, b1b
′
1
1〉〈a′, (b2 ← b′1

2)b′2〉

= 〈a1, b1〉〈a2, b
′
1
1〉〈a′1, b2 ← b′1

2〉〈a′2, b
′
2〉

= 〈a1, b1〉〈a2
2, b′1〉〈a2

1 → a′1, b2〉〈a
′
2, b
′
2〉

= 〈a1(a2
1 → a′1), b〉〈a2

2a′2, b
′〉

= 〈∆A(aa′), b⊗ b′〉 = 〈aa′, bb′〉.

Here, the equality of the third and fourth lines follows from 2.4 (1) and 2.4 (2). �
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2.9. We have already noted in Subsection 2.2 the correspondence between left
and right Yetter-Drinfel’d modules. This implies the following correspondence for
Yetter-Drinfel’d bialgebras:

Lemma 2.4. We have:

(1) If A is a left Yetter-Drinfel’d bialgebra over H, then the opposite and coop-
posite bialgebra Aop cop is a right Yetter-Drinfel’d bialgebra over Hop cop.

(2) If B is a right Yetter-Drinfel’d bialgebra over H, then Bop cop is a left Yetter-
Drinfel’d bialgebra over Hop cop.

The proof is omitted.

3. The first construction

3.1. In this section, A (resp. B) is a fixed left (resp. right) Yetter-Drinfel’d bial-
gebra over a bialgebra H. ∆A (resp. ∆B) and εA (resp. εB) denote the comulti-
plication and the counit. The aim is to investigate under which circumstances the
two-sided cosmash product is a bialgebra.

3.2. We first define the two-sided cosmash product.

Proposition 3.1. A⊗H ⊗B is a coalgebra by the following comultiplication and
counit:

∆ : A⊗H ⊗B → (A⊗H ⊗B)⊗ (A⊗H ⊗B)

a⊗ h⊗ b 7→ (a1 ⊗ a2
1h1 ⊗ b1

1)⊗ (a2
2 ⊗ h2b1

2 ⊗ b2)

ε : A⊗H ⊗B → K

a⊗ h⊗ b 7→ εA(a)εH(h)εB(b)

This coalgebra structure is called the two-sided cosmash product.

Proof. This follows by direct computation. �
3.3. We now introduce certain structure elements which will be used to turn the
two-sided cosmash product into a bialgebra.

Definition 3.2. A pair (A,B) consisting of a left and a right Yetter-Drinfel’d
bialgebra together with linear mappings ⇀: B ⊗ A → A, ↼: B ⊗ A → B and
] : B ⊗A→ H is called a Yetter-Drinfel’d bialgebra pair if:

(a) A is a left B-module via ⇀.
(b) B is a right A-module via ↼.

and the following compatibility conditions are satisfied:

(1) ∆A(b ⇀ a) = (b1
1 ⇀ a1)⊗ (b1

2 → (b2 ⇀ a2))
∆B(b ↼ a) = ((b1 ↼ a1)← a2

1)⊗ (b2 ↼ a2
2)

(2) ∆H(b]a) = (b1
1]a1)a2

1 ⊗ b12(b2]a2
2)

(3) b ⇀ (aa′) = (b1
1 ⇀ a1)(b1

2(b2]a2)a3
1 → [(b3 ↼ a3

2) ⇀ a′])
(bb′) ↼ a= ([b ↼ (b′1

1 ⇀ a1)]← b′1
2(b′2]a2)a3

1)(b′3 ↼ a3
2)

(4) b](aa′) = (b1]a1)a2
1((b2 ↼ a2

2)]a′)
(bb′)]a= (b](b′1

1 ⇀ a1))b′1
2(b′2]a2)

(5) εH(b]a) = εA(a)εB(b)

(6) b ⇀ 1 = εB(b)1, 1 ↼ a = εA(a)1

(7) b]1 = εB(b)1, 1]a = εA(a)1
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(8) (b1
1 ⇀ a1)1b1

2(b2]a2)⊗ (b1
1 ⇀ a1)2 = (b1

1]a1)a2
1 ⊗ (b1

2 → (b2 ⇀ a2
2))

(b2 ↼ a2
2)1 ⊗ (b1]a1)a2

1(b2 ↼ a2
2)2 = ((b1

1 ↼ a1)← a2
1)⊗ b12(b2]a2

2)

(9) b ⇀ (h→ a) =h1 → ((b← h2) ⇀ a)
(b← h) ↼ a= (b ↼ (h1 → a))← h2

(10) (b](h1 → a))h2 =h1((b← h2)]a)

(11) (b1 ⇀ a1)⊗ (b2 ↼ a2) = (b1
2 → (b2 ⇀ a2

2))⊗ ((b1
1 ↼ a1)← a2

1)

These conditions are of course required for all a, a′ ∈ A, b, b′ ∈ B and h ∈ H.

3.4. In this situation, we can carry out the first construction:

Theorem 3.3. Given a Yetter-Drinfel’d bialgebra pair, the two-sided cosmash prod-
uct A⊗H ⊗B is a bialgebra with multiplication

µ : (A⊗H ⊗B)⊗ (A⊗H ⊗B)→ A⊗H ⊗B

(a⊗ h⊗ b)⊗ (a′ ⊗ h′ ⊗ b′) 7→

a(h1 → (b1
1 ⇀ a′1))⊗ h2b1

2(b2]a
′
2)a′3

1h′1 ⊗ ((b3 ↼ a′3
2)← h′2)b′

and unit element 1⊗ 1⊗ 1.

This will be proved in Subsections 3.5 and 3.6.

3.5. We first prove that the multiplication is associative:

((a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′))(a′′ ⊗ h′′ ⊗ b′′) =

a(h1 → (b1
1 ⇀ a′1))(h2b1

2(b2]a
′
2)1a

′
3
1h′1 → ([((b3 ↼ a′3

3)← h′3)b′]1
1 ⇀ a′′1))⊗

h3b1
3(b2]a

′
2)2a

′
3
2h′2[((b3 ↼ a′3

3)← h′3)b′]1
2([((b3 ↼ a′3

3)← h′3)b′]2]a
′′
2)a′′3

1h′′1 ⊗

(([((b3 ↼ a′3
3)← h′3)b′]3 ↼ a′′3

2)← h′′2)b′′

By condition (2) of Definition 3.2, this is equal to

a(h1 → (b1
1 ⇀ a′1))(h2b1

2(b2
1]a′2)a′3

1a′4
1h′1 → ([((b4 ↼ a′4

3)← h′3)1b
′
1
1]1 ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2)a′4

2h′2[((b4 ↼ a′4
3)← h′3)1b

′
1
1]2

([(((b4 ↼ a′4
3)← h′3)2 ← b′1

2)b′2
1]]a′′2)a′′3

1h′′1 ⊗

(([(((b4 ↼ a′4
3)← h′3)3 ← b′1

3b′2
2)b′3] ↼ a′′3

2)← h′′2)b′′

This is in turn equal to

a(h1 → (b1
1 ⇀ a′1))(h2b1

2(b2
1]a′2)a′3

1a′4
1h′1 → ([((b4 ↼ a′4

3)1 ← h′3)1b′1
1] ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2)a′4

2h′2[((b4 ↼ a′4
3)1 ← h′3)2b′1

2]

([((b4 ↼ a′4
3)2 ← h′4b

′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b4 ↼ a′4
3)3 ← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

By condition (1) of Definition 3.2, this is equal to

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1a′4

1h′1 → ([((b4 ↼ a′4
3
1)← a′4

3
2
1a′4

3
3
1h′3)1b′1

1] ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2)a′4

2h′2[((b4 ↼ a′4
3
1)← a′4

3
2
1a′4

3
3
1h′3)2b′1

2]

([((b5 ↼ a′4
3
2
2)← a′4

3
3
2h′4b

′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗
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(([((b6 ↼ a′4
3
3
3)← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

This equals

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1a′4

1a′5
1a′6

1h′1 → ([((b4 ↼ a′4
3)← a′5

3a′6
3h′3)1b′1

1] ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2)a′4

2a′5
2a′6

2h′2[((b4 ↼ a′4
3)← a′5

3a′6
3h′3)2b′1

2]

([((b5 ↼ a′5
4)← a′6

4h′4b
′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b6 ↼ a′6
5)← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

By the Yetter-Drinfel’d condition in Subsection 2.2, this is

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1a′4

1a′5
1a′6

1h′1 → ([((b4 ↼ a′4
3)1 ← a′5

2a′6
2h′2)b′1

1] ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2)a′4

2(b4 ↼ a′4
3)2a′5

3a′6
3h′3b

′
1
2

([((b5 ↼ a′5
4)← a′6

4h′4b
′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b6 ↼ a′6
5)← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

And this equals

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1a′4

1a′5
1h′1 → ([((b4 ↼ a′3

2
2
2)1 ← a′4

2a′5
2h′2)b′1

1] ⇀ a′′1))⊗

h3b1
3b2

2(b3]a
′
3
2
1)a′3

2
2
1(b4 ↼ a′3

2
2
2)2a′4

3a′5
3h′3b

′
1
2

([((b5 ↼ a′4
4)← a′5

4h′4b
′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b6 ↼ a′5
5)← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

By condition (8) of Definition 3.2, this is

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1a′4

1a′5
1a′6

1h′1 → ([((b3
1 ↼ a′3

2)← a′4
2a′5

2a′6
2h′2)b′1

1] ⇀ a′′1))⊗

h3b1
3b2

2b3
2(b4]a

′
4
3)a′5

3a′6
3h′3b

′
1
2([((b5 ↼ a′5

4)← a′6
4h′4b

′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b6 ↼ a′6
5)← h′5b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

By condition (9) of Definition 3.2, this gives

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1 → [(b3

1 ↼ a′3
2) ⇀ ((a′4

1a′5
1a′6

1h′1)→ (b′1
1 ⇀ a′′1))])⊗

h3b1
3b2

2b3
2(b4]a

′
4
2)a′5

2a′6
2h′2b

′
1
2([((b5 ↼ a′5

3)← a′6
3h′3b

′
1
3)b′2

1]]a′′2)a′′3
1h′′1 ⊗

(([((b6 ↼ a′6
4)← h′4b

′
1
4b′2

2)b′3] ↼ a′′3
2)← h′′2)b′′

By condition (4) of Definition 3.2, this is

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1 → [(b3

1 ↼ a′3
2) ⇀ ((a′4

1a′5
1a′6

1h′1)→ (b′1
1 ⇀ a′′1))])⊗
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h3b1
3b2

2b3
2(b4]a

′
4
2)a′5

2a′6
2h′2b

′
1
2

([(b5 ↼ a′5
3)← a′6

3h′3b
′
1
3]](b′2

1
1
1 ⇀ a′′2))b′2

1
1
2(b′2

1
2]a
′′
3)a′′4

1h′′1 ⊗

(([((b6 ↼ a′6
4)← h′4b

′
1
4b′2

2)b′3] ↼ a′′4
2)← h′′2)b′′

By condition (3) of Definition 3.2, this is

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1 → [(b3

1 ↼ a′3
2) ⇀ ((a′4

1a′5
1a′6

1h′1)→ (b′1
1 ⇀ a′′1))])⊗

h3b1
3b2

2b3
2(b4]a

′
4
2)a′5

2a′6
2h′2b

′
1
2

([(b5 ↼ a′5
3)← a′6

3h′3b
′
1
3]](b′2

1
1
1 ⇀ a′′2))b′2

1
1
2(b′2

1
2]a
′′
3)a′′4

1h′′1 ⊗

((([((b6 ↼ a′6
4)← h′4b

′
1
4b′2

2) ↼ (b′3
1 ⇀ a′′4

2
1)]

← b′3
2(b′4]a

′′
4

2
2)a′′4

2
3
1)(b′5 ↼ a′′4

2
3
2))← h′′2)b′′

And this equals

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1 → [(b3

1 ↼ a′3
2) ⇀ ((a′4

1a′5
1a′6

1h′1)→ (b′1
1 ⇀ a′′1))])⊗

h3b1
3b2

2b3
2(b4]a

′
4
2)a′5

2a′6
2h′2b

′
1
2

([(b5 ↼ a′5
3)← a′6

3h′3b
′
1
3]](b′2

1 ⇀ a′′2))b′2
2(b′3

1]a′′3)a′′4
1a′′5

1a′′6
1h′′1 ⊗

([((b6 ↼ a′6
4)← h′4b

′
1
4b′2

3b′3
2) ↼ (b′4

1 ⇀ a′′4
2)]

← b′4
2(b′5]a

′′
5

2)a′′6
2h′′2)((b′6 ↼ a′′6

3)← h′′3)b′′

Reading the formulas in this calculation backwards, interchanging a’s and b’s, inter-
changing unprimed and doubleprimed symbols and turning around the numeration
of the indices — the type of duality discussed in Subsection 2.9 — one can show
that:

(a⊗ h⊗ b)((a′ ⊗ h′ ⊗ b′)(a′′ ⊗ h′′ ⊗ b′′)) =

a(h1 → (b1
1 ⇀ a′1))

(h2b1
2(b2

1]a′2)a′3
1 → [(b3

1 ↼ a′3
2) ⇀ ((a′4

1a′5
1a′6

1h′1)→ (b′1
1 ⇀ a′′1))])⊗

h3b1
3b2

2b3
2(b4]a

′
4
2)a′5

2((b5 ↼ a′5
3)][a′6

2h′2b
′
1
2 → (b′2

1 ⇀ a′′2)])

a′6
3h′3b

′
1
3b′2

2(b′3
1]a′′3)a′′4

1a′′5
1a′′6

1h′′1 ⊗

([((b6 ↼ a′6
4)← h′4b

′
1
4b′2

3b′3
2) ↼ (b′4

1 ⇀ a′′4
2)]

← b′4
2(b′5]a

′′
5

2)a′′6
2h′′2)((b′6 ↼ a′′6

3)← h′′3)b′′

By condition (10) of Definition 3.2, this expression equals the last term in the
above calculation.

3.6. We show next that the comultiplication is multiplicative. We have:

∆((a⊗ h⊗ b)(a′ ⊗ h′ ⊗ b′)) =

[(a(h1 → (b1
1 ⇀ a′1)))1 ⊗ (a(h1 → (b1

1 ⇀ a′1)))2
1h2b1

2(b2]a
′
2)1a

′
3
1h′1 ⊗

(((b3 ↼ a′3
3)← h′3)b′)1

1]⊗

[(a(h1 → (b1
1 ⇀ a′1)))2

2 ⊗ h3b1
3(b2]a

′
2)2a

′
3
2h′2(((b3 ↼ a′3

3)← h′3)b′)1
2 ⊗



Deformed Enveloping Algebras 43

(((b3 ↼ a′3
3)← h′3)b′)2]

This equals

[a1(a2
1h1 → (b1

1 ⇀ a′1)1)⊗ (a2
2(h2 → (b1

1 ⇀ a′1)2))1h3b1
2(b2

1]a′2)a′3
1a′4

1h′1 ⊗

(((b4 ↼ a′4
3)1 ← h′3)b′1

1)1]⊗

[(a2
2(h2 → (b1

1 ⇀ a′1)2))2 ⊗ h4b1
3b2

2(b3]a
′
3
2)a′4

2h′2(((b4 ↼ a′4
3)1 ← h′3)b′1

1)2 ⊗

((b4 ↼ a′4
3)2 ← h′4b

′
1
2)b′2]

By the conditions (1) and (2) in Definition 3.2, this is

[a1(a2
1h1 → (b1

1 ⇀ a′1))⊗ a2
2(h2b1

2 → (b2
1 ⇀ a′2))1h3b1

3b2
2(b3

1]a′3)a′4
1a′5

1a′6
1h′1 ⊗

((b5 ↼ a′5
3)← a′6

3h′3)1b′1
1]⊗

[a2
3(h2b1

2 → (b2
1 ⇀ a′2))2 ⊗ h4b1

4b2
3b3

2(b4]a
′
4
2)a′5

2a′6
2h′2((b5 ↼ a′5

3)← a′6
3h′3)2b′1

2 ⊗

((b6 ↼ a′6
4)← h′4b

′
1
3)b′2]

By the Yetter-Drinfel’d conditions in Subsections 2.1 and 2.2, this is

[a1(a2
1h1 → (b1

1 ⇀ a′1))⊗ a2
2h2b1

2(b2
1 ⇀ a′2)1b2

2(b3
1]a′3)a′4

1a′5
1a′6

1h′1 ⊗

((b5 ↼ a′5
3)1 ← a′6

2h′2)b′1
1]⊗

[a2
3(h3b1

3 → (b2
1 ⇀ a′2)2)⊗ h4b1

4b2
3b3

2(b4]a
′
4
2)a′5

2(b5 ↼ a′5
3)2a′6

3h′3b
′
1
2 ⊗

((b6 ↼ a′6
4)← h′4b

′
1
3)b′2]

By condition (8) in Definition 3.2, this gives

[a1(a2
1h1 → (b1

1 ⇀ a′1))⊗ a2
2h2b1

2(b2
1]a′2)a′3

1a′4
1a′5

1a′6
1h′1 ⊗

((b4
1 ↼ a′4

2)← a′5
2a′6

2h′2)b′1
1]⊗

[a2
3(h3b1

3b2
2 → (b3

1 ⇀ a′3
2))⊗ h4b1

4b2
3b3

2b4
2(b5]a

′
5
3)a′6

3h′3b
′
1
2 ⊗

((b6 ↼ a′6
4)← h′4b

′
1
3)b′2]

We now calculate the other side of the equation:

∆(a⊗ h⊗ b)∆(a′ ⊗ h′ ⊗ b′) =

[a1(a2
1h1 → (b1

1 ⇀ a′1))⊗ a2
2h2b1

2(b2
1]a′2)a′3

1a′4
1a′5

1a′6
1h′1 ⊗

((b3
1 ↼ a′3

2)← a′4
2a′5

2a′6
2h′2)b′1

1]⊗

[a2
3(h3b1

3b2
2b3

2 → (b4
1 ⇀ a′4

3))⊗ h4b1
4b2

3b3
3b4

2(b5]a
′
5
3)a′6

3h′3b
′
1
2 ⊗

((b6 ↼ a′6
4)← h′4b

′
1
3)b′2]

Both expressions are equal by condition (11) in Definition 3.2. The other bialgebra-
axioms are easily verified. Observe that from the conditions (4) and (5) in Definition
3.2 we have:

εA(b ⇀ a) = εB(b)εA(a) = εB(b ↼ a).
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3.7. We omit the proof of the following proposition.

Proposition 3.4. If A and B are Yetter-Drinfel’d Hopf algebras with antipodes
SA and SB over the Hopf algebra H with antipode SH , then A⊗H ⊗ B is a Hopf
algebra with antipode:

S(a⊗ h⊗ b) = (1⊗ 1⊗ SB(b1))(1⊗ SH(a1hb2)⊗ 1)(SA(a2)⊗ 1⊗ 1)

3.8. This construction includes two constructions as special cases that have been
considered earlier. The first one is Radford’s biproduct (cf. [8], [7, Theorem 10.6.5]):
Set B = K, the base field, regarded as a trivial Yetter-Drinfel’d module over H
and as a trivial A-module via εA. By conditon (7) in Definition 3.2, ] is forced to
be: 1]a = εA(a)1. The compatibility conditions in Definition 3.2 are then satisfied.
We identify A⊗H ⊗K with A⊗H and get a bialgebra structure on A⊗H with
multiplication:

(a⊗ h)(a′ ⊗ h′) = a(h1 → a′)⊗ h2h
′

and comultiplication

∆(a⊗ h) = (a1 ⊗ a2
1h1)⊗ (a2

2 ⊗ h2)

Of course, one can also set A = K and obtain a bialgebra structure on H ⊗B such
that:

(h⊗ b)(h′ ⊗ b′) = hh′1 ⊗ (b← h′2)b′

∆(h⊗ b) = (h1 ⊗ b1
1)⊗ (h2b1

2 ⊗ b2)

3.9. As a second special case, we set H = K. In this case Yetter-Drinfel’d bial-
gebras are ordinary bialgebras. As in Subsection 3.3, we assume that A is a left
B-module and that B is a right A-module. We set: b]a = εA(a)εB(b). In this situ-
ation, the compatibility conditions (2), (5), (7), (8), (9) and (10) in Definition 3.2
are automatically satisfied. The remaining conditions (1), (3), (4), (6) and (11)
take the following form:

(1) ∆A(b ⇀ a) = (b1 ⇀ a1)⊗ (b2 ⇀ a2)

∆B(b ↼ a) = (b1 ↼ a1)⊗ (b2 ↼ a2)
(2) b ⇀ (aa′) = (b1 ⇀ a1)((b2 ↼ a2) ⇀ a′)

(bb′) ↼ a = (b ↼ (b′1 ⇀ a1))(b′2 ↼ a2)
(3) εA(b ⇀ a) = εB(b)εA(a) = εB(b ↼ a)
(4) b ⇀ 1 = εB(b)1, 1 ↼ a = εA(a)1
(5) (b1 ⇀ a1)⊗ (b2 ↼ a2) = (b2 ⇀ a2)⊗ (b1 ↼ a1)

If these conditions are satisfied, we identify A ⊗ K ⊗ B with A ⊗ B and get a
bialgebra structure on A⊗B with multiplication:

(a⊗ b)(a′ ⊗ b′) = a(b1 ⇀ a′1)⊗ (b2 ↼ a′2)b′

and comultiplication:

∆(a⊗ b) = (a1 ⊗ b1)⊗ (a2 ⊗ b2)

This is Majid’s double crossproduct ([5], cf. also [9]).
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3.10. We show next that many bialgebras that admit a triangular decomposition
are of the form given in the first construction:

Theorem 3.5. Suppose that A and B are left (resp. right) Yetter-Drinfel’d bialge-
bras over the bialgebra H. Suppose that A ⊗ H ⊗ B is a bialgebra in such a way
that:

(1) The mappings

A⊗H → A⊗H ⊗B, a⊗ h 7→ a⊗ h⊗ 1

H ⊗B → A⊗H ⊗B, h⊗ b 7→ 1⊗ h⊗ b

are bialgebra maps from the biproducts (cf. Subsection 3.8) to A⊗H ⊗B.
(2) For all a ∈ A, h ∈ H and b ∈ B we have:

a⊗ h⊗ b = (a⊗ 1⊗ 1)(1⊗ h⊗ 1)(1⊗ 1⊗ b)

Then A ⊗ H ⊗ B is a two-sided cosmash product as a coalgebra and there exist
a left B-module structure on A, a right A-module structure on B and a mapping
] : B ⊗ A → H such that A and B form a Yetter-Drinfel’d bialgebra pair and the
multiplication is given as in Theorem 3.3.

Proof. It is obvious that we have (a ⊗ h ⊗ 1)(1 ⊗ h′ ⊗ b) = (a ⊗ hh′ ⊗ b) for all
a ∈ A, h, h′ ∈ H and b ∈ B. We first derive the comultiplication:

∆(a⊗ h⊗ b) = ∆(a⊗ h⊗ 1)∆(1⊗ 1⊗ b)

= (a1 ⊗ a2
1h1 ⊗ 1)(1⊗ 1⊗ b1

1)⊗ (a2
2 ⊗ h2 ⊗ 1)(1⊗ b1

2 ⊗ b2)

= (a1 ⊗ a2
1h1 ⊗ b1

1)⊗ (a2
2 ⊗ h2b1

2 ⊗ b2)

We now define the following projections:

pA : A⊗H ⊗B → A, a⊗ h⊗ b 7→ aεH(h)εB(b)

pH : A⊗H ⊗B → H, a⊗ h⊗ b 7→ εA(a)hεB(b)

pB : A⊗H ⊗B → B, a⊗ h⊗ b 7→ εA(a)εH(h)b

and use them to define:

b ⇀ a = pA((1⊗ 1⊗ b)(a⊗ 1⊗ 1))

b]a = pH((1⊗ 1⊗ b)(a⊗ 1⊗ 1))

b ↼ a = pA((1⊗ 1⊗ b)(a⊗ 1⊗ 1))
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We now prove: pA((1 ⊗ 1 ⊗ b)(a ⊗ 1 ⊗ 1)(1 ⊗ h ⊗ 1)) = εH(h)(b ⇀ a). Write

(1⊗ 1⊗ b)(a⊗ 1⊗ 1) =
n∑
i=1

a(i) ⊗ h(i) ⊗ b(i). We have:

pA((1⊗ 1⊗ b)(a⊗ 1⊗ 1)(1⊗ h⊗ 1))

= pA(
n∑
i=1

(a(i) ⊗ 1⊗ 1)(1⊗ h(i) ⊗ b(i))(1⊗ h⊗ 1))

= pA(
n∑
i=1

(a(i) ⊗ 1⊗ 1)(1⊗ h(i)h1 ⊗ (b(i) ← h2)))

=
n∑
i=1

a(i)εH(h(i))εH(h)εB(b(i))

= εH(h)(b ⇀ a)

Similarly, one can show that:

pB((1⊗ h⊗ 1)(1⊗ 1⊗ b)(a⊗ 1⊗ 1)) = εH(h)(b ↼ a)

pH((1⊗ h⊗ b)(a⊗ h′ ⊗ 1)) = h(b]a)h′

Since A ⊗H ⊗ B is a coalgebra, (A ⊗H ⊗ B)∗ is an algebra. It is easy to derive
from the form of the comultiplication the formula:

(a∗ ⊗ h∗h′∗ ⊗ b∗) = (a∗ ⊗ h∗ ⊗ εB)(εA ⊗ h
′∗ ⊗ b∗)

for all a∗ ∈ A∗, h∗, h′∗ ∈ H∗ and b∗ ∈ B∗. We use this to derive the form of the
multiplication:

〈a∗ ⊗ h∗ ⊗ b∗, (1⊗1⊗ b)(a⊗ 1⊗ 1)〉

= 〈(a∗ ⊗ h∗ ⊗ εB)⊗ (εA ⊗ εH ⊗ b
∗),∆((1⊗ 1⊗ b)(a⊗ 1⊗ 1))〉

= 〈(a∗ ⊗ h∗ ⊗ εB)⊗ (εA ⊗ εH ⊗ b
∗),∆(1⊗ 1⊗ b)∆(a⊗ 1⊗ 1)〉

= 〈a∗ ⊗ h∗ ⊗ εB , (1⊗ 1⊗ b1
1)(a1 ⊗ a2

1 ⊗ 1)〉

〈εA ⊗ εH ⊗ b
∗, (1⊗ b1

2 ⊗ b2)(a2
2 ⊗ 1⊗ 1)〉

= 〈a∗ ⊗ h∗ ⊗ εB , (1⊗ 1⊗ b1
1)(a1 ⊗ a2

1 ⊗ 1)〉

b∗(pB((1⊗ b1
2 ⊗ b2)(a2

2 ⊗ 1⊗ 1)))

= 〈a∗ ⊗ h∗ ⊗ εB , (1⊗ 1⊗ b1)(a1 ⊗ a2
1 ⊗ 1)〉b∗(b2 ↼ a2

2)

By applying the same method to the tensorand a∗ ⊗ h∗ ⊗ εB = (a∗ ⊗ εH ⊗ εB)
(εA ⊗ h∗ ⊗ εB), we arrive at the formula: 〈a∗ ⊗ h∗ ⊗ b∗, (1⊗ 1⊗ b)(a⊗ 1⊗ 1)〉 =
〈a∗ ⊗ h∗ ⊗ b∗, (b11 ⇀ a1) ⊗ b12(b2]a2)a3

1 ⊗ (b3 ↼ a3
2)〉, which implies that the

multiplication is given by the formula in Theorem 3.3.
It remains to show the compatibility conditions in Definition 3.2. They follow

by calculating both sides of the associative law resp. the multiplicativity of the
comultiplication as in the Subsections 3.5 resp. 3.6 and projecting the resulting
equations onto the tensor factors in all possible ways. As an example, we verify
the second equation in condition (1). Observe first that pB is obviously a coalgebra
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map. Projecting the multiplicativity of the comultiplication onto B⊗B, we obtain:

∆B(b ↼ a) = ∆B(pB((1⊗ 1⊗ b)(a⊗ 1⊗ 1)))

= (pB ⊗ pB)(∆((1⊗ 1⊗ b)(a⊗ 1⊗ 1)))

= (pB ⊗ pB)(∆(1⊗ 1⊗ b)∆(a⊗ 1⊗ 1))

= pB((1⊗ 1⊗ b1
1)(a1 ⊗ a2

1 ⊗ 1))⊗ pB((1⊗ b1
2 ⊗ b2)(a2

2 ⊗ 1⊗ 1))

= ((b1 ↼ a1)← a2
1)⊗ (b2 ↼ a2

2)

�

4. The second construction

4.1. In this section we apply the first construction to two dual Yetter-Drinfel’d
Hopf algebras. In the whole section, we work in the following situation: H is
a commutative and cocommutative Hopf algebra. Recall that in this case the
antipode of H is an involution and therefore bijective. This implies that the pre-
braidings in the categories of left and right Yetter-Drinfel’d modules are actually
braidings. We assume that A is a left Yetter-Drinfel’d Hopf algebra and that C is
a right Yetter-Drinfel’d Hopf algebra. We assume that the antipodes of A and C
are bijective. Furthermore, we suppose that a nondegenerate bialgebra form

〈·, ·〉A : A× C → K

in the sense of Subsection 2.6 is given. And we impose the following main assump-
tion on A:

∀a, a′ ∈ A : (a1 → a′)⊗ a2 = a′2 ⊗ (a′1 → a)

This condition says the following: Since H is commutative and cocommutative, left
Yetter-Drinfel’d modules and right Yetter-Drinfel’d modules coincide, as noted in
Subsection 2.2. However, the corresponding braidings do not coincide. Our main
assumption now requires these braidings to coincide on A ⊗ A, so that A is a left
as well as a right Yetter-Drinfel’d Hopf algebra.

4.2. We now modify C in order to obtain a new right Yetter-Drinfel’d Hopf algebra
called B in the following way: We set B = C as an algebra and as an H-module.
If δC and ∆C denote the cooperation and comultiplication respectively, we define
the cooperation and the comultiplication of B by:

δB = (idC ⊗ SH) ◦ δC ,∆B = σ−1
C,C ◦∆C

where σ is as in Subsection 2.3. We use the indicated Sweedler notation for δB
whereas we write δC(c) = c(1) ⊗ c(2). Similarly, we use the indicated Sweedler
notation for ∆B , not for ∆C .

4.3. We shall also use the following notation:

µoppA = µA ◦ σ
−1
A,A ∆copp

A = σ−1
A,A ◦∆A

µoppB = µB ◦ σ
−1
B,B ∆copp

B = σ−1
B,B ◦∆B

where µA and µB denote the multiplication mappings of A and B.
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4.4. We list the basic properties of B:

Proposition 4.1. We have:

(1) B is a right Yetter-Drinfel’d bialgebra.
(2) B possesses the antipode SB = S−1

C .

(3) 〈S−1
A (a), b〉A = 〈a, SB(b)〉A

(4) 〈σ−1
A,A(a⊗a′), b⊗b′〉A = 〈a⊗a′, σB,B(b⊗b′)〉A, where the form on the tensor

products is defined as in Subsection 2.5.
(5) 〈∆A(a), b⊗ b′〉A = 〈a, bb′〉A
(6) 〈aa′, b〉A = 〈a⊗ a′,∆copp

B (b)〉A
(7) 〈µoppA (a⊗ a′), b〉A = 〈a⊗ a′,∆B(b)〉A

Proof. The main assumption in Subsection 4.1 also implies that the inverses of
the braidings agree on A⊗A:

∀a, a′ ∈ A : a′2 ⊗ (SH(a′1)→ a) = (SH(a1)→ a′)⊗ a2

This implies (4) by direct computation. We now prove (1). Since H is commutative
and cocommutative, the antipode is a Hopf algebra isomorphism. B is therefore a
right Yetter-Drinfel’d module. From the bialgebra axioms, only the coassociativity
and the fact that the comultiplication is an algebra homomorphism are not totally
obvious. It is a standard fact on bialgebras in categories that if the comultiplication
of a bialgebra C is changed to σ−1

C,C ◦∆C , then the resulting object is a bialgebra
in the category with the modified braiding

σ−1
W,V : V ⊗W →W ⊗ V

Since we have σB,B = σ−1
C,C by (4) and 2.5, this proves (1). The assertions (5), (6)

and (7) are direct consequences of (4) and the definition in Subsection 2.6. Part (2)
follows from the skew-antipode equation: µC(idC ⊗ S

−1
C )σ−1

C,C∆C = ηCεC . From

Proposition 2.1 in Subsection 2.6 and (2) we can directly prove (3). �

4.5. We define a second bilinear form:

〈·, ·〉B : A×B → K, (a, b) 7→ 〈a, b〉B := 〈S−1
A (a), b〉A

It follows directly from Proposition 4.1 and Subsection 2.6 that this form has prop-
erties which are in a sense dual to those of 〈·, ·〉A:

Proposition 4.2. We have:

(1) 〈∆copp
A (a), b⊗ b′〉B = 〈a, bb′〉B

(2) 〈∆A(a), b⊗ b′〉B = 〈a, µoppB (b⊗ b′)〉B
(3) 〈aa′, b〉B = 〈a⊗ a′,∆B(b)〉B
(4) 〈1, b〉B = εB(b), 〈a, 1〉B = εA(a)
(5) 〈S−1

A (a), b〉B = 〈a, SB(b)〉B
(6) 〈h→ a, b〉B = 〈a, b← h〉B
(7) 〈a, b〉B = 〈a2, b1〉Ba1b2

4.6. We define now the left adjoint action of A on itself. This is the adjoint action
in the category of Yetter-Drinfel’d modules using the inverse braiding. It is denoted
by ⇁:

A⊗A→ A, a⊗ a′ 7→ (a ⇁ a′) := a2
2a′2S−1

A (SH(a2
1a′1)→ a1)
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This can also be written as:

a ⇁ a′ = µA(µA ⊗ S
−1
A )σ−1

A⊗A,A(∆A ⊗ idA)(a⊗ a′)

A is a left A-module via the left adjoint action. Similarly, B becomes a right
B-module via the right adjoint action:

B ⊗B → B, b′ ⊗ b 7→ (b′ ↽ b) := S−1
B (b2 ← SH(b′2b1

2))b′1b1
1

which can also be written as:

b′ ↽ b = µB(S−1
B ⊗ µB)σ−1

B,B⊗B(idB ⊗∆B)(b′ ⊗ b)

4.7. We define the right coadjoint action of A on B as the action dual to the left
adjoint action with respect to the form 〈·, ·〉A.

B ⊗A→ B, b⊗ a 7→ (b ↼ a)

with: 〈a′, b ↼ a〉A = 〈a ⇁ a′, b〉A.
The dual action exists since the mappings involved possess adjoints by Proposi-

tion 4.1 in Subsection 4.4, and is unique since the bialgebra form is nondegenerate.
Similarly, we define the left coadjoint action of B on A as the action dual to the
right adjoint action with respect to the form 〈·, ·〉B .

B ⊗A→ A, b⊗ a 7→ (b ⇀ a)

with: 〈b ⇀ a, b′〉B = 〈a, b′ ↽ b〉B . It is clear that these actions are module
operations.

4.8. We are now ready to carry out the second construction.

Theorem 4.3. A⊗H ⊗B is a Hopf algebra with comultiplication:

∆ : A⊗H ⊗B → (A⊗H ⊗B)⊗ (A⊗H ⊗B)

a⊗ h⊗ b 7→ (a1 ⊗ a2
1h1 ⊗ b1

1)⊗ (a2
2 ⊗ h2b1

2 ⊗ b2)

and multiplication:

µ : (A⊗H ⊗B)⊗ (A⊗H ⊗B)→ A⊗H ⊗B

(a⊗ h⊗ b)⊗ (a′ ⊗ h′ ⊗ b′) 7→

a(h1 → (b1
1 ⇀ a′1))⊗ h2b1

2(b2]a
′
2)a′3

1h′1 ⊗ ((b3 ↼ a′3
2)← h′2)b′

and counit:

ε : A⊗H ⊗B → K, a⊗ h⊗ b 7→ εA(a)εH(h)εB(b)

and unit 1⊗ 1⊗ 1 and antipode:

S : A⊗H ⊗B → A⊗H ⊗B

a⊗ h⊗ b 7→ (1⊗ 1⊗ SB(b1))(1⊗ SH(a1hb2)⊗ 1)(SA(a2)⊗ 1⊗ 1)

where ⇀, ↼ are the coadjoint actions and ] is defined as:

b]a := 〈a1, b1
1〉Bb1

2a2
1〈a2

2, b2〉A

The proof of this theorem will occupy the rest of this section.
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4.9. In the proof of Theorem 4.3, we shall frequently use a form of the structure
elements in which one tensorand is not changed:

Proposition 4.4. We have:

(1) b ⇀ a = 〈(SH(a2
1)→ a1)SA(a3), b〉Ba2

2

(2) b ↼ a = 〈a, SB(b1)(b3 ← SH(b2
2))〉Ab21

(3) b]a = 〈a, SB(b1
1)b2

1〉Ab12SH(b2
2) = 〈a1

2SA(a2
2), b〉BSH(a1

1)a2
1

Proof. We show (1):

〈b ⇀ a, b′〉B = 〈a, b′ ↽ b〉B

= 〈a, µB(S−1
B ⊗ µB)σ−1

B,B⊗B(idB ⊗∆B)(b′ ⊗ b)〉B

= 〈(idA ⊗ µA)(∆copp
A ⊗ SA)∆A(a), b′ ⊗ b〉B

= 〈a2
2, b′〉B〈(SH(a2

1)→ a1)SA(a3), b〉B

by Proposition 4.2 in Subsection 4.5. The proof of (2) is similar. We prove the first
equality in (3), the proof of the second one is similar:

b]a = 〈a1, b1
1〉Bb1

2SH(b2
2)〈a2, b2

1〉A

= 〈a1, SB(b1
1)〉Ab1

2SH(b2
2)〈a2, b2

1〉A

= 〈a, SB(b1
1)b2

1〉Ab1
2SH(b2

2)

by 2.4 (2), and equations (3) and (5) in Proposition 4.1 of Subsection 4.4. �
4.10. In order to prove Theorem 4.3, we have to verify the compatibility condi-
tions in Definition 3.2. We begin with condition (1). By part (1) in Proposition 4.4
and the main assumption in Subsection 4.1, we have:

∆A(b ⇀ a) = 〈(SH(a3
1)SH(a2

1)→ a1)SA(a4), b〉Ba2
2 ⊗ a3

2

= 〈SH(a5
2)→ [(SH(a2

1)→ a1)SA(a3)], b1〉B

〈(SH(a5
1)→ a4)SA(a6), b2〉Ba2

2 ⊗ a5
3

= 〈[(SH(a2
1)→ a1)SA(a3)]2, b1〉Ba2

2 ⊗

〈(SH(a5
1)→ a4)SA(a6), b2〉BSH([(SH(a2

1)→ a1)SA(a3)]1)→ a5
2

= 〈(SH(a2
1)→ a1)SA(a3), b1

1〉Ba2
2 ⊗ 〈(SH(a5

1)→ a4)SA(a6), b2〉B(b1
2 → a5

2)

= (b1
1 ⇀ a1)⊗ b1

2 → (b2 ⇀ a2),

where the fourth equality uses Proposition 4.2 (7) in Subsection 4.5. The proof of
the second equation in (1) of Definition 3.2 is strictly dual.

4.11. We now verify condition (2) in Definition 3.2:

(b1
1]a1)a2

1 ⊗ b1
2(b2]a2

2)

= 〈a1, b1
1
1
1〉Bb1

1
1
2a2

1〈a2
2, b1

1
2〉Aa3

1 ⊗ b1
2〈a3

2
1, b2

1〉Bb2
2a3

2
2
1〈a3

2
2
2, b3〉A

= 〈a1, b1
1〉Bb1

2a2
1a3

1a4
1〈a2

2, b2
1〉A ⊗ 〈a3

2, b3
1〉Bb1

3b2
2b3

2a4
2〈a4

3, b4〉A

= 〈a1, b1
1〉Bb1

2a2
1a3

1〈a2
2
1, b2

1
1〉A ⊗ 〈a2

2
2, b2

1
2〉Bb1

3b2
2a3

2〈a3
3, b3〉A

= 〈a1, b1
1〉Bb1

2a2
1a3

1〈a2
2, b2

1
1SB(b2

1
2)〉A ⊗ b1

3b2
2a3

2〈a3
3, b3〉A

= 〈a1, b1
1〉Bb1

2a2
1 ⊗ b1

3a2
2〈a2

3, b2〉A = ∆H(b]a)
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4.12. Before we proceed to verify condition (3) in Definition 3.2, we record some
formulas which occur several times in the course of the proof:

Proposition 4.5. We have:

(1) SA(a ⇁ a′) = a1SA(a2
1 → a′)SA(a2

2)
(2) SB(b′ ↽ b) = SB(b1

1)SB(b′ ← b1
2)b2

(3) a1
1a2

1 ⊗ SA(a1
2)SA(a2

2 ⇁ a′) = a1 ⊗ SA(a2 → a′)SA(a3)
(4) SB(b′ ↽ b1

1)SB(b2
1)⊗ b12b2

2 = SB(b1)SB(b′ ← b2)⊗ b3

(5) a1
1a2

1 ⊗ SA(a1
2 ⇁ (a2

2 → a′))a2
3 = a1 ⊗ a2SA(a′)

(6) b1
1SB((b′ ← b1

2) ↽ b2
1)⊗ b13b2

2 = SB(b′)b1 ⊗ b2

Proof. (1) can be written in the form:

SAµA(µA ⊗ S
−1
A )σ−1

A⊗A,A(∆A ⊗ idA)(a⊗ a′) =

µA(µA ⊗ idA)(idA ⊗ SA ⊗ SA)(idA ⊗ σA,A)(∆A ⊗ idA)(a⊗ a′)

It is a standard calculation inside monoidal categories to reduce both sides to a
standard form in which all multiplications appear on the left, followed by all an-
tipodes which are in turn followed by all braiding operators, which are in turn
followed by all comultiplications on the right. A comparison of both sides in their
reduced form shows that they are equal. (2) is strictly dual to (1), (3) and (5)
follow from (1), (4) (resp. (6)) is dual to (3) (resp. (5)). �

4.13. We now verify condition (3) in Definition 3.2. Since the verification of
the second formula is strictly dual, we only prove the first one. Using part (4) in
Proposition 4.1 for the eighth equality, we have:

b ⇀ (aa′)

= 〈[SH([a2
2(a3

2 → a′2)]1)→ (a1(a2
1a3

1 → a′1))]SA(a3
3a′3), b〉B [a2

2(a3
2 → a′2)]2

= 〈[SH(a2
2(a3

2 → a′2)1)→ (a1(a2
1a3

1 → a′1))]SA(a3
3a′3), b〉Ba2

3(a3
2 → a′2)2

= 〈[SH(a2
2(a3

2a′2
1SH(a3

4)))→ (a1(a2
1a3

1 → a′1))]SA(a3
5a′3), b〉Ba2

3(a3
3 → a′2

2)

= 〈[SH(a2
3a3

3a′2
2SH(a3

5))→ a1]

[SH(a2
2a3

2a′2
1SH(a3

6))a2
1a3

1 → a′1]SA(a3
7a′3), b〉Ba2

4(a3
4 → a′2

3)

= 〈[SH(a2
1a3

1a′2
2SH(a3

3))→ a1][a3
4SH(a′2

1)→ a′1]SA(a3
5a′3), b〉Ba2

2(a3
2 → a′2

3)

= 〈(SH(a2
1(a3

1 → a′2
2)1)→ a1)(a3

2SH(a′2
1)→ a′1)SA(a3

3 → a′3)SA(a3
4), b〉B

a2
2(a3

1 → a′2
2)2

= 〈SH(a2
1(a3

1 → a′2
2)1)→ a1, b1〉B

〈a3
2 → [(SH(a′2

1)→ a′1)SA(a′3)]⊗ SA(a3
3), b2 ⊗ b3〉Ba2

2(a3
1 → a′2

2)2

= 〈SH((a3
1 → a′2

2)1)SH(a2
1)→ a1, b1〉B

〈SA(a3
2)⊗ (SH(a′2

1)→ a′1)SA(a′3), (b3 ← SH(b2
2))⊗ b2

1〉Ba2
2(a3

1 → a′2
2)2

= 〈[SH(a2
1)→ a1]2, b1〉B〈a3

2, b3 ← SH(b2
2)〉A〈(SH(a′2

1)→ a′1)SA(a′3), b2
1〉B

a2
2(SH([SH(a2

1)→ a1]1)a3
1 → a′2

2)

= 〈SH(a2
1)→ a1, b1

1〉B〈a3
2, b3 ← SH(b2

2)〉A〈(SH(a′2
1)→ a′1)SA(a′3), b2

1〉B

a2
2(b1

2a3
1 → a′2

2)
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= 〈SH(a2
1)→ a1, b1

1〉B〈a3
2, b3 ← SH(b2

2)〉Aa2
2(b1

2a3
1 → (b2

1 ⇀ a′))

= 〈(SH(a2
1)→ a1)SA(a3)a4, b1

1〉B〈a5
2, b2SB(b3)(b5 ← SH(b4

2))〉A

a2
2(b1

2a5
1 → (b4

1 ⇀ a′))

= 〈(SH(a2
1)→ a1)SA(a3), b1

1
1〉B〈a4, b1

1
2〉B〈a5

2
1, b2〉A

〈a5
2
2, SB(b3)(b5 ← SH(b4

2))〉Aa2
2(b1

2a5
1 → (b4

1 ⇀ a′))

= 〈(SH(a2
1)→ a1)SA(a3), b1

1〉Ba2
2

(b1
2〈a4, b2

1〉Bb2
2a5

1〈a5
2, b3〉Aa6

1 → [〈a6
2, SB(b4)(b6 ← SH(b5

2))〉Ab5
1 ⇀ a′])

= (b1
1 ⇀ a1)(b1

2(b2]a2)a3
1 → [(b3 ↼ a3

2) ⇀ a′])

4.14. We now verify condition (4) in Definition 3.2. We only prove the second
formula, the proof of the first one being strictly dual. We observe first that the right
adjoint action b′⊗ b 7→ (b′ ↽ b) is colinear since it was written in Subsection 4.6 as
the composition of colinear mappings. This implies the following formula for the
left coadjoint action:

(b ⇀ a)1 ⊗ (b ⇀ a)2 = b2a1 ⊗ (b1 ⇀ a2)

Using condition (1) of Definition 3.2 and Proposition 4.4 (3) from Subsection 4.9,
we now calculate:

(b](b′1
1 ⇀ a1))b′1

2(b′2]a2)

= 〈(b′1
1 ⇀ a1)1, b1

1〉Bb1
2(b′1

1 ⇀ a1)2
1〈(b′1

1 ⇀ a1)2
2, b2〉Ab

′
1
2

〈a2, SB(b′2
1)b′3

1〉Ab
′
2
2SH(b′3

2)

= 〈b′1
1 ⇀ a1, b1

1〉B〈b
′
1
2 → (b′2

1 ⇀ a2
2), S−1

B (b2)〉B〈a3, SB(b′3
1)b′4

1〉A

b1
2b′2

2a2
1b′1

3b′2
3b′3

2SH(b′4
2)

= 〈a1, SB(b1
1 ↽ b′1

1)〉A〈a2
2, (S−1

B (b2)← b′1
2) ↽ b′2

1〉B

〈a3, SB(b′3
1)b′4

1〉Ab1
2b′2

2a2
1b′1

3b′2
3b′3

2SH(b′4
2)

= 〈a1, SB(b1
1 ↽ b′1

1)〉A〈a2, SB((S−1
B (b2

1)← b′1
2) ↽ b′2

1)〉A

〈a3, SB(b′3
1)b′4

1〉Ab1
2b′2

3SH(b2
2b′2

2)b′1
3b′2

4b′3
2SH(b′4

2)

= 〈a, SB(b1
1 ↽ b′1

1)SB((S−1
B (b2

1)← b′1
2) ↽ b′2

1)SB(b′3
1)b′4

1〉A

b1
2SH(b2

2)b′1
3b′2

2b′3
2SH(b′4

2)

= 〈a, SB(b1
1 ↽ b′1

1)SB(b′2
1)SB(S−1

B (b2
1)← b′1

2b′2
2)b′3

1〉Ab1
2SH(b2

2)b′1
3b′2

3SH(b′3
2)

= 〈a, SB(b′1
1)SB(b1

1 ← b′1
2)(b2

1 ← b′1
3)b′2

1〉Ab1
2SH(b2

2)b′1
4SH(b′2

2)

= 〈a, SB(b1
1b′1

1)(b2
1 ← b′1

2)b′2
1〉Ab1

2SH(b2
2)b′1

3SH(b′2
2)

= 〈a, SB((b1b
′
1
1)1)((b2 ← b′1

2)b′2)1〉A(b1b
′
1
1)2SH(((b2 ← b′1

2)b′2)2)

= 〈a, SB((bb′)1
1)(bb′)2

1〉A(bb′)1
2SH((bb′)2

2) = (bb′)]a

Here the sixth and the seventh equality follow from Proposition 4.5 (4) of Subsec-
tion 4.12, whereas the last one holds by Proposition 4.4 (3) in Subsection 4.9.
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4.15. We omit the proofs of the conditions (5), (6) and (7) in Definition 3.2 and
continue with the proof of the first formula in condition (8):

(b1
1 ⇀ a1)1b1

2(b2]a2)〈(b1
1 ⇀ a1)2, b′〉B

= b1
2a1

1b1
3〈a2, SB(b2

1)b3
1〉Ab2

2SH(b3
2)〈b1

1 ⇀ a1
2, b′〉B

= 〈a2, SB(b2
1)b3

1〉A〈a1, b
′1 ↽ b1

1〉Bb1
3SH(b′2b1

2)b1
4b2

2SH(b3
2)

= 〈a, SB(b′1 ↽ b1
1)SB(b2

1)b3
1〉ASH(b′2)b1

2b2
2SH(b3

2)

= 〈a, SB(b1
1)SB(b′1 ← b1

2)b2
1〉ASH(b′2)b1

3SH(b2
2)

= 〈a, SB(b1
1)b2

1SB((b′1 ← b1
2b2

2) ↽ b3
1)〉ASH(b′2)b1

3SH(b2
3b3

2)

= 〈a1, SB(b1
1)b2

1〉A〈a2, SB((b′1 ← b1
3b2

3) ↽ b3
1〉ASH(b′2)b1

2SH(b2
2b3

2)

= 〈a1, SB(b1
1
1
1)b1

1
2
1〉A〈a2, (b

′1 ← b1
2) ↽ b2

1〉BSH(b′2)b1
1
1
2SH(b1

1
2
2b2

2)

= (b1
1]a1)〈a2

2, (b′ ← b1
2) ↽ b2〉Ba2

1

= (b1
1]a1)a2

1〈b1
2 → (b2 ⇀ a2

2), b′〉B

Here the first and the eighth equality follow from Proposition 4.4 (3) in Subsec-
tion 4.9 whereas the fourth and the fifth one follow from part (4) resp. (6) of
Proposition 4.5.

4.16. Condition (9) in Definition 3.2 is the dualization of the H-linearity of the
adjoint actions. We now verify condition (10). Since H is commutative and cocom-
mutative, we have:

(b](h1 → a))h2 = 〈(h1 → a)1, b1
1〉Bb1

2(h1 → a)2
1h2〈(h1 → a)2

2, b2〉A

= 〈h1 → a1, b1
1〉Bb1

2a2
1h3〈h2 → a2

2, b2〉A

= 〈a1, b1
1 ← h1〉Bb1

2a2
1h3〈a2

2, b2 ← h2〉A

= 〈a1, b1
1 ← h2〉Bh1b1

2a2
1〈a2

2, b2 ← h3〉A

= 〈a1, (b← h2)1
1〉Bh1(b← h2)1

2a2
1〈a2

2, (b← h2)2〉A

= h1((b← h2)]a)

4.17. Finally, we have to verify condition (11). We have by Proposition 4.4 (2)
in Subsection 4.9:

〈b1
2 → (b2 ⇀ a2

2), b′〉B〈a
′, (b1

1 ↼ a1)← a2
1〉A

= 〈a2
2, (b′ ← b1

2) ↽ b2〉B〈a1, SB(b1
1
1)(b1

1
3 ← SH(b1

1
2
2))〉A

〈a′, b1
1
2
1 ← a2

1〉A

= 〈a2
2, SB((b′ ← b1

2b2
3b3

2) ↽ b4)〉A〈a1, SB(b1
1)(b3

1 ← SH(b2
2))〉A

〈a2
1 → a′, b2

1〉A

= 〈a1 ⊗ (a2
1 → a′)⊗ a2

2,

SB(b1
1)(b3

1 ← SH(b2
2))⊗ b2

1 ⊗ SB((b′ ← b1
2b2

3b3
2) ↽ b4)〉A

= 〈a1 ⊗ a2 ⊗ a
′,

SB(b1
1)(b3

1 ← SH(b2
3))⊗ SB((b′ ← b1

2b2
4b3

2) ↽ b4)← SH(b2
2)⊗ b2

1〉A

= 〈a⊗ a′, SB(b1
1)[(b3

1SB((b′ ← b1
2b2

3b3
2) ↽ b4))← SH(b2

2)]⊗ b2
1〉A
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= 〈a⊗ a′, SB(b1
1)[(b3

1SB(b4
1)SB(b′ ← b1

2b2
3b3

2b4
2)b5)← SH(b2

2)]⊗ b2
1〉A

= 〈a⊗ a′, SB(b1
1)[(b3

1
1SB(b3

1
2)SB(b′ ← b1

2b2
3b3

2)b4)← SH(b2
2)]⊗ b2

1〉A

= 〈a⊗ a′, SB(b1
1)[(SB(b′ ← b1

2b2
3)b3)← SH(b2

2)]⊗ b2
1〉A

= 〈a⊗ a′, SB(b1
1)SB(b′ ← b1

2)(b3 ← SH(b2
2))⊗ b2

1〉A

= 〈a⊗ a′, SB(b1
1)SB(b′ ← b1

2)b2SB(b3)(b5 ← SH(b4
2))⊗ b4

1〉A

= 〈a1 ⊗ a2 ⊗ a
′, SB(b′ ↽ b1)⊗ SB(b2)(b4 ← SH(b3

2))⊗ b3
1〉A

= 〈a1, b
′ ↽ b1〉B〈a2, SB(b2)(b4 ← SH(b3

2))〉A〈a
′, b3

1〉A

= 〈b1 ⇀ a1, b
′〉B〈a

′, b2 ↼ a2〉A,

where we have used part (4) and (5) of Proposition 4.1 in the fourth resp. eleventh
equality, part (2) of Proposition 4.5 in the sixth and the eleventh equality and
Proposition 4.4 (2) in the last one. This finishes the proof of the theorem.

4.18. The Drinfel’d Double construction is contained in this construction as a
special case, as we now indicate. As in Subsection 3.9, we set H = K and assume
that the Hopf algebra A is finite dimensional. We set C = A∗ and obtain B =
A∗cop. Identifying A ⊗K ⊗ B with A ⊗ B, we want to rewrite the multiplication
in Theorem 4.3 in a more familiar way. We calculate, using Proposition 4.4 (1) in
the first and Proposition 4.5 (1) in the third equality:

b1 ⇀ a′1〈a, b2 ↼ a′2〉A = 〈a′1SA(a′3), b1〉Ba
′
2〈a
′
4 ⇁ a, b2〉A

= 〈a′1SA(a′3), b1〉Ba
′
2〈SA(a′4 ⇁ a), b2〉B

= 〈a′1SA(a′3), b1〉Ba
′
2〈a
′
4SA(a)SA(a′5), b2〉B

= 〈a′1SA(a′3)a′4SA(a)SA(a′5), b〉Ba
′
2 = 〈a′3aS

−1
A (a′1), b〉Aa

′
2

We therefore have the following form of the multiplication:

(a⊗ b)(a′ ⊗ b′) = aa′2 ⊗ 〈a
′
3 · S

−1
A (a′1), b〉Ab

′,

where f(·) is the mapping x 7→ f(x). Passing to the opposite and coopposite Hopf
algebra and reversing the ordering of the tensorands, we obtain a Hopf algebra
structure with multiplication

µ′ : (B ⊗A)⊗ (B ⊗A)→ B ⊗A

(b⊗ a)⊗ (b′ ⊗ a′) 7→ 〈a3 · S
−1
A (a1), b′〉Ab⊗ a

′a2

and comultiplication

∆ : B ⊗A→ (B ⊗A)⊗ (B ⊗A)

b⊗ a 7→ (b2 ⊗ a2)⊗ (b1 ⊗ a1)

This is the Drinfel’d Double of Aop cop (cf. [9, p. 299], [7, Definition 10.3.5], [2,
§13, p. 816]).

5. Deformed enveloping algebras

5.1. In this section, we explain how the second construction provides a method
to construct the deformed enveloping algebras of semisimple Lie algebras. We work
in Lusztig’s setting, which is reproduced from his book [4] in the next paragraphs.
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In this section, the base field K is the field Q(v) of rational functions of one inde-
terminate v over Q.

5.2. A Cartan datum is a pair (I, ·) consisting of a finite set I and a symmetric
bilinear form ν, ν′ 7→ ν · ν′ on the free abelian group Z[I], with values in Z. It is
assumed that:

(1) i · i ∈ {2, 4, 6, . . . } for any i ∈ I;

(2) 2 i·j
i·i ∈ {0,−1,−2, . . . } for any i 6= j in I.

5.3. We define a group homomorphism

Z[I]→ Q(v)\{0}, ν 7→ vν

which takes the value vi·i/2 for a basis element i ∈ I. We also shall use the notation
tr ν =

∑
i νi ∈ Z for ν =

∑
i νii ∈ Z[I]. In analogy to [4, 3.1.1], we shall also use

the group homomorphism

Z[I]→ Z[I], ν 7→ ν̃

which takes the value i·i
2 i on the basis element i.

5.4. A root datum of type (I, ·) consists, by definition, of

(1) two finitely generated free abelian groups Y,X and a bilinear pairing

〈 , 〉 : Y ×X → Z

(We do not require the pairing to be perfect, cf. [1, p. 281]);
(2) an embedding I ⊂ X (i 7→ i′) and an embedding I ⊂ Y (i 7→ i) such that

(3) 〈i, j′〉 = 2 i·j
i·i for all i, j ∈ I.

The embeddings (2) induce homomorphisms Z[I] → Y , Z[I] → X; we shall often
denote, again by ν, the image of ν ∈ Z[I] under either of these homomorphisms.

5.5. We denote by ′f the free associative Q(v)-algebra with 1 with generators
θi (i ∈ I). Let N[I] be the submonoid of Z[I] consisting of all linear combinations
of elements of I with coefficients in N. For any ν =

∑
i νii ∈ N[I], we denote by ′fν

the Q(v)-subspace of ′f spanned by the monomials θi1θi2 . . . θir such that for any
i ∈ I, the number of occurrences of i in the sequence i1, i2, . . . , ir is equal to νi.
Then each ′fν is a finite dimensional Q(v)-vector space and we have a direct sum
decomposition ′f = ⊕ν ′fν where ν runs over N[I]. An element of ′f is said to be
homogeneous if it belongs to ′fν for some ν. We then set |x| = ν.

5.6. We take our Hopf algebra H to be the group ring K[Y ]. H is obviously
commutative and cocommutative. Following [13], we turn ′f into a left Yetter-
Drinfel’d module over H by defining for a homogeneous element x ∈ ′f :

K ′µ → x := v−〈µ,|x|〉x, δ(x) = K̃ ′−|x| ⊗ x

where K ′µ is the basis element of the group ring corresponding to µ ∈ Y , and K̃ ′ν
for ν ∈ Z[I] is defined as in [4, 3.1.1] to be K ′ν̃ . It is obvious that ′f becomes a
Yetter-Drinfel’d module in this way, and it is also an algebra in that category. We
therefore can form the tensor product algebra inside that category. Since ′f is free,
there is a unique algebra morphism r : ′f → ′f ⊗ ′f such that

r(θi) = θi ⊗ 1 + 1⊗ θi.
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Using this comultiplication and the unique algebra morphism from ′f to Q(v) an-
nihilating the θi’s as a counit, ′f becomes a Yetter-Drinfel’d bialgebra.

5.7. In contrast to the previous sections, we here follow [4] and denote by σ the
unique algebra antiautomorphism of ′f such that σ(θi) = θi.

Proposition 5.1. ′f is a left Yetter-Drinfel’d Hopf algebra with antipode:

S′f(x) = (−1)tr|x|v|x|·|x|/2v−|x|σ(x)

for a homogeneous element x ∈ ′f .

The proof is based on a direct computation and is omitted.

5.8. If ′f is considered as a left Yetter-Drinfel’d module as in Subsection 5.6, it
is denoted by A′. We now also introduce the structure of a right Yetter-Drinfel’d
module on ′f by defining: x← K ′µ := v−〈µ,|x|〉x, δ(x) := x⊗K̃ ′−|x|.

′f is then a right

Yetter-Drinfel’d Hopf algebra with the same multiplication, comultiplication, unit,
counit and antipode, which is denoted by C ′. (This is true in this particular case,
not in general, even if H is commutative and cocommutative, cf. Subsection 4.1.)

5.9. We now introduce the following bilinear form 〈·, ·〉A′ on A′ × C ′: For i ∈ I
suppose that ζi ∈ A′

∗ is the linear form which satisfies:

ζi(θi) =
1

(v−1
i − vi)

and vanishes on x ∈ ′fν if ν 6= i. Since A′ is a coalgebra, A′∗ is an algebra. Consider
the algebra homomorphism φ : C ′ → A′∗ satisfying φ(θi) = ζi. We set:

〈x, y〉A′ := φ(y)(x)

This is a bialgebra form by Lemma 2.3 since it satisfies 2.6 (2) by definition and
2.4 (1), 2.4 (2), 2.6 (1) and 2.6 (3) on the generators. The form 〈·, ·〉A′ is not equal
to the form (·, ·) of [4], but it has the same radical, since both forms are related via
〈x, y〉A′ = (−1)tr |x|v−|x|(x, y) for homogeneous elements x, y ∈ ′f .

5.10. We now use the method from Subsection 2.7 to obtain a nondegenerate
bialgebra form 〈·, ·〉A on A× C where A := A′/RA′ and C := C ′/RC′ . We denote
the equivalence class of a ∈ A′ in A by ā, and similarly for C. We now apply the
second construction to A and C. The main assumption in Subsection 4.1 is satisfied
since the form (ν, ν′) 7→ ν · ν′ is symmetric. Defining

V := A⊗H ⊗B,

we shall see now that Vcop is isomorphic to the algebra U defined in [4]. We set:

Fi := θ̄i ⊗ 1⊗ 1, Ei := 1⊗ 1⊗ θ̄i, Kµ := 1⊗K ′µ ⊗ 1

It is easy to verify that these elements satisfy the defining relations of the algebra U,
which will be carried out in one case only. A short calculation shows that θ̄i ⇀ θ̄j
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and θ̄i ↼ θ̄j vanish. We therefore have:

EiFj = (1⊗ 1⊗ θ̄i)(θ̄j ⊗ 1⊗ 1)

= 1⊗ (θ̄i]θ̄j)⊗+θ̄j ⊗ 1⊗ θ̄i

= 〈θ̄j , SB(θ̄i)〉A1⊗ K̃ ′i ⊗ 1 + 〈θ̄j , θ̄i〉A1⊗ K̃ ′−j ⊗ 1 + θ̄j ⊗ 1⊗ θ̄i

=
−δij

v−1
i − vi

K̃i +
δij

v−1
i − vi

K̃−j + FjEi

Therefore we have:

EiFj − FjEi = δij
K̃i − K̃−i
vi − v

−1
i

We therefore get an algebra map from U to Vcop which is in fact a Hopf algebra
map. By the triangular decomposition theorem [4, corollary 3.2.4], this map must
be an isomorphism.
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Added in Proof. S. Majid has recently announced a construction of deformed
enveloping algebras based on the notion of a weakly quasitriangular pair (cf. [6]).
A revised version of P. Schauenburg’s article [13] has been accepted for publication
[14].
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