ON GENERALIZATIONS OF BOEHMIAN SPACE AND HARTLEY TRANSFORM

C. Ganesan and R. Roopkumar

Abstract

Boehmians are quotients of sequences which are constructed by using a set of axioms. In particular, one of these axioms states that the set S from which the denominator sequences are formed should be a commutative semigroup with respect to a binary operation. In this paper, we introduce a generalization of abstract Boehmian space, called generalized Boehmian space or G-Boehmian space, in which S is not necessarily a commutative semigroup. Next, we provide an example of a G-Boehmian space and we discuss an extension of the Hartley transform on it.

1. Introduction

Motivated by the Boehme's regular operators [1], a generalized function space called Boehmian space is introduced by J. Mikusiński and P. Mikusiński [6] and two notions of convergence called δ-convergence and Δ-convergence on a Boehmian space are introduced in [7]. In general, an abstract Boehmian space is constructed by using a suitable topological vector space Γ, a subset S of $\Gamma, \star: \Gamma \times S \rightarrow \Gamma$ and a collection Δ of sequences satisfying some axioms. In [9], the abstract Boehmian space is generalized by replacing S with a commutative semi-group in such a way that S is not even comparable with Γ and the binary operation on S need not be the same as \star. Using this generalization of Boehmians, a lot of Boehmian spaces have been constructed for extending various integral transforms. To mention a few recent works on Boehmians, we refer to $[12-16,18]$. There is yet another generalization of Boehmians called generalized quotients or pseudoquotients [3, 10, 11].

According to the earlier constructions, we note that S is assumed to be a commutative semi-group either with respect to the restriction of \star or with respect to the binary operation defined on S. In this paper, we provide another generalization of an abstract Boehmian space, in which S is not necessarily a commutative semigroup. We shall call such Boehmian space a generalized Boehmian space or simply a G-Boehmian space and we also provide a concrete example of a G-Boehmian

[^0]space and study the Hartley transform on it. At this juncture, we point out that in a recent interesting paper on pseudoquotients [5], the commutativity of S is relaxed by Ore type condition, which is entirely different from the generalization discussed in this paper.

2. Preliminaries

2.1. Boehmians. From [7], we briefly recall the construction of a Boehmian space $\mathcal{B}=\mathcal{B}(\Gamma, S, \star, \Delta)$, where Γ is a topological vector space over $\mathbb{C}, S \subseteq \Gamma$, $\star: \Gamma \times S \rightarrow \Gamma$ satisfies the following conditions:
$\left(A_{1}\right)\left(g_{1}+g_{2}\right) \star s=g_{1} \star s+g_{2} \star s, \forall g_{1}, g_{2} \in \Gamma$ and $\forall s \in S$,
$\left(A_{2}\right)(c g) \star s=c(g \star s), \forall c \in \mathbb{C}, \forall g \in \Gamma$ and $\forall s \in S$,
$\left(A_{3}\right) g \star(s \star t)=(g \star s) \star t, \forall g \in \Gamma$ and $\forall s, t \in S$,
$\left(A_{4}\right) s \star t=t \star s, \forall s, t \in S$,
$\left(A_{c}\right)$ If $g_{n} \rightarrow g$ as $n \rightarrow \infty$ in Γ and $s \in S$, then $g_{n} \star s \rightarrow g \star s$ as $n \rightarrow \infty$ in Γ,
and Δ is a collection of sequences from S with the following properties:
$\left(\Delta_{1}\right)$ If $\left(s_{n}\right),\left(t_{n}\right) \in \Delta$, then $\left(s_{n} \star t_{n}\right) \in \Delta$,
$\left(\Delta_{2}\right)$ If $g \in \Gamma$ and $\left(s_{n}\right) \in \Delta$, then $g \star s_{n} \rightarrow g$ as $n \rightarrow \infty$ in Γ.
We call a pair $\left(\left(g_{n}\right),\left(s_{n}\right)\right)$ of sequences satisfying the conditions $g_{n} \in \Gamma, \forall n \in \mathbb{N}$, $\left(s_{n}\right) \in \Delta$ and

$$
g_{n} \star s_{m}=g_{m} \star s_{n}, \quad \forall m, n \in \mathbb{N}
$$

a quotient and is denoted by $\frac{g_{n}}{s_{n}}$. The equivalence class $\left[\frac{g_{n}}{s_{n}}\right]$ containing $\frac{g_{n}}{s_{n}}$ induced by the equivalence relation \sim defined on the collection of all quotients by

$$
\begin{equation*}
\frac{g_{n}}{s_{n}} \sim \frac{h_{n}}{t_{n}} \text { if } g_{n} \star t_{m}=h_{m} \star s_{n}, \forall m, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

is called a Boehmian and the collection \mathcal{B} of all Boehmians is a vector space with respect to the addition and scalar multiplication defined as follows.

$$
\left[\frac{g_{n}}{s_{n}}\right]+\left[\frac{h_{n}}{t_{n}}\right]=\left[\frac{g_{n} \star t_{n}+h_{n} \star s_{n}}{s_{n} \star t_{n}}\right], c\left[\frac{g_{n}}{s_{n}}\right]=\left[\frac{c g_{n}}{s_{n}}\right] .
$$

Every member $g \in \Gamma$ can be uniquely identified as a member of \mathcal{B} by $\left[\frac{g \star s_{n}}{s_{n}}\right]$, where $\left(s_{n}\right) \in \Delta$ is arbitrary and the operation \star is also extended to $\mathcal{B} \times S$ by $\left[\frac{g_{n}}{\phi_{n}}\right] \star t=\left[\frac{g_{n} \star t}{\phi_{n}}\right]$. There are two notions of convergence on \mathcal{B} namely δ-convergence and Δ-convergence which are defined as follows.

Definition 2.1. We say that $X_{m} \xrightarrow{\delta} X$ as $m \rightarrow \infty$ in \mathcal{B}, if there exists $\left(s_{n}\right) \in$ Δ such that $X_{m} \star \delta_{n}, X \star \delta_{n} \in \Gamma, \forall m, n \in \mathbb{N}$ and for each $n \in \mathbb{N}, X_{m} \star \delta_{n} \rightarrow X \star \delta_{n}$ as $m \rightarrow \infty$ in Γ.

Definition 2.2. We say that $X_{m} \xrightarrow{\Delta} X$ as $m \rightarrow \infty$ in \mathcal{B}, if there exists $\left(s_{n}\right) \in \Delta$ such that $\left(X_{m}-X\right) \star \delta_{m} \in \Gamma, \forall m \in \mathbb{N}$ and $\left(X_{m}-X\right) \star \delta_{m} \rightarrow 0$ as $m \rightarrow \infty$ in Γ.
2.2. Hartley transform. For an arbitrary integrable function f, the Hartley transform was defined by

$$
[\mathcal{H}(f)](t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x)[\cos x t+\sin x t] d x, \forall t \in \mathbb{R}
$$

and its inverse is obtained from the formula $\mathcal{H}[\mathcal{H}(f)]=f$, whenever $\mathcal{H}(f) \in \mathcal{L}^{1}(\mathbb{R})$. For more details on the classical theory of Hartley transform, we refer to [2, 4].

The Hartley transform is one of the integral transforms which is closely related to Fourier transform in the following sense.
$\mathcal{F}(f)=\frac{\mathcal{H}(f)+\mathcal{H}(-f)}{2}+i \frac{\mathcal{H}(f)-\mathcal{H}(-f)}{2}$ and $\mathcal{H}(f)=\frac{1+i}{2} \mathcal{F}(f)+i \frac{1-i}{2} \mathcal{F}(-f)$, where $\mathcal{F}(f)$ is the Fourier transform of f, which is defined by

$$
\mathcal{F}(f)(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i x t} d x, \forall t \in \mathbb{R}
$$

However N. Sundararajan [19] pointed out that Hartley transform has some computational advantages over the Fourier transform and therefore it can be an ideal alternative of Fourier transform.

Furthermore, as $|[\mathcal{H}(f)](t)| \leq 2|\mathcal{F}(f)(t)|, \forall t \in \mathbb{R}$, using the properties of Fourier transform, we have $\mathcal{H}(f) \in C_{0}(\mathbb{R}),\|\mathcal{H}(f)\|_{\infty} \leq 2\|\mathcal{F}(f)\|_{\infty} \leq\|f\|_{1}$ and hence the Hartley transform $\mathcal{H}: \mathcal{L}^{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})$ is continuous.

3. Generalized Boehmian spaces

We introduce a generalization of Boehmain space called G-Boehmian space $\mathcal{B}^{\star}(\Gamma, S, \star, \Delta)$, which is obtained by relaxing the Boehmian-axiom $\left(A_{4}\right)$ in Subsection 2.1 by

$$
\left(A_{4}^{\prime}\right) f \star(s \star t)=(f \star t) \star s, \forall f \in \Gamma \text { and } s, t \in S
$$

If we probe into know the necessity for introducing the axioms $\left(A_{3}\right)$ and $\left(A_{4}\right)$ for constructing Boehmians, we could see that these two axioms are used to prove the transitivity of the relation \sim defined on the collection of all quotients in (1).

It is easy to see that the verification of reflexivity and symmetry for the relation \sim are straightforward. So we now verify the transitivity of $\sim \operatorname{using}\left(A_{3}\right)$ and $\left(A_{4}^{\prime}\right)$.

Let $\frac{g_{n}}{s_{n}}, \frac{h_{n}}{t_{n}}$ and $\frac{p_{n}}{u_{n}}$ be quotients such that $\frac{g_{n}}{s_{n}} \sim \frac{h_{n}}{t_{n}}$ and $\frac{h_{n}}{t_{n}} \sim \frac{p_{n}}{u_{n}}$. Then, we have $g_{n}, h_{n}, p_{n} \in \Gamma, \forall n \in \mathbb{N},\left(s_{n}\right),\left(t_{n}\right),\left(u_{n}\right) \in \Delta$ and

$$
\begin{align*}
g_{n} \star s_{m} & =g_{m} \star s_{n}, \forall m, n \in \mathbb{N} \\
h_{n} \star t_{m} & =h_{m} \star t_{n}, \forall m, n \in \mathbb{N} \\
p_{n} \star u_{m} & =p_{m} \star u_{n}, \forall m, n \in \mathbb{N} \tag{2}\\
g_{n} \star t_{m} & =h_{m} \star s_{n}, \forall m, n \in \mathbb{N} \\
h_{n} \star u_{m} & =p_{m} \star t_{n}, \forall m, n \in \mathbb{N}
\end{align*}
$$

For arbitrary $m, n, j \in \mathbb{N}$, applying $\left(A_{4}^{\prime}\right),\left(A_{3}\right)$ and (2), we get

$$
\begin{aligned}
\left(g_{n} \star u_{m}\right) \star t_{j} & =g_{n} \star\left(t_{j} \star u_{m}\right)=\left(g_{n} \star t_{j}\right) \star u_{m} \\
& =\left(h_{j} \star s_{n}\right) \star u_{m}=h_{j} \star\left(u_{m} \star s_{n}\right) \\
& =\left(h_{j} \star u_{m}\right) \star s_{n}=\left(p_{m} \star t_{j}\right) \star s_{n} \\
& =p_{m} \star\left(s_{n} \star t_{j}\right)=\left(p_{m} \star s_{n}\right) \star t_{j} .
\end{aligned}
$$

Next applying $\left(\Delta_{2}\right)$, we get $g_{n} \star u_{m}=p_{m} \star s_{n}, \forall m, n \in \mathbb{N}$, and hence $\frac{g_{n}}{s_{n}} \sim \frac{p_{n}}{u_{n}}$. Thus, the transitivity of \sim follows.

We note that the axioms $\left(A_{3}\right)$ and $\left(A_{4}\right)$ are also used in the proof of the following statements:

- $\frac{g \star s_{n}}{s_{n}}$ is a quotient, $\forall g \in \Gamma$ and $\left(s_{n}\right) \in \Delta$,
- $\frac{g_{n}}{s_{n}} \sim \frac{g_{n} \star t_{n}}{s_{n} \star t_{n}}$, for each quotient $\frac{g_{n}}{s_{n}}$ and for each $\left(t_{n}\right) \in \Delta$,
- $\frac{g_{n} \star t}{s_{n}}$ is a quotient whenever $\frac{g_{n}}{s_{n}}$ is a quotient,
- $\frac{g_{n} \star t_{n}+h_{n} \star s_{n}}{s_{n} \star t_{n}}$ is a quotient whenever $\frac{g_{n}}{s_{n}}$ and $\frac{h_{n}}{t_{n}}$ are quotients,
and these statements can also be proved by using $\left(A_{3}\right)$ and $\left(A_{4}^{\prime}\right)$ as above.
Now we construct an example of a G-Boehmian space by proving the required auxiliary results. Let $\Gamma=S=\mathcal{L}^{1}(\mathbb{R}), \Delta$ be the usual collection of all sequences $\left(\delta_{n}\right)$ from $\mathcal{L}^{1}(\mathbb{R})$ satisfying the following properties.
$\left(P_{1}\right) \int_{-\infty}^{\infty} \delta_{n}(t) d t=1, \forall n \in \mathbb{N}$,
$\left(P_{2}\right) \int_{-\infty}^{\infty}\left|\delta_{n}(t)\right| d t \leq M, \forall n \in \mathbb{N}$, for some $M>0$,
$\left(P_{3}\right) \operatorname{supp} \delta_{n} \rightarrow 0$ as $n \rightarrow \infty$, where supp δ_{n} is the support of δ_{n};
and \# be the following convolution

$$
(f \# g)(x)=\frac{1}{2} \int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y) d y, \forall x \in \mathbb{R}
$$

for all $f, g \in \mathcal{L}^{1}(\mathbb{R})$.
Lemma 3.1. If $f, g \in \mathcal{L}^{1}(\mathbb{R})$, then $\|f \# g\|_{1} \leq\|f\|_{1}\|g\|_{1}$ and hence $f \# g \in$ $\mathcal{L}^{1}(\mathbb{R})$.

Proof. By using Fubini's theorem, we obtain

$$
\begin{aligned}
\|f \# g\|_{1} & =\frac{1}{2} \int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y) d y\right| d x \\
& \leq \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|[f(x+y)+f(x-y)] g(y)| d y d x \\
& \leq \frac{1}{2} \int_{-\infty}^{\infty}|g(y)| \int_{-\infty}^{\infty}|f(x+y)+f(x-y)| d x d y \\
& \leq\|f\|_{1}\|g\|_{1}<+\infty
\end{aligned}
$$

and hence $f \# g \in \mathcal{L}^{1}(\mathbb{R})$.

Lemma 3.2. If f, g and $h \in L^{1}(\mathbb{R})$ then $(f \# g) \# h=f \#(g \# h)=(f \# h) \# g$.
Proof. Let $f, g, h \in L^{1}(\mathbb{R})$ and let $x \in \mathbb{R}$. Repeatedly applying the Fubini's theorem, we get that

$$
\begin{aligned}
{[f \#(g \# h)](x)=} & \int_{-\infty}^{\infty}[f(x+y)+f(x-y)](g \# h)(y) d y \\
= & \int_{-\infty}^{\infty}[f(x+y)+f(x-y)] \int_{-\infty}^{\infty}[g(y+z)+g(y-z)] h(z) d z d y \\
= & \int_{-\infty}^{\infty} h(z)\left(\int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y+z) d y\right. \\
& \left.+\int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y-z) d y\right) d z \\
= & \int_{-\infty}^{\infty} h(z)\left(\int_{-\infty}^{\infty}[f(x+u-z)+f(x-u+z)] g(u) d u\right. \\
& \left.+\int_{-\infty}^{\infty}[f(x+u+z)+f(x-u-z)] g(u) d u\right) d z,
\end{aligned}
$$

(by using $y+z=u$ in the first term and $y-z=u$ in the second term)

$$
\begin{align*}
= & \int_{-\infty}^{\infty} h(z) \int_{-\infty}^{\infty}[f(x+u-z)+f(x-u+z) \\
& +f(x+u+z)+f(x-u-z)] g(u) d u d z \\
= & \int_{-\infty}^{\infty} h(z)\left(\int_{-\infty}^{\infty}[f(x+z+u)+f(x+z-u)] g(u) d u\right. \\
& \left.+\int_{-\infty}^{\infty}[f(x-z+u)+f(x-z-u)] g(u) d u\right) d z \\
= & \int_{-\infty}^{\infty} h(z)[(f \# g)(x+z)+(f \# g)(x-z)] d x \\
= & {[(f \# g) \# h](x) . } \tag{3}
\end{align*}
$$

Using (3), we get

$$
\begin{aligned}
{[f \#(g \# h)](x)=} & \int_{-\infty}^{\infty} h(z) \int_{-\infty}^{\infty}[f(x+z+u)+f(x+z-u) \\
& +f(x-z+u)+f(x-z-u)] g(u) d u d z \\
= & \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty}[f(x+z+u)+f(x+z-u) \\
& +f(x-z+u)+f(x-z-u)] h(z) d z d u \\
= & \int_{-\infty}^{\infty} g(u) \int_{-\infty}^{\infty}[f(x+u+z)+f(x+u-z)+f(x-u+z) \\
& +f(x-u-z)] h(z) d z d u
\end{aligned}
$$

$$
\begin{aligned}
= & \int_{-\infty}^{\infty} g(u)\left[\int_{-\infty}^{\infty}[f(x+u+z)+f(x+u-z)] h(z) d z\right. \\
& \left.+\int_{-\infty}^{\infty}[f(x-u+z)+f(x-u-z)] h(z) d z\right] d u \\
= & \int_{-\infty}^{\infty} g(u)[(f \# h)(x+u)+(f \# h)(x-u)] d u \\
= & {[(f \# h) \# g](x) . }
\end{aligned}
$$

Since $x \in \mathbb{R}$ is arbitrary, the proof follows.
Lemma 3.3. If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$ and if $g \in \mathcal{L}^{1}(\mathbb{R})$, then $f_{n} \# g \rightarrow$ $f \# g$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$.

Proof. From the proof of Lemma 3.1, we have the estimate

$$
\begin{equation*}
\left\|\left(f_{n}-f\right) \# g\right\|_{1} \leq\left\|f_{n}-f\right\|_{1}\|g\|_{1} . \tag{4}
\end{equation*}
$$

Since $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$, the right hand side of (4) tends to zero as $n \rightarrow \infty$. Hence the lemma follows.

Lemma 3.4. If $\left(\delta_{n}\right),\left(\psi_{n}\right) \in \Delta$ then $\left(\delta_{n} \# \psi_{n}\right) \in \Delta$.
Proof. By using Fubini's theorem, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left(\delta_{n} \# \psi_{n}\right)(x) d x & =\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\delta_{n}(x+y)+\delta_{n}(x-y)\right] \psi_{n}(y) d y d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \psi_{n}(y) \int_{-\infty}^{\infty}\left[\delta_{n}(x+y)+\delta_{n}(x-y)\right] d x d y \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \psi_{n}(y)\left[\int_{-\infty}^{\infty} \delta_{n}(z) d z+\int_{-\infty}^{\infty} \delta_{n}(z) d z\right] d y \\
& =\frac{1}{2} \int_{-\infty}^{\infty} 2 \psi_{n}(y) d y=1, \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

By a similar argument, it is easy to verify that $\int_{-\infty}^{\infty}\left|\left(\delta_{n} \# \psi_{n}\right)(x)\right| d x \leq M$ for some $M>0$. Since supp $\delta_{n} \# \psi_{n} \subset\left[\operatorname{supp} \delta_{n}+\operatorname{supp} \psi_{n}\right] \cup\left[\operatorname{supp} \delta_{n}-\operatorname{supp} \psi_{n}\right]$, we get that supp $\left(\delta_{n} \# \psi_{n}\right) \rightarrow\{0\}$ as $n \rightarrow \infty$. Hence it follows that $\left(\delta_{n} \# \psi_{n}\right) \in \Delta$.

Theorem 3.5. Let $f \in \mathcal{L}^{1}(\mathbb{R})$ and let $\left(\delta_{n}\right) \in \Delta$, then $f \# \delta_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$.

Proof. Let $\epsilon>0$ be given. By the property $\left(P_{2}\right)$ of $\left(\delta_{n}\right)$, there exists $M>0$ with $\int_{-\infty}^{\infty}\left|\delta_{n}(t)\right| d t \leq M, \forall n \in \mathbb{N}$. Using the continuity of the mapping $y \mapsto f_{y}$ from \mathbb{R} in to $\mathcal{L}^{1}(\mathbb{R})$, (see [17, Theorem 9.5]), choose $\delta>0$ such that

$$
\begin{equation*}
\left\|f_{y}-f_{0}\right\|_{1}<\frac{\epsilon}{M} \text { whenever }|y|<\delta \tag{5}
\end{equation*}
$$

where $f_{y}(x)=f(x-y), \forall x \in \mathbb{R}$. By the property $\left(P_{3}\right)$ of $\left(\delta_{n}\right)$, there exists $N \in \mathbb{N}$ with supp $\delta_{n} \subset[-\delta, \delta], \forall n \geq N$. By using the property $\left(P_{1}\right)$ of $\left(\delta_{n}\right)$ and Fubini's theorem, we obtain

$$
\begin{aligned}
\| f & \# \delta_{n}-f \|_{1}=\int_{-\infty}^{\infty}\left|\frac{1}{2} \int_{-\infty}^{\infty}[f(x+y)+f(x-y)] \delta_{n}(y) d y-f(x) \int_{-\infty}^{\infty} \delta_{n}(y) d y\right| d x \\
& \leq \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(|f(x+y)-f(x)|+|f(x-y)-f(x)|)\left|\delta_{n}(y)\right| d x d y \\
& \leq \frac{1}{2} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty}|f(x+y)-f(x)| d x+\int_{-\infty}^{\infty}|f(x-y)-f(x)| d x\right)\left|\delta_{n}(y)\right| d y \\
& =\frac{1}{2} \int_{-\delta}^{\delta}\left(\left\|f_{-y}-f_{0}\right\|_{1}+\left\|f_{y}-f_{0}\right\|_{1}\right)\left|\delta_{n}(y)\right| d y, \forall n \geq N \\
& <\frac{1}{2} \int_{-\delta}^{\delta}\left(\frac{\epsilon}{M}+\frac{\epsilon}{M}\right)\left|\delta_{n}(y)\right| d y, \quad \text { by }(5) \\
& =\frac{\epsilon}{M} \int_{-\delta}^{\delta}\left|\delta_{n}(y)\right| d y \leq \epsilon, \forall n \geq N
\end{aligned}
$$

and hence $f \# \delta_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$.
LEMMA 3.6. If $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$ and $\left(\delta_{n}\right) \in \Delta$, then $f_{n} \# \delta_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$.

Proof. For any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left\|f_{n} \# \delta_{n}-f\right\|_{1} & =\left\|f_{n} \# \delta_{n}-f \# \delta_{n}+f \# \delta_{n}-f\right\|_{1} \\
& \leq\left\|\left(f_{n}-f\right) \# \delta_{n}\right\|_{1}+\left\|f \# \delta_{n}-f\right\|_{1} \\
& \leq\left\|f_{n}-f\right\|_{1}\left\|\delta_{n}\right\|_{1}+\left\|f \# \delta_{n}-f\right\|_{1}, \quad \text { by Lemma 3.1) } \\
& \leq M\left\|f_{n}-f\right\|_{1}+\left\|f \# \delta_{n}-f\right\|_{1}
\end{aligned}
$$

Since $f_{n} \rightarrow f$ as $n \rightarrow \infty$ in $\mathcal{L}^{1}(\mathbb{R})$ and by Theorem 3.5 , the right hand side of the last inequality tends to zero as $n \rightarrow \infty$. Hence the lemma follows.

Thus the G-Boehmian space $\mathcal{B}_{\mathcal{L}^{1}}^{\star}=\mathcal{B}^{\star}\left(\mathcal{L}^{1}(\mathbb{R}), \mathcal{L}^{1}(\mathbb{R}), \#, \Delta\right)$ has been constructed.

Finally, we justify that the convolution \# introduced in this section is not commutative.

EXAMPLE 3.7. If $f(x)=\left\{\begin{array}{ll}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}0 & \text { if } x>0 \\ e^{x} & \text { if } x \leq 0,\end{array}\right.$ then $f, g \in L^{1}(\mathbb{R})$ and $f \# g \neq g \# f$.

Indeed, for any $x \in \mathbb{R}$, we have

$$
\begin{aligned}
(f \# g)(x) & =\int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y) d y=\int_{-\infty}^{0}[f(x+y)+f(x-y)] e^{y} d y \\
& =\int_{-\infty}^{0} f(x+y) e^{y} d y+\int_{-\infty}^{0} f(x-y) e^{y} d y
\end{aligned}
$$

$$
\begin{aligned}
& = \begin{cases}\int_{-x}^{0} e^{-(x+y)} e^{y} d y+\int_{-\infty}^{0} e^{-(x-y)} e^{y} d y & \text { if } x \geq 0 \\
0+\int_{-\infty}^{x} e^{-(x-y)} e^{y} d y & \text { if } x<0\end{cases} \\
& = \begin{cases}e^{-x}\left(\int_{-x}^{0} d y+\int_{-\infty}^{0} e^{2 y} d y\right) & \text { if } x \geq 0 \\
e^{-x} \int_{-\infty}^{x} e^{2 y} d y & \text { if } x<0\end{cases} \\
& = \begin{cases}e^{-x}\left(x+\frac{1}{2}\right) & \text { if } x \geq 0 \\
\frac{e^{x}}{2} & \text { if } x<0\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
(g \# f)(x) & =\int_{-\infty}^{\infty}[g(x+y)+g(x-y)] f(y) d y=\int_{0}^{\infty}[g(x+y)+g(x-y)] e^{-y} d y \\
& =\int_{0}^{\infty} g(x+y) e^{-y} d y+\int_{0}^{\infty} g(x-y) e^{-y} d y \\
& = \begin{cases}0+\int_{x}^{\infty} e^{x-y} e^{-y} d y & \text { if } x>0 \\
\int_{0}^{-x} e^{x+y} e^{-y} d y+\int_{0}^{\infty} e^{x-y} e^{-y} d y & \text { if } x \leq 0\end{cases} \\
& = \begin{cases}e^{x} \int_{x}^{\infty} e^{-2 y} d y & \text { if } x>0 \\
e^{x}\left(\int_{0}^{-x} d y+\int_{0}^{\infty} e^{-2 y} d y\right) & \text { if } x \leq 0\end{cases} \\
& = \begin{cases}\frac{1}{2} e^{-x} & \text { if } x>0 \\
e^{x}\left(-x+\frac{1}{2}\right) & \text { if } x \leq 0 .\end{cases}
\end{aligned}
$$

From the above computations it is clear that $f \# g \neq g \# f$ and hence our claim holds.

4. Hartley transform on G-Boehmians

As in the general case of extending any integral transform to the context of Boehmians, we have to first obtain a suitable convolution theorem for Hartley transform. To obtain a compact version of a convolution theorem for Hartley transform, for $f \in \mathcal{L}^{1}(\mathbb{R})$, we define

$$
[\mathcal{C}(f)](t)=\int_{-\infty}^{\infty} f(x) \cos x t d x, t \in \mathbb{R}
$$

We point out that \mathcal{C} is not the usual Fourier cosine transform, as Fourier cosine transform is defined for integrable functions on non-negative real numbers.

Theorem 4.1. If $f, g \in \mathcal{L}^{1}(\mathbb{R})$, then $\mathcal{H}(f \# g)=\mathcal{H}(f) \cdot \mathcal{C}(g)$.
Proof. Let $t \in \mathbb{R}$ be arbitrary. By using Fubini's theorem, we obtain that

$$
\begin{aligned}
& {[\mathcal{H}(f \# g)](t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(f \# g)(x)[\cos x t+\sin x t] d x} \\
& \quad=\frac{1}{\sqrt{2 \pi}} \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y) d y[\cos x t+\sin x t] d x
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) \int_{-\infty}^{\infty}[f(x+y)+f(x-y)][\cos x t+\sin x t] d x d y \\
= & \frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y)\left(\int_{-\infty}^{\infty} f(x+y) \cos x t d x+\int_{-\infty}^{\infty} f(x+y) \sin x t d x\right. \\
& \left.+\int_{-\infty}^{\infty} f(x-y) \cos x t d x+\int_{-\infty}^{\infty} f(x-y) \sin x t d x\right) d y \\
= & \frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y)\left(\int_{-\infty}^{\infty} f(z) \cos (z t-y t) d z+\int_{-\infty}^{\infty} f(z) \sin (z t-y t) d z\right. \\
& \left.+\int_{-\infty}^{\infty} f(z) \cos (z t+y t)^{\prime}, d z+\int_{-\infty}^{\infty} f(z) \sin (z t+y t) d z\right) d y \\
= & \frac{1}{2 \sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) \int_{-\infty}^{\infty} f(z)[2 \cos z t \cos y t+2 \sin z t \cos y t] d z d y \\
= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} g(y) \cos y t \int_{-\infty}^{\infty} f(z)[\cos z t+\sin z t] d z d y \\
= & {[\mathcal{H}(f)](t) \cdot[\mathcal{C}(g)](t) . }
\end{aligned}
$$

Thus we have $\mathcal{H}(f \# g)=\mathcal{H}(f) \cdot \mathcal{C}(g)$.
Theorem 4.2. If $f, g \in \mathcal{L}^{1}(\mathbb{R})$, then $\mathcal{C}(f \# g)=\mathcal{C}(f) \cdot \mathcal{C}(g)$.
Proof. Let $t \in \mathbb{R}$ be arbitrary. By using Fubini's theorem, we obtain

$$
\begin{aligned}
{[\mathcal{C}(f \# g)](t) } & =\int_{-\infty}^{\infty}(f \# g)(x) \cos x t d x \\
= & \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[f(x+y)+f(x-y)] g(y) d y \cos x t d x \\
= & \frac{1}{2} \int_{-\infty}^{\infty} g(y)\left(\int_{-\infty}^{\infty} f(x+y) \cos x t d x+\int_{-\infty}^{\infty} f(x-y) \cos x t d x\right) d y \\
= & \frac{1}{2} \int_{-\infty}^{\infty} g(y)\left(\int_{-\infty}^{\infty} f(z) \cos (z t-y t) d z+\int_{-\infty}^{\infty} f(z) \cos (z t+y t) d z\right) d y \\
= & \int_{-\infty}^{\infty} g(y) \cos y t \int_{-\infty}^{\infty} f(z) \cos z t d z d y \\
= & {[\mathcal{C}(f)](t) \cdot[\mathcal{C}(g)](t) }
\end{aligned}
$$

Since $t \in \mathbb{R}$ is arbitrary, we have $\mathcal{C}(f \# g)=\mathcal{C}(f) \cdot \mathcal{C}(g)$.
Lemma 4.3. If $\left(\delta_{n}\right) \in \Delta$ then $\mathcal{C}\left(\delta_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$ uniformly on compact subset of \mathbb{R}.

Proof. Let K be a compact subset of \mathbb{R}. Let $\epsilon>0$ be given. Choose $M_{1}>0$, $M_{2}>0$ and a positive integer N such that $\int_{-\infty}^{\infty}\left|\delta_{n}(t)\right| d t \leq M_{1}, \forall n \in \mathbb{N}, K \subset$ $\left[-M_{2}, M_{2}\right]$ and supp $\delta_{n} \subset[-\epsilon, \epsilon]$ for all $n \geq N$. Then for $t \in K$ and $n \geq N$, we have

$$
\left|\left[\mathcal{C}\left(\delta_{n}\right)\right](t)-1\right|=\left|\int_{-\infty}^{\infty} \delta_{n}(s) \cos t s d s-\int_{-\infty}^{\infty} \delta_{n}(s) d s\right|
$$

$$
\begin{aligned}
& \leq \int_{-\infty}^{\infty}\left|\delta_{n}(s)\right||\cos t s-1| d s=\int_{-\epsilon}^{\epsilon}\left|\delta_{n}(s)\right||\cos t s-1| d s, \forall n \geq N \\
& \leq \int_{-\epsilon}^{\epsilon}\left|\delta_{n}(s)\right||t s| d s
\end{aligned}
$$

(by using mean-value theorem, and $|\sin x| \leq 1, \forall x \in \mathbb{R}$)

$$
\leq M_{2} \epsilon \int_{-\epsilon}^{\epsilon}\left|\delta_{n}(s)\right| d s \leq M_{2} M_{1} \epsilon
$$

This completes the proof.
Definition 4.1. For $\beta=\left[\frac{f_{n}}{\delta_{n}}\right] \in \mathcal{B}_{\mathcal{L}^{1}}^{\star}$, we define the extended Hartley transform of β by $[\mathcal{H}(\beta)](t)=\lim _{n \rightarrow \infty}\left[\mathcal{H}\left(f_{n}\right)\right](t),(t \in \mathbb{R})$.

The above limit exists and is independent of the representative $\frac{f_{n}}{\delta_{n}}$ of β. Indeed, for $t \in \mathbb{R}$, choose k such that $\left[\mathcal{C}\left(\delta_{k}\right)\right](t) \neq 0$. Then, applying Theorem 4.1, we obtain that $\left[\mathcal{H}\left(f_{n}\right)\right](t)=\frac{\left[\mathcal{H}\left(f_{n} \# \delta_{k}\right)\right](t)}{\left[\mathcal{C}\left(\delta_{k}\right)\right](t)}=\frac{\left[\mathcal{H}\left(f_{k} \# \delta_{n}\right)\right](t)}{\left[\mathcal{C}\left(\delta_{k}\right)\right](t)}=\frac{\left[\mathcal{H}\left(f_{k}\right)\right](t)}{\left[\mathcal{C}\left(\delta_{k}\right)\right](t)}\left[\mathcal{C}\left(\delta_{n}\right)\right](t)$. Therefore, using Lemma 4.3, we get $\left[\mathcal{H}\left(f_{n}\right)\right](t) \rightarrow \frac{\left[\mathcal{H}\left(f_{k}\right)\right](t)}{\left[\mathcal{C}\left(\delta_{k}\right)\right](t)}$, as $n \rightarrow \infty$ uniformly on each compact subset of \mathbb{R}. If $\frac{f_{n}}{\delta_{n}} \sim \frac{g_{n}}{\psi_{n}}$, then $f_{n} \# \psi_{m}=g_{m} \# \delta_{n}$ for all $m, n \in \mathbb{N}$. Again using Theorem 4.1, we get $\lim _{n \rightarrow \infty}\left[\mathcal{H}\left(f_{n}\right)\right](t)=\frac{\left[\mathcal{H}\left(f_{k}\right)\right](t)}{\left[\mathcal{C}\left(\delta_{k}\right)\right](t)}=\frac{\left[\mathcal{H}\left(g_{k}\right)\right](t)}{\left[\mathcal{C}\left(\psi_{k}\right)\right](t)}=$ $\lim _{n \rightarrow \infty}\left[\mathcal{H}\left(g_{n}\right)\right](t)$.

If $f \in \mathcal{L}^{1}(\mathbb{R})$ and $\beta=\left[\frac{f \# \delta_{n}}{\delta_{n}}\right]$, then

$$
[\mathcal{H}(\beta)](t)=\lim _{n \rightarrow \infty}\left[\mathcal{H}\left(f \# \delta_{n}\right)\right](t)=[\mathcal{H}(f)](t) \lim _{n \rightarrow \infty}\left[\mathcal{C}\left(\delta_{n}\right)\right](t)=[\mathcal{H}(f)](t)
$$

as $\left[\mathcal{C}\left(\delta_{n}\right)\right](t) \rightarrow 1$ as $n \rightarrow \infty$ uniformly on each compact subset of \mathbb{R}. This shows that the extended Hartley transform is consistent with the Hartley transform on $\mathcal{L}^{1}(\mathbb{R})$ 。

Theorem 4.4. If $\beta \in \mathcal{B}_{\mathcal{L}^{1}}^{\star}$, then the extended Hartley transform $\mathcal{H}(\beta) \in C(\mathbb{R})$.
Proof. As $\mathcal{H}(\beta)$ is the uniform limit of $\left\{H\left(f_{n}\right)\right\}$ on each compact subset of \mathbb{R} and each $H\left(f_{n}\right)$ is a continuous function on $\mathbb{R}, \mathcal{H}(\beta)$ is a continuous function on \mathbb{R}.

As proving the following properties of the Hartley transform on Boehmians is a routine exercise, as in the case of Fourier transform on integrable Boehmians [8], we just state them without proofs.

Theorem 4.5. The Hartley transform $\mathcal{H}: \mathcal{B}_{\mathcal{L}^{1}}^{\star} \rightarrow C(\mathbb{R})$ is linear.
Theorem 4.6. The Hartley transform $\mathcal{H}: \mathcal{B}_{\mathcal{L}^{1}}^{\star} \rightarrow C(\mathbb{R})$ is one-to-one.
THEOREM 4.7. The Hartley transform $\mathcal{H}: \mathcal{B}_{\mathcal{L}^{1}}^{\star} \rightarrow C(\mathbb{R})$ is continuous with respect to δ-convergence and Δ-convergence.

REFERENCES

[1] T.K. Boehme, The support of Mikusiński operators, Trans. Amer. Math. Soc., 176 (1973), 319-334.
[2] R. N. Bracewell, The Hartley Transform, Oxford University Press, New York, 1986.
[3] J. Burzyk and P. Mikusiński, A generalization of the construction of a field of quotients with applications in analysis, Int. J. Math. Sci., 2 (2003), 229-236.
[4] R.V.L. Hartley, A more symmetrical Fourier analysis applied to transmission problems, Proceedings of the Institute of Radio Engineers, 30 (1942), 144-150.
[5] A. Katsevich and P. Mikusiński, On De Graaf spaces of pseudoquotients, Rocky Mountain J. Math. 45 (2015), 1445-1455.
[6] J. Mikusiński and P. Mikusiński, Quotients de suites et leurs applications dans l'anlyse fonctionnelle, C. R. Acad. Sci. Paris, 293 (1981), 463-464.
[7] P. Mikusiński, Convergence of Bohemians, Japan J. Math., 9 (1983), 159-179.
[8] P. Mikusiński, Fourier transform for integrable Bohemians, Rocky Mountain J. Math., 17 (1987), 577-582.
[9] P. Mikusiński, On flexibility of Boehmians, Integral Transform. Spec. Funct., 4 (1996), 141146.
[10] P. Mikusiński, Generalized quotients with applications in analysis, Methods Appl. Anal., 10 (2004), 377-386.
[11] P. Mikusiński, Boehmians and pseudoquotients, Appl. Math. Inf. Sci. 5 (2011), 192-204.
[12] D. Nemzer, Extending the Stieltjes transform, Sarajevo J. Math. 10 (2014), 197-208.
[13] D. Nemzer, —it Extending the Stieltjes transform II, Fract. Calc. Appl. Anal. 17 (2014), 1060-1074.
[14] R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (2006), 13751390.
[15] R. Roopkumar, On extension of Gabor transform to Boehmians, Mat. Vesnik 65 (2013), 431-444.
[16] R. Roopkumar, Stockwell transform for Boehmians, Integral Transform. Spec. Funct. 24 (2013), 251-262.
[17] W. Rudin, Real and Complex Analysis, Third ed., McGraw-Hill, New York, 1987.
[18] R. Subash Moorthy and R. Roopkumar, Curvelet transform for Boehmians, Arab J. Math. Sci. 20 (2014), 264-279.
[19] N. Sundararajan, Fourier and Hartley transforms - a mathematical twin, Indian J. Pure Appl. Math. 28 (1997), 1361-1365.
(received 05.10.2016; in revised form 16.12.2016; available online 23.12.2016)
C.G.: Department of Mathematics, V. H. N. S. N. College, Virudhunagar - 626001, India

E-mail: c.ganesan28@yahoo.com
R.R.:Department of Mathematics, Central University of Tamil Nadu, Thiruvarur - 610101, India E-mail: roopkumarr@rediffmail.com

[^0]: 2010 Mathematics Subject Classification: 44A15, 44A35, 44A40
 Keywords and phrases: Bohemians; convolution; Hartley transform.

