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FIXED POINTS OF GENERALIZED TAC-CONTRACTIVE
MAPPINGS IN b-METRIC SPACES

G. V. R. Babu and T. M. Dula

Abstract. We introduce generalized TAC-contractive mappings in b-metric spaces and we
prove some new fixed point results for this class of mappings. We provide examples in support
of our results. Our results extend the results of [S. Chandok, K. Tas and A. H. Ansari, Some
fixed point results for TAC-type contractive mappings, J. Function Spaces, Vol. 2016, Article
ID 1907676, 6 pages] from the metric space setting to b-metric spaces and generalize a result of
[D. -Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions, Appl. Math. Lett. 22
(2009) 1896–1900].

1. Introduction

Banach contraction principle has been extended by various authors based on
the generalization of contraction conditions and/or generalization of ambient space.
In 1997, Alber and Guerre-Delabriere [1] introduced weakly contractive maps which
are extensions of contraction maps and obtained fixed point results in the setting
of Hilbert spaces. Rhoades [14] extended this concept to metric spaces. In 2008,
Dutta and Choudhury [8] introduced (ψ, ϕ)-weakly contractive maps and proved
the existence of fixed points in complete metric spaces. In continuation to the
extensions of contraction maps, -Dorić [7] studied (ψ, ϕ)-weakly contractive maps
and proved the existence of fixed points in complete metric spaces. On the other
hand, in the direction of generalizing metric spaces, in 1993, Czerwik [6] introduced
the concept of b-metric spaces and proved the Banach contraction mapping principle
in this setting. Afterwards, several research papers appeared on the existence of
fixed points for single-valued and multi-valued mappings in b-metric spaces [4, 13,
15–18].

Very recently, Chandok, Tas and Ansari [5] introduced the concept of TAC-
contractive mappings and proved some fixed point results in the setting of complete
metric spaces.
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Definition 1.1. [5] Let (X, d) be a metric space and let α, β : X → [0,∞) be
two given mappings. We say that T : X → X is a TAC-contractive mapping if

x, y ∈ X with α(x)β(y) ≥ 1 =⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

where:

(i) ψ is continuous and nondecreasing function with ψ(t) = 0 if and only if t = 0;

(ii) φ : [0,∞) → [0,∞) is continuous with limn→∞ φ(tn) = 0 =⇒ limn→∞ tn = 0;
and

(iii) f : [0,∞)2 → R is continuous, f(s, t) ≤ s and f(s, t) = s implies that either
s = 0 or t = 0, for all s, t ∈ [0,∞).

Theorem 1.2. [5] Let (X, d) be a complete metric space, α, β : X → [0,∞) be
two mappings and let T : X → X be a cyclic (α, β)-admissible mapping. Assume
that T is a TAC-contractive mapping. Suppose that there exists x0 ∈ X such that
α(x0) ≥ 1 and β(x0) ≥ 1 and either of the following conditions hold:

(a) T is continuous;

(b) If {xn} is a sequence in X such that xn → z and β(xn) ≥ 1 for all n, then
β(z) ≥ 1.

Then T has a fixed point. Moreover, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈
Fix(T ) where Fix(T ) is the set of all fixed points of T , then T has a unique fixed
point.

Motivated by this work, we introduce generalized TAC-contractive mappings
in b-metric spaces and extend Theorem 1.2 to b-metric spaces. In Section 2, we
present preliminaries. In Section 3, we prove our main results in which we study
the existence of fixed points of generalized TAC-contractive mappings in b-metric
spaces. We provide corollaries and examples in support of our results in Section 4.

2. Preliminaries

Definition 2.1. [11] A function ψ : [0,∞) → [0,∞) is called an altering
distance function if the following properties hold:

(i) ψ is continuous and nondecreasing function,

(ii) ψ(t) = 0 if and only if t = 0.

We denote the set of all altering distance functions by Ψ.

Definition 2.2. [6] Let X be a non-empty set. A function d : X×X → [0,∞)
is said to be a b-metric if the following conditions are satisfied;

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) there exists s ≥ 1 such that d(x, z) ≤ s
[
d(x, y) + d(y, z)

]
for all x, y, z ∈ X.

In this case, the pair (X, d) is called a b-metric space with coefficient s.



Fixed points of generalized TAC-contractive mappings 77

Every metric space is a b-metric space with s = 1. In general, not every b-
metric space is a metric space. Throughout this paper, R denotes the real line, and
N is the set of all natural numbers.

Example 2.3. Let X = R, and let the mapping d : X × X → [0,∞) be
defined by d(x, y) = |x− y|2 for all x, y ∈ X. Then (X, d) is a b-metric space with
coefficient s = 2, but it is not a metric space.

Definition 2.4. [4] Let (X, d) be a b-metric space.
(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such that

d(xn, x) → 0 as n →∞. In this case, we write limn→∞ xn = x.
(ii) A sequence {xn} in X is called b-Cauchy if d(xn, xm) → 0 as n, m →∞.
(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence

in X is b-convergent.
(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such that

{xn} is b-convergent to z ∈ X, it is z ∈ B.

Remark 2.5. A b-metric need not be a continuous function. For more details,
we refer to [10].

Lemma 2.6. [9] Let (X, d) be a b-metric space with s ≥ 1.
(i) If a sequence {xn} ⊂ X is b-convergent, then it admits a unique limit.
(ii) Every b-convergent sequence in X is b-Cauchy.

Definition 2.7. Let (X, d) and (M, d′) be two b-metric spaces. A function
f : X → M is b-continuous at x ∈ X if it is b-sequentially continuous at X. That
is, whenever {xn} is b-convergent to x, {fxn} is b-convergent to fx.

Definition 2.8. [11] Let A and B be nonempty subsets of X. A mapping
f : A ∪B → A ∪B is said to be cyclic if f(A) ⊂ B and f(B) ⊂ A.

Definition 2.9. [2] Let X be a nonempty set, f be s selfmap on X and
α, β : X → [0,∞) be two mappings. We say that f is a cyclic (α, β)-admissible
mapping if
(i) for any x ∈ X with α(x) ≥ 1 =⇒ β(fx) ≥ 1, and
(ii) for any y ∈ X with β(y) ≥ 1 =⇒ α(fy) ≥ 1.

We denote:
Φ = {φ : [0,∞) → [0,∞) with limn→∞ φ(tn) = 0 =⇒ limn→∞ tn = 0}, and
C = {f : [0,∞)2 → R | (i) f is continuous, (ii) f(a, t) ≤ a, (iii) f(a, t) = a =⇒

either a = 0 or t = 0 and (iv) f(a, t) ≤ f(b, t) whenever a ≤ b}.
We observe that:

(i) if f ∈ C then f(0, 0) = 0;
(ii) if φ ∈ Φ then φ(t) = 0 =⇒ t = 0.
(iii) if φ ∈ Φ then lim supn→∞ φ(tn) = 0 =⇒ lim supn→∞ tn = 0.
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Example 2.10. The following functions f : [0,∞)2 → R are elements of C:
(i) f(a, t) = a − t, (ii) f(a, t) = a−t

1+t , (iii) f(a, t) = a
1+t , and (iv) f(a, t) = a

1+t+a ,
for a, t ∈ [0,∞).

We denote Φ1 = {ϕ : [0,∞) → [0,∞) | ϕ is lower semicontinuous with ϕ(t) = 0
if and only if t = 0}. We observe that Φ1 ⊂ Φ.

-Dorić proved the following theorem by using ϕ ∈ Φ1 in complete metric spaces.

Theorem 2.11. [7] Let (X, d) be a complete metric space and let T : X → X
be a selfmap of X. If there exist ψ ∈ Ψ and ϕ ∈ Φ1 such that

ψ(d(Tx, Ty)) ≤ ψ(M(x, y))− ϕ(M(x, y)), (2.1)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 } for all x, y ∈ X,

then T has a unique fixed point in X.

The following lemma is useful in proving our main results.

Lemma 2.12. [3] Suppose (X, d) is a b-metric space with coefficient s and
{xn} is a sequence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a
Cauchy sequence then there exist an ε > 0 and sequences of positive integers {mk}
and {nk} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ε, d(xmk

, xnk−1) < ε and

(i) ε ≤ lim sup
k→∞

d(xmk
, xnk

) ≤ sε (iii)
ε

s
≤ lim sup

k→∞
d(xmk+1, xnk

) ≤ s2ε

(ii)
ε

s
≤ lim sup

k→∞
d(xmk

, xnk+1) ≤ s2ε (iv)
ε

s2
≤ lim sup

k→∞
d(xmk+1, xnk+1) ≤ s3ε.

3. Main results

In this section, we introduce the notion of a generalized TAC-contractive map
in b-metric spaces and prove fixed point results for such mapping in b-complete
metric spaces.

Definition 3.1. Let (X, d) be a b-metric space and let α, β : X → [0,∞) be
two given mappings. Let T : X → X be a selfmap of X. If there exist ψ ∈ Ψ,
φ ∈ Φ and f ∈ C such that

for all x, y ∈ X, α(x)β(y) ≥ 1 ⇒ ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), φ(Ms(x, y))),
(3.1)

where Ms(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s }, then we say that

T is a generalized TAC-contractive map in b-metric spaces.

Theorem 3.2. Let (X, d) be a b-complete metric space with coefficient s ≥
1. Let T : X → X be a selfmap of X. Assume that there exist two mappings
α, β : X → [0,∞) and ψ ∈ Ψ, φ ∈ Φ and f ∈ C such that T is a generalized
TAC-contractive mapping. Further, suppose that there exists x0 ∈ X such that
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α(x0) ≥ 1 and β(x0) ≥ 1, T is a cyclic (α, β)-admissible mapping and either of the
following conditions hold:
(i) T is continuous,
(ii) if {xn} is a sequence in X such that xn → z and β(xn) ≥ 1 for all n, then

β(z) ≥ 1.
Then T has a fixed point.

Proof. By the hypotheses we have x0 ∈ X such that α(x0) ≥ 1 and β(x0) ≥ 1.
Now, we define an iterative sequence {xn} by xn+1 = Txn for n = 0, 1, 2, . . . . If
xn0+1 = xn0 for some n0 ∈ N ∪ {0}, we have Txn0 = xn0+1 = xn0 , so that xn0 is a
fixed point of T and we are through.

Hence, without loss of generality, we assume that xn+1 6= xn for all n ∈
N ∪ {0}. Since α(x0) ≥ 1 and T is a cyclic (α, β)-admissible mapping, we have
β(x1) = β(Tx0) ≥ 1, and this implies that α(x2) = α(Tx1) ≥ 1. On continuing
this process, we obtain

α(x2k) ≥ 1 and β(x2k+1) ≥ 1 for all k ∈ N ∪ {0}. (3.2)

Since β(x0) ≥ 1 and T is a cyclic (α, β)-admissible mapping, we have α(x1) =
α(Tx0) ≥ 1 and this implies that β(x2) = β(Tx1) ≥ 1. In general, on continuing
this process, we obtain

β(x2k) ≥ 1 and α(x2k+1) ≥ 1 for all k ∈ N ∪ {0}. (3.3)

Therefore from (3.2) and (3.3) we have α(xn) ≥ 1 and β(xn) ≥ 1 for all n ∈ N∪{0}.
First we show that limn→∞ d(xn, xn+1) = 0. Since α(xn)β(xn+1) ≥ 1 for all

n ∈ N ∪ {0}, from (3.1), we have

ψ(s3d(Txn, Txn+1)) ≤ f(ψ(Ms(xn, xn+1)), φ(Ms(xn, xn+1))) (3.4)

where

Ms(xn, xn+1)

= max
{

d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
d(xn, Txn+1) + d(xn+1, Txn)

2s

}

= max{d(xn, xn+1), d(xn+1, xn+2)}.
Now, if d(xn, xn+1) < d(xn+1, xn+2) for some n ∈ N ∪ {0}, it follows from (3.4)
that

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1)) ≤ ψ(s3d(Txn, Txn+1))

≤ f(ψ(d(xn+1, xn+2)), φ(d(xn+1, xn+2))) ≤ ψ(d(xn+1, xn+2)),

so that f(ψ(d(xn+1, xn+2)), φ(d(xn+1, xn+2))) = ψ(d(xn+1, xn+2)). Hence by (ii)
of the definition of f , we have either ψ(d(xn+1, xn+2)) = 0 or φ(d(xn+1, xn+2)) = 0,
a contradiction since xn 6= xn+1.

Hence d(xn, xn+1) ≥ d(xn+1, xn+2) for all n ∈ N∪{0}. Therefore, the sequence
{d(xn, xn+1)} is decreasing and bounded from below. Thus there exists r ≥ 0 such
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that limn→∞ d(xn, xn+1) = r. Suppose that r > 0. Then we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1)) ≤ ψ(s3d(Txn, Txn+1))

≤ f(ψ(d(xn, xn+1)), φ(d(xn, xn+1))) ≤ ψ(d(xn, xn+1)).
(3.5)

On letting n → ∞ in (3.5) and using the continuity of ψ and f , we have ψ(r) ≤
f(ψ(r), and limn→∞ φ(d(xn, xn+1))) ≤ ψ(r), so that
f(ψ(r), limn→∞ φ(d(xn, xn+1))) = ψ(r). Hence, either ψ(r) = 0 or
limn→∞ φ(d(xn, xn+1)) = 0. In any case it is a contradiction. Hence, r = 0, i.e.,
limn→∞ d(xn, xn+1) = 0.

We now prove that {xn} is a b-Cauchy sequence. If {xn} is not b-Cauchy,
then by Lemma 2.12, there exist ε > 0 and sequences of positive integers {nk}
and {mk} with nk > mk > k such that d(xmk

, xnk
) ≥ ε, d(xmk

, xnk−1) < ε and
(i)–(iv) of Lemma 2.12 hold. Since α(xmk

) ≥ 1 and β(xnk
) ≥ 1 we have that

α(xmk
)β(xnk

) ≥ 1.
Now, from (3.1) we have

ψ(d(xmk+1, fxnk+1)) = ψ(d(Txmk
, Txnk

)) ≤ ψ(s3d(Txmk
, Txnk

))

≤ f(ψ(Ms(xmk
, xnk

), φ(Ms(xmk
, xnk

))), (3.6)

where

Ms(xmk
, xnk

)

= max
{

d(xmk
, xnk

), d(xmk
, fxmk

), d(xnk
, fxnk

),
d(fxmk

, xnk
) + d(xmk

, fxnk
)

2s

}
.

(3.7)

Letting n →∞ in (3.7) and using (i)–(iv) of Lemma 2.12, we have

ε ≤ lim sup
k→∞

Ms(xmk
, xnk

) ≤ max{sε, 0,
s2ε + s2ε

2s
} = sε. (3.8)

Now, from (3.6) and using (3.8) we have

ψ(sε) = ψ(s3 ε

s2
) ≤ ψ(s3 lim sup

k→∞
(d(xmk+1, xnk+1))) = ψ(s3 lim sup

k→∞
d(Txmk

, Txnk
)

= lim sup
k→∞

ψ(s3d(Txmk
, Txnk

)

≤ f(ψ(lim sup
k→∞

Ms(xmk
, xnk

), lim sup
k→∞

φ(Ms(xmk
, xnk

)))

≤ f(ψ(sε), lim sup
k→∞

φ(Ms(xmk
, xnk

))) ≤ ψ(sε),

which implies that f(ψ(sε), lim supk→∞ φ(Ms(xmk
, xnk

))) = ψ(sε). Hence, by the
property (ii) of f , we have either ψ(sε) = 0 or lim supk→∞ φ(Ms(xmk

, xnk
)) = 0, in

either case it is a contradiction. So we conclude that {xn} is a b-Cauchy sequence
in (X, d). Since (X, d) is b-complete, it follows that there exists z ∈ X such that
limn→∞ xn = z.
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First, we assume that T is continuous. Then we have limn→∞ Txn = Tz, so
that Tz = limn→∞ Txn = limn→∞ xn+1 = z.

Now we assume that (ii) holds, that is β(xn) ≥ 1 for all n. Then we have
β(z) ≥ 1. We assume that Tz 6= z. From the triangular inequality, we have
d(z, Tz) ≤ s[d(z, Txn) + d(Txn, T z)]. On taking the upper limit as n → ∞, we
have

1
s
d(z, Tz) ≤ lim sup

n→∞
d(Txn, T z). (3.9)

Also we have d(Txn, T z) ≤ s[d(Txn, z) + d(z, Tz)]. On taking the upper limit as
n →∞, we obtain

lim sup
n→∞

d(Txn, T z) ≤ sd(z, Tz). (3.10)

From (3.9) and (3.10), we have
1
s
d(z, Tz) ≤ lim sup

n→∞
d(Txn, T z) ≤ sd(z, Tz). (3.11)

Since α(xn)β(z) ≥ 1, from (3.1), we get

ψ(d(z, Tz)) ≤ ψ(s2d(z, Tz)) = ψ(s3[
1
s
d(z, Tz)]) ≤ ψ(s3[lim sup

n→∞
d(Txn, T z)])

= lim sup
n→∞

ψ(s3[d(Txn, T z)]) ≤ lim sup
n→∞

f(ψ(Ms(xn, z)), φ(Ms(xn, z)))

≤ f(lim sup
n→∞

ψ(Ms(xn, z)), lim sup
n→∞

φ(Ms(xn, z))), (3.12)

where Ms(xn, z) = max{d(xn, z), d(xn, Txn), d(z, Tz), d(xn,Tz)+d(z,Txn)
2s }.

On taking the upper limit and using (3.11), we have lim supn→∞Ms(xn, z) =
max{0, 0, d(z, Tz), lim supn→∞

d(xn,Tz)
2s } = d(z, Tz). Now, from (3.12) we obtain

ψ(d(z, Tz)) ≤ f(ψ(lim sup
n→∞

Ms(xn, z)), lim sup
n→∞

φ(Ms(xn, z)))

≤ f(ψ(d(z, Tz)), lim sup
n→∞

φ(Ms(xn, z))) ≤ ψ(d(z, Tz)),

so that f(ψ(d(z, Tz)), lim supn→∞ φ(Ms(xn, z))) = ψ(d(z, Tz)). Hence, either
ψ(d(z, Tz)) = 0 or lim supn→∞ φ(Ms(xn, z)) = 0. In either case it is a contra-
diction. Hence Tz = z.

Theorem 3.3. In addition to the hypotheses of Theorem 3.2, suppose that
α(u) ≥ 1 and β(u) ≥ 1 whenever Tu = u. Then T has a unique fixed point.

Proof. Let u and v be fixed points of T ; by hypothesis α(u) ≥ 1 and β(v) ≥ 1.
Hence, from (3.1) we have

ψ(d(u, v)) = ψ(d(Tu, Tv)) ≤ ψ(s3d(Tu, Tv)) ≤ f(ψ(Ms(u, v)), φ(Ms(u, v))),
(3.13)

where

Ms(u, v) = max
{

d(u, v), d(u, Tu), d(v, Tv),
d(u, Tv) + d(v, Tu)

2s

}

= max
{

d(u, v), 0,
d(u, v)

s

}
= d(u, v).
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By using inequality (3.13), we get

ψ(d(u, v)) = ψ(d(Tu, Tv)) ≤ ψ(s3d(Tu, Tv)) ≤ f(ψ(Ms(u, v)), φ(Ms(u, v)))

= f(ψ(d(u, v)), φ(d(u, v))) ≤ ψ(d(u, v)),

so that f(ψ(Ms(u, v)), φ((Ms(u, v))) = ψ(d(u, v)). Hence, either ψ(d(u, v)) = 0 or
φ(d(u, v)) = 0. In any case it implies that d(u, v) = 0. Thus, u = v. Therefore f
has a unique fixed point.

Remark 3.4. Theorem 3.2 and Theorem 3.3 extend Theorem 1.2 to b-metric
spaces.

Definition 3.5. Let (X, d) be a b-metric space with coefficient s ≥ 1, and A
and B be two closed subsets of X such that A∩B 6= ∅. Let T : A∪B → A∪B be
a cyclic mapping. If there exist ψ ∈ Ψ, φ ∈ Φ and f ∈ C such that

ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), φ(Ms(x, y))), (3.14)

for all x ∈ A and y ∈ B. Then we say that T is a generalized TAC-cyclic contractive
mapping.

Theorem 3.6. Let A and B be two nonempty closed subsets of a b-complete
b-metric space (X, d) such that A ∩ B 6= ∅, and let T : A ∪ B → A ∪ B be a
cyclic mapping. If T is a generalized TAC-cyclic contractive mapping, then T has
a unique fixed point in A ∩B.

Proof. We define α, β : A ∪B → [0,∞) by

α(x) =
{

1, if x ∈ A

0, otherwise,
and β(x) =

{
1, if x ∈ B

0, otherwise.
For any x, y ∈ A ∪B with α(x)β(y) ≥ 1, we have x ∈ A and y ∈ B. Hence, by the
hypotheses, the inequality (3.14) holds, which in turn means that the inequality
(3.1) holds. Therefore T is a generalized TAC-contractive mapping on A ∪B.

Since A ∩B 6= ∅, there exists x0 ∈ A ∩B and hence α(x0) ≥ 1 and β(x0) ≥ 1.
Let {xn} be a sequence in X such that β(xn) ≥ 1 for all n ∈ N∪{0} so that xn ∈ B
for all n ∈ N ∪ {0} and xn → x as n →∞. Since B is b-closed we have x ∈ B and
hence β(x) ≥ 1. Therefore all the hypotheses of Theorem 3.2 hold and hence T has
a fixed point.

Let u (say) be a fixed point of T . If u ∈ A, then u = Tu ∈ B. Similarly,
if u ∈ B, then u = Tu ∈ A, hence u ∈ A ∩ B. This implies that α(u) ≥ 1 and
β(u) ≥ 1. Therefore, by Theorem 3.3, T has a unique fixed point.

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a b-complete metric space with coefficient s ≥ 1
and T : X → X be a selfmap of X. If there exist ψ ∈ Ψ, φ ∈ Φ and f ∈ C such
that

ψ(s3d(Tx, Ty)) ≤ f(ψ(Ms(x, y)), φ(Ms(x, y))) for all x, y ∈ X, (4.1)
then T has a unique fixed point.
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Proof. By choosing α(x) = β(x) = 1 for all x ∈ X, clearly the inequality (4.1)
implies the inequality (3.1) and hence by Theorem 3.3, the conclusion of corollary
follows.

Corollary 4.2. Let (X, d) be a complete metric space. Let T : X → X
be a selfmap of X. Assume that there exist two mappings α, β : X → [0,∞)
and ψ ∈ Ψ, φ ∈ Φ and f ∈ C such that α(x)β(y) ≥ 1 implies ψ(d(Tx, Ty)) ≤
f(ψ(M(x, y)), φ(M(x, y))) for all x, y in X, where M(x, y) = max{d(x, y), d(x, Tx),
d(y, Ty), d(x,Ty)+d(y,Tx)

2 }. Further, suppose that there exists x0 ∈ X such that
α(x0) ≥ 1 and β(x0) ≥ 1, T is a cyclic (α, β)-admissible mapping and either of the
following conditions hold:
(i) T is continuous,
(ii) if {xn} is a sequence in X such that xn → z and β(xn) ≥ 1 for all n, then

β(z) ≥ 1.
Then T has a fixed point.

Proof. The result follows from Theorem 3.2 by taking s = 1.
From Theorem 3.3 by taking s = 1 and α(x) = β(x) = 1 we deduce the

following corollary.

Corollary 4.3. Let (X, d) be a complete metric space and T : X → X be a
selfmap of X. If there exist ψ ∈ Ψ, φ ∈ Φ and f ∈ C such that ψ(d(Tx, Ty)) ≤
f(ψ(M(x, y)), φ(M(x, y))) for all x, y ∈ X, where M(x, y) is defined as in Corollary
4.2. Then T has a unique fixed point.

Corollary 4.4. Let (X, d) be a b-complete metric space with coefficient s ≥ 1.
Let T : X → X be a selfmap of X. Assume that there exist two mappings α, β :
X → [0,∞) and ψ ∈ Ψ, φ ∈ Φ such that α(x)β(y) ≥ 1 implies ψ(s3d(Tx, Ty)) ≤
ψ(Ms(x, y)) − φ(Ms(x, y)). Further, suppose that there exists x0 ∈ X such that
α(x0) ≥ 1 and β(x0) ≥ 1, T is a cyclic (α, β)-admissible mapping and either of the
following conditions hold:
(i) T is continuous,
(ii) if {xn} is a sequence in X such that xn → z and β(xn) ≥ 1 for all n, then

β(z) ≥ 1.
Then T has a fixed point.

Proof. Follows from Theorem 3.2 by taking f(a, t) = a− t.
Remark 4.5. Theorem 2.11 follows as a corollary to Corollary 4.4 by taking

s = 1 and α(x) = β(x) = 1 for all x ∈ X, since Φ1 ⊂ Φ.

Corollary 4.6. Let A and B be two nonempty closed subsets of a b-complete
metric space (X, d) such that A ∩ B 6= ∅, and let T : A ∪ B → A ∪ B be a
cyclic mapping. If there exist ψ ∈ Ψ and φ ∈ Φ such that ψ(s3d(Tx, Ty)) ≤
ψ(Ms(x, y)) − φ(Ms(x, y)), for all x ∈ A and y ∈ B, then T has a unique fixed
point in A ∩B.

Proof. The result follows from Theorem 3.6 by taking f(a, t) = a− t.
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The following is an example in support of Theorem 3.2.
Example 4.7. Let X = [0,∞) and let d : X ×X → [0,∞) be defined by

d(x, y) =





0, if x = y
7
2 + x + y, if x, y ∈ [0, 1), x 6= y

5 + 1
x+y , if x, y ∈ (1,∞), x 6= y

5
2 , otherwise.

Clearly (X, d) is a b-metric space with coefficient s = 11
10 . Define T : X → X by

Tx =
{

2− x, if x ∈ [0, 2]
x, if x ∈ (2,∞)

and α, β : X → [0,∞) by

α(x) =
{

1, if x ∈ [1, 2]
0, if x ∈ [0, 1) ∪ (2,∞),

and β(x) =
{

1, if x ∈ [0, 1]
0, if x ∈ (1,∞).

Since for any x ∈ X, α(x) ≥ 1 ⇔ x ∈ [1, 2], where Tx = 2 − x ∈ [0, 1], hence
β(Tx) ≥ 1. Also for x ∈ X, β(x) ≥ 1 ⇔ x ∈ [0, 1], where Tx = 2− x ∈ [1, 2], hence
α(Tx) ≥ 1. Therefore T is a cyclic (α, β)-admissible mapping.

Next we show that T is a generalized TAC-contractive mapping. For any
x ∈ [0, 1] and y ∈ [1, 2] we have α(x)β(y) ≥ 1; also Tx ∈ [1, 2] and Ty ∈ [0, 1].
Hence d(Tx, Ty) = 5

2 . Now, we choose ψ(t) = t, φ(t) = 4295
110000 t and f(a, t) = a− t.

For x ∈ [0, 1] and y ∈ [1, 2] we have

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s

}

= max

{
5
2
,
5
2
,
5
2
,
5 + 1

y+2−x + 7
2 + x + y − 2

2( 11
10 )

}
,

so that 3875
1100 ≤ Ms(x, y) ≤ 5. Now, we have

ψ(s3d(Tx, Ty)) = ψ

((11
10

)3(5
2

))
= ψ

(33275
10000

)
=

33275
10000

=
3875
1100

− 21475
110000

= ψ
(3875

1100

)
− φ(5)

≤ ψ(Ms(x, y))− φ(Ms(x, y)) = f(ψ(Ms(x, y)), φ(Ms(x, y))).

Hence, T is a generalized TAC-contractive mapping. Clearly condition (ii) of The-
orem 3.2 holds. Hence T satisfies all the hypotheses of Theorem 3.2 and x = 1 and
every element of (2,∞) are fixed points of T . So T has more than one fixed point
in X.

Here we observe that in the usual metric sense, for any α, β : X → [0,∞) such
that T is a cyclic (α, β)-admissible mapping, we can easily verify that

ψ(d(Tx, Ty)) � f(ψ(d(x, y)), φ(d(x, y))),

for any ψ ∈ Ψ, φ ∈ Φ and f defined as in Definition 1.1, and for any x 6= y with
α(x)β(y) ≥ 1. Hence T is not a TAC-contractive mapping. Therefore Theorem
1.2 is not applicable.
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One more example in support of Theorem 3.2 is the following:
Example 4.8. Let X = [0,∞) and let d : X × X → [0,∞) be defined by

d(x, y) = |x − y|2 for all x, y ∈ X. Then clearly (X, d) is a b-metric space with

coefficient s = 2. Let us define T : X → X by T (x) =
{

1− x
4 , if x ∈ [0, 1]

x, if x ∈ (1,∞)
and

α, β : X → [0,∞) by

α(x) = β(x) =
{ 2

x+1 , if x ∈ [0, 1]

0, if x ∈ (1,∞).
Since for any x ∈ X, α(x) ≥ 1 ⇔ x ∈ [0, 1], we have β(Tx) = 2

Tx+1 = 2
2− x

4
≥ 1.

Since α(x) = β(x), clearly T is a cyclic (α, β)-admissible mapping.
Next we show that T is generalized TAC-contractive mapping. We assume

that α(x)β(y) ≥ 1. This implies that x, y ∈ [0, 1] and hence Tx = 1 − x
4 and

Ty = 1− y
4 . We choose

ψ(t) = t, f(a, t) =
a

1 + t
and φ(x) =

{ 2
3 , if x ∈ [0, 2]
1, if x ∈ (2,∞).

Then

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s

}

= max
{
|x− y|2, |x− 1− x

4
|2, |y − 1− y

4
|2, |x− 1− y

4 |2 + |x− 1− x
4 |2

4

}
,

Now, we have

ψ(s3d(Tx, Ty)) = ψ(8|x
4
− y

4
|2) = ψ(

1
2
|x− y|2) = |x− y|2

≤ Ms(x, y) =
2Ms(x, y))

1 + 1
≤ 2Ms(x, y))

1 + 2
3

=
ψ(Ms(x, y))

1 + φ(Ms(x, y))
= f(ψ(Ms(x, y)), φ(Ms(x, y))).

Hence T is generalized TAC-contractive mapping. For a sequence {xn} in X such
that xn → x and α(xn) ≥ 1 for all n, this implies that {xn} ⊆ [0, 1]. Since [0, 1] is
a closed subset of X then x ∈ [0, 1], therefore β(x) ≥ 1. Hence T satisfies all the
hypotheses of Theorem 3.2 and x = 4

5 and also every element of the interval (1,∞)
is a fixed point of T .

Here we observe that with the usual metric on [0,∞), the inequality (2.1) fails
to hold: for any x, y ∈ (1,∞) with x 6= y, we have d(x, y) = M(x, y), and hence
ψ(d(Tx, Ty)) = ψ(d(x, y)) � ψ(d(x, y))− ϕ(d(x, y)) = ψ(M(x, y))− ϕ(M(x, y)),

for any ψ ∈ Ψ and ϕ ∈ Φ. Hence, Theorem 2.11 is not applicable.
Example 4.9. Let X = R and let d : X ×X → [0,∞) be defined by

d(x, y) =





0, if x = y
5
2 + |x|+ |y|, if x, y ∈ (− 3

2 , 3
2 ), x 6= y

5 + 1
|x|+|y| , if x, y ∈ (−∞,− 3

2 ] ∪ (3
2 ,∞), x 6= y

5
2 , otherwise.
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Clearly, d is a b-metric with coefficient s = 11
10 . We define T : X → X by Tx = 3−x

and α, β : X → [0,∞) by

α(x) =
{

1, if x ∈ [0, 3
2 ]

0, otherwise,
and β(x) =

{
e, if x ∈ [ 32 , 3]
0, otherwise.

Since for any x ∈ X, α(x) ≥ 1 ⇔ x ∈ [0, 3
2 ], where Tx = 3 − x ∈ [ 32 , 3], hence

β(Tx) ≥ 1. Also for x ∈ X, β(x) ≥ 1 ⇔ x ∈ [ 32 , 3], where Tx = 3 − x ∈ [0, 3
2 ],

hence α(Tx) ≥ 1. Therefore T is a cyclic (α, β)-admissible mapping.

We now show that T is a generalized TAC-contractive mapping. For any
x ∈ [0, 3

2 ] and y ∈ [ 32 , 3] we have α(x)β(y) ≥ 1; also Tx ∈ [ 32 , 3] and Ty ∈ [0, 3
2 ].

Hence d(Tx, Ty) = 5
2 . Now, for t, s ≥ 0 we choose

ψ(t) = t, f(a, t) =
a

1 + t
and φ(t) =

{
t, if t ∈ [0, 3

2 ]
2077
43923 , if t ∈ R \ [0, 3

2 ].

Then, for x ∈ [0, 3
2 ] and y ∈ [ 32 , 3], we have

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s

}

= max

{
5
2
,
5
2
,
5
2
,
5 + 1

|y|+|3−x| + 5
2 + |x|+ |3− y|

2( 11
10 )

}
,

hence 230
66 ≤ Ms(x, y) ≤ 325

66 .

Now, we have

ψ(s3d(Tx, Ty)) = ψ

((11
10

)3(5
2

))
= ψ

(33275
10000

)
=

33275
10000

=
115
33

1 + 2077
43923

≤ Ms(x, y)
1 + 2077

43923

=
ψ(Ms(x, y))

1 + φ(Ms(x, y))

= f(ψ(Ms(x, y)), φ(Ms(x, y))).

Hence, T is a generalized TAC-contractive mapping. Thus, T satisfies all the
hypotheses of Theorem 3.3 and x = 3

2 is the (unique) fixed point of T .

Here we observe that in the usual metric sense, for any α, β : X → [0,∞) such
that T is a cyclic (α, β)-admissible mapping, we can easily verify that

ψ(d(Tx, Ty)) � f(ψ(d(x, y)), φ(d(x, y))),

for any ψ ∈ Ψ, φ ∈ Φ and f defined as in Definition 1.1, and for any x 6= y with
α(x)β(y) ≥ 1, so that T is not a TAC-contractive mapping. Hence Theorem 1.2 is
not applicable.

Example 4.10. Let X = [0, 1] and let d : X × X → [0,∞) be defined by
d(x, y) = |x − y|2. Then (X, d) is a b-metric space with s = 2. Let A = [0, 7

24 ]
and B = [ 18 , 1], and define T : A ∪ B → A ∪ B by T (x) = 1

3 − x
3 . Hence, we have

TA = [ 1772 , 1
3 ] ⊂ B and TB = [0, 7

24 ] = A which implies that T is cyclic.
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We now show that T is a generalized TAC-cyclic contractive mapping. We
choose ψ(t) = t, φ(t) = 1

8 , t ≥ 0 and f(a, t) = a
1+t . For x ∈ A and y ∈ B we have

Ms(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2s

}

= max
{
|x− y|2, |4x

3
− 1

3
|2, |4y

3
− 1

3
|2, |x−

y
3 + 1

3 |2 + |y − x
3 + 1

3 |2
4

}
,

Now, we obtain

ψ(s3d(Tx, Ty)) = ψ
(
23d(

x

3
,
y

3
)
)

= ψ
(
(8|x

3
− y

3
|2) ≤ ψ

(
(
8
9
|x− y|2))

=
8
9
|x− y|2 ≤ 8

9
Ms(x, y) =

Ms(x, y)
1 + 1

8

=
ψ(Ms(x, y))

1 + φ(Ms(x, y))
= f(ψ(Ms(x, y)), φ(Ms(x, y)).

Therefore, T is a generalized TAC-cyclic contractive mapping. Hence T satisfies
all the hypotheses of Theorem 3.6 and x = 1

4 is the fixed point of T .
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