FIXED POINTS OF GENERALIZED TAC-CONTRACTIVE MAPPINGS IN b-METRIC SPACES

G. V. R. Babu and T. M. Dula

Abstract

We introduce generalized $T A C$-contractive mappings in b-metric spaces and we prove some new fixed point results for this class of mappings. We provide examples in support of our results. Our results extend the results of [S. Chandok, K. Tas and A. H. Ansari, Some fixed point results for $T A C$-type contractive mappings, J. Function Spaces, Vol. 2016, Article ID 1907676 , 6 pages] from the metric space setting to b-metric spaces and generalize a result of [D. Đorić, Common fixed point for generalized (ψ, φ)-weak contractions, Appl. Math. Lett. 22 (2009) 1896-1900].

1. Introduction

Banach contraction principle has been extended by various authors based on the generalization of contraction conditions and/or generalization of ambient space. In 1997, Alber and Guerre-Delabriere [1] introduced weakly contractive maps which are extensions of contraction maps and obtained fixed point results in the setting of Hilbert spaces. Rhoades [14] extended this concept to metric spaces. In 2008, Dutta and Choudhury [8] introduced (ψ, φ)-weakly contractive maps and proved the existence of fixed points in complete metric spaces. In continuation to the extensions of contraction maps, Đorić [7] studied (ψ, φ)-weakly contractive maps and proved the existence of fixed points in complete metric spaces. On the other hand, in the direction of generalizing metric spaces, in 1993, Czerwik [6] introduced the concept of b-metric spaces and proved the Banach contraction mapping principle in this setting. Afterwards, several research papers appeared on the existence of fixed points for single-valued and multi-valued mappings in b-metric spaces $[4,13$, 15-18].

Very recently, Chandok, Tas and Ansari [5] introduced the concept of TACcontractive mappings and proved some fixed point results in the setting of complete metric spaces.

[^0]Definition 1.1. [5] Let (X, d) be a metric space and let $\alpha, \beta: X \rightarrow[0, \infty)$ be two given mappings. We say that $T: X \rightarrow X$ is a $T A C$-contractive mapping if
$x, y \in X$ with $\alpha(x) \beta(y) \geq 1 \Longrightarrow \psi(d(T x, T y)) \leq f(\psi(d(x, y)), \phi(d(x, y)))$,
where:
(i) ψ is continuous and nondecreasing function with $\psi(t)=0$ if and only if $t=0$;
(ii) $\phi:[0, \infty) \rightarrow[0, \infty)$ is continuous with $\lim _{n \rightarrow \infty} \phi\left(t_{n}\right)=0 \Longrightarrow \lim _{n \rightarrow \infty} t_{n}=0$; and
(iii) $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ is continuous, $f(s, t) \leq s$ and $f(s, t)=s$ implies that either $s=0$ or $t=0$, for all $s, t \in[0, \infty)$.

Theorem 1.2. [5] Let (X, d) be a complete metric space, $\alpha, \beta: X \rightarrow[0, \infty)$ be two mappings and let $T: X \rightarrow X$ be a cyclic (α, β)-admissible mapping. Assume that T is a TAC-contractive mapping. Suppose that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$ and either of the following conditions hold:
(a) T is continuous;
(b) If $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow z$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\beta(z) \geq 1$.
Then T has a fixed point. Moreover, if $\alpha(x) \geq 1$ and $\beta(y) \geq 1$ for all $x, y \in$ Fix (T) where $\operatorname{Fix}(T)$ is the set of all fixed points of T, then T has a unique fixed point.

Motivated by this work, we introduce generalized $T A C$-contractive mappings in b-metric spaces and extend Theorem 1.2 to b-metric spaces. In Section 2, we present preliminaries. In Section 3, we prove our main results in which we study the existence of fixed points of generalized $T A C$-contractive mappings in b-metric spaces. We provide corollaries and examples in support of our results in Section 4.

2. Preliminaries

Definition 2.1. [11] A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties hold:
(i) ψ is continuous and nondecreasing function,
(ii) $\psi(t)=0$ if and only if $t=0$.

We denote the set of all altering distance functions by Ψ.
Definition 2.2. [6] Let X be a non-empty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric if the following conditions are satisfied;
(i) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) there exists $s \geq 1$ such that $d(x, z) \leq s[d(x, y)+d(y, z)]$ for all $x, y, z \in X$.

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Every metric space is a b-metric space with $s=1$. In general, not every b metric space is a metric space. Throughout this paper, \mathbb{R} denotes the real line, and \mathbb{N} is the set of all natural numbers.

Example 2.3. Let $X=\mathbb{R}$, and let the mapping $d: X \times X \rightarrow[0, \infty)$ be defined by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then (X, d) is a b-metric space with coefficient $s=2$, but it is not a metric space.

Definition 2.4. [4] Let (X, d) be a b-metric space.
(i) A sequence $\left\{x_{n}\right\}$ in X is called b-convergent if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(ii) A sequence $\left\{x_{n}\right\}$ in X is called b-Cauchy if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
(iii) The b-metric space (X, d) is said to be b-complete if every b-Cauchy sequence in X is b-convergent.
(iv) A set $B \subset X$ is said to be b-closed if for any sequence $\left\{x_{n}\right\}$ in B such that $\left\{x_{n}\right\}$ is b-convergent to $z \in X$, it is $z \in B$.

REMARK 2.5. A b-metric need not be a continuous function. For more details, we refer to [10].

Lemma 2.6. [9] Let (X, d) be a b-metric space with $s \geq 1$.
(i) If a sequence $\left\{x_{n}\right\} \subset X$ is b-convergent, then it admits a unique limit.
(ii) Every b-convergent sequence in X is b-Cauchy.

Definition 2.7. Let (X, d) and (M, d^{\prime}) be two b-metric spaces. A function $f: X \rightarrow M$ is b-continuous at $x \in X$ if it is b-sequentially continuous at X. That is, whenever $\left\{x_{n}\right\}$ is b-convergent to $x,\left\{f x_{n}\right\}$ is b-convergent to $f x$.

Definition 2.8. [11] Let A and B be nonempty subsets of X. A mapping $f: A \cup B \rightarrow A \cup B$ is said to be cyclic if $f(A) \subset B$ and $f(B) \subset A$.

Definition 2.9. [2] Let X be a nonempty set, f be s selfmap on X and $\alpha, \beta: X \rightarrow[0, \infty)$ be two mappings. We say that f is a cyclic (α, β)-admissible mapping if
(i) for any $x \in X$ with $\alpha(x) \geq 1 \Longrightarrow \beta(f x) \geq 1$, and
(ii) for any $y \in X$ with $\beta(y) \geq 1 \Longrightarrow \alpha(f y) \geq 1$.

We denote:
$\Phi=\left\{\phi:[0, \infty) \rightarrow[0, \infty)\right.$ with $\left.\lim _{n \rightarrow \infty} \phi\left(t_{n}\right)=0 \Longrightarrow \lim _{n \rightarrow \infty} t_{n}=0\right\}$, and
$\mathcal{C}=\left\{f:[0, \infty)^{2} \rightarrow \mathbb{R} \mid\right.$ (i) f is continuous, (ii) $f(a, t) \leq a$, (iii) $f(a, t)=a \Longrightarrow$ either $a=0$ or $t=0$ and (iv) $f(a, t) \leq f(b, t)$ whenever $a \leq b\}$.

We observe that:
(i) if $f \in \mathcal{C}$ then $f(0,0)=0$;
(ii) if $\phi \in \Phi$ then $\phi(t)=0 \Longrightarrow t=0$.
(iii) if $\phi \in \Phi$ then $\lim \sup _{n \rightarrow \infty} \phi\left(t_{n}\right)=0 \Longrightarrow \lim \sup _{n \rightarrow \infty} t_{n}=0$.

Example 2.10. The following functions $f:[0, \infty)^{2} \rightarrow \mathbb{R}$ are elements of \mathcal{C} : (i) $f(a, t)=a-t$, (ii) $f(a, t)=\frac{a-t}{1+t}$, (iii) $f(a, t)=\frac{a}{1+t}$, and (iv) $f(a, t)=\frac{a}{1+t+a}$, for $a, t \in[0, \infty)$.

We denote $\Phi_{1}=\{\varphi:[0, \infty) \rightarrow[0, \infty) \mid \varphi$ is lower semicontinuous with $\varphi(t)=0$ if and only if $t=0\}$. We observe that $\Phi_{1} \subset \Phi$.

Đorić proved the following theorem by using $\varphi \in \Phi_{1}$ in complete metric spaces.
Theorem 2.11. [7] Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a selfmap of X. If there exist $\psi \in \Psi$ and $\varphi \in \Phi_{1}$ such that

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \psi(M(x, y))-\varphi(M(x, y)) \tag{2.1}
\end{equation*}
$$

where $M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}$ for all $x, y \in X$, then T has a unique fixed point in X.

The following lemma is useful in proving our main results.
Lemma 2.12. [3] Suppose (X, d) is a b-metric space with coefficient s and $\left\{x_{n}\right\}$ is a sequence in X such that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist an $\epsilon>0$ and sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ with $n_{k}>m_{k} \geq k$ such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon, d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ and
(i) $\epsilon \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right) \leq s \epsilon$
(iii) $\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}}\right) \leq s^{2} \epsilon$
(ii) $\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}+1}\right) \leq s^{2} \epsilon$
(iv) $\frac{\epsilon}{s^{2}} \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}+1}\right) \leq s^{3} \epsilon$.

3. Main results

In this section, we introduce the notion of a generalized $T A C$-contractive map in b-metric spaces and prove fixed point results for such mapping in b-complete metric spaces.

Definition 3.1. Let (X, d) be a b-metric space and let $\alpha, \beta: X \rightarrow[0, \infty)$ be two given mappings. Let $T: X \rightarrow X$ be a selfmap of X. If there exist $\psi \in \Psi$, $\phi \in \Phi$ and $f \in \mathcal{C}$ such that
for all $x, y \in X, \quad \alpha(x) \beta(y) \geq 1 \Rightarrow \psi\left(s^{3} d(T x, T y)\right) \leq f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)$,
where $M_{s}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}$, then we say that T is a generalized $T A C$-contractive map in b-metric spaces.

Theorem 3.2. Let (X, d) be a b-complete metric space with coefficient $s \geq$ 1. Let $T: X \rightarrow X$ be a selfmap of X. Assume that there exist two mappings $\alpha, \beta: X \rightarrow[0, \infty)$ and $\psi \in \Psi, \phi \in \Phi$ and $f \in \mathcal{C}$ such that T is a generalized TAC-contractive mapping. Further, suppose that there exists $x_{0} \in X$ such that
$\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1, T$ is a cyclic (α, β)-admissible mapping and either of the following conditions hold:
(i) T is continuous,
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow z$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\beta(z) \geq 1$.
Then T has a fixed point.
Proof. By the hypotheses we have $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$. Now, we define an iterative sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$ for $n=0,1,2, \ldots$. If $x_{n_{0}+1}=x_{n_{0}}$ for some $n_{0} \in \mathbb{N} \cup\{0\}$, we have $T x_{n_{0}}=x_{n_{0}+1}=x_{n_{0}}$, so that $x_{n_{0}}$ is a fixed point of T and we are through.

Hence, without loss of generality, we assume that $x_{n+1} \neq x_{n}$ for all $n \in$ $\mathbb{N} \cup\{0\}$. Since $\alpha\left(x_{0}\right) \geq 1$ and T is a cyclic (α, β)-admissible mapping, we have $\beta\left(x_{1}\right)=\beta\left(T x_{0}\right) \geq 1$, and this implies that $\alpha\left(x_{2}\right)=\alpha\left(T x_{1}\right) \geq 1$. On continuing this process, we obtain

$$
\begin{equation*}
\alpha\left(x_{2 k}\right) \geq 1 \text { and } \beta\left(x_{2 k+1}\right) \geq 1 \text { for all } k \in \mathbb{N} \cup\{0\} . \tag{3.2}
\end{equation*}
$$

Since $\beta\left(x_{0}\right) \geq 1$ and T is a cyclic (α, β)-admissible mapping, we have $\alpha\left(x_{1}\right)=$ $\alpha\left(T x_{0}\right) \geq 1$ and this implies that $\beta\left(x_{2}\right)=\beta\left(T x_{1}\right) \geq 1$. In general, on continuing this process, we obtain

$$
\begin{equation*}
\beta\left(x_{2 k}\right) \geq 1 \text { and } \alpha\left(x_{2 k+1}\right) \geq 1 \text { for all } k \in \mathbb{N} \cup\{0\} . \tag{3.3}
\end{equation*}
$$

Therefore from (3.2) and (3.3) we have $\alpha\left(x_{n}\right) \geq 1$ and $\beta\left(x_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$.
First we show that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$. Since $\alpha\left(x_{n}\right) \beta\left(x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$, from (3.1), we have

$$
\begin{equation*}
\psi\left(s^{3} d\left(T x_{n}, T x_{n+1}\right)\right) \leq f\left(\psi\left(M_{s}\left(x_{n}, x_{n+1}\right)\right), \phi\left(M_{s}\left(x_{n}, x_{n+1}\right)\right)\right) \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{s}\left(x_{n}, x_{n+1}\right) \\
& =\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n+1}, T x_{n+1}\right), \frac{d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)}{2 s}\right\} \\
& =\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}
\end{aligned}
$$

Now, if $d\left(x_{n}, x_{n+1}\right)<d\left(x_{n+1}, x_{n+2}\right)$ for some $n \in \mathbb{N} \cup\{0\}$, it follows from (3.4) that

$$
\begin{aligned}
\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right) & =\psi\left(d\left(T x_{n}, T x_{n+1}\right)\right) \leq \psi\left(s^{3} d\left(T x_{n}, T x_{n+1}\right)\right) \\
& \leq f\left(\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right), \phi\left(d\left(x_{n+1}, x_{n+2}\right)\right)\right) \leq \psi\left(d\left(x_{n+1}, x_{n+2}\right)\right),
\end{aligned}
$$

so that $f\left(\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right), \phi\left(d\left(x_{n+1}, x_{n+2}\right)\right)\right)=\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right)$. Hence by (ii) of the definition of f, we have either $\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right)=0$ or $\phi\left(d\left(x_{n+1}, x_{n+2}\right)\right)=0$, a contradiction since $x_{n} \neq x_{n+1}$.

Hence $d\left(x_{n}, x_{n+1}\right) \geq d\left(x_{n+1}, x_{n+2}\right)$ for all $n \in \mathbb{N} \cup\{0\}$. Therefore, the sequence $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing and bounded from below. Thus there exists $r \geq 0$ such
that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$. Suppose that $r>0$. Then we have

$$
\begin{align*}
\psi\left(d\left(x_{n+1}, x_{n+2}\right)\right) & =\psi\left(d\left(T x_{n}, T x_{n+1}\right)\right) \leq \psi\left(s^{3} d\left(T x_{n}, T x_{n+1}\right)\right) \\
& \leq f\left(\psi\left(d\left(x_{n}, x_{n+1}\right)\right), \phi\left(d\left(x_{n}, x_{n+1}\right)\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right) \tag{3.5}
\end{align*}
$$

On letting $n \rightarrow \infty$ in (3.5) and using the continuity of ψ and f, we have $\psi(r) \leq$ $f\left(\psi(r)\right.$, and $\left.\lim _{n \rightarrow \infty} \phi\left(d\left(x_{n}, x_{n+1}\right)\right)\right) \leq \psi(r)$, so that $f\left(\psi(r), \lim _{n \rightarrow \infty} \phi\left(d\left(x_{n}, x_{n+1}\right)\right)\right)=\psi(r)$. Hence, either $\psi(r)=0$ or $\lim _{n \rightarrow \infty} \phi\left(d\left(x_{n}, x_{n+1}\right)\right)=0$. In any case it is a contradiction. Hence, $r=0$, i.e., $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0$.

We now prove that $\left\{x_{n}\right\}$ is a b-Cauchy sequence. If $\left\{x_{n}\right\}$ is not b-Cauchy, then by Lemma 2.12, there exist $\epsilon>0$ and sequences of positive integers $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ with $n_{k}>m_{k}>k$ such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon, d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ and (i)-(iv) of Lemma 2.12 hold. Since $\alpha\left(x_{m_{k}}\right) \geq 1$ and $\beta\left(x_{n_{k}}\right) \geq 1$ we have that $\alpha\left(x_{m_{k}}\right) \beta\left(x_{n_{k}}\right) \geq 1$.

Now, from (3.1) we have

$$
\begin{align*}
\psi\left(d\left(x_{m_{k}+1}, f x_{n_{k}+1}\right)\right) & =\psi\left(d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right) \leq \psi\left(s^{3} d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right) \\
& \leq f\left(\psi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right), \phi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)\right)\right. \tag{3.6}
\end{align*}
$$

where

$$
\begin{align*}
& M_{s}\left(x_{m_{k}}, x_{n_{k}}\right) \\
& =\max \left\{d\left(x_{m_{k}}, x_{n_{k}}\right), d\left(x_{m_{k}}, f x_{m_{k}}\right), d\left(x_{n_{k}}, f x_{n_{k}}\right), \frac{d\left(f x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, f x_{n_{k}}\right)}{2 s}\right\} . \tag{3.7}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (3.7) and using (i)-(iv) of Lemma 2.12, we have

$$
\begin{equation*}
\epsilon \leq \limsup _{k \rightarrow \infty} M_{s}\left(x_{m_{k}}, x_{n_{k}}\right) \leq \max \left\{s \epsilon, 0, \frac{s^{2} \epsilon+s^{2} \epsilon}{2 s}\right\}=s \epsilon \tag{3.8}
\end{equation*}
$$

Now, from (3.6) and using (3.8) we have

$$
\begin{aligned}
\psi(s \epsilon) & =\psi\left(s^{3} \frac{\epsilon}{s^{2}}\right) \leq \psi\left(s^{3} \limsup _{k \rightarrow \infty}\left(d\left(x_{m_{k}+1}, x_{n_{k}+1}\right)\right)\right)=\psi\left(s^{3} \limsup _{k \rightarrow \infty} d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right. \\
& =\limsup _{k \rightarrow \infty} \psi\left(s^{3} d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right. \\
& \leq f\left(\psi\left(\limsup _{k \rightarrow \infty} M_{s}\left(x_{m_{k}}, x_{n_{k}}\right), \limsup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)\right)\right. \\
& \leq f\left(\psi(s \epsilon), \limsup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)\right) \leq \psi(s \epsilon),
\end{aligned}
$$

which implies that $f\left(\psi(s \epsilon), \lim \sup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)\right)=\psi(s \epsilon)$. Hence, by the property (ii) of f, we have either $\psi(s \epsilon)=0$ or $\limsup _{k \rightarrow \infty} \phi\left(M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)=0$, in either case it is a contradiction. So we conclude that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in (X, d). Since (X, d) is b-complete, it follows that there exists $z \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=z$.

First, we assume that T is continuous. Then we have $\lim _{n \rightarrow \infty} T x_{n}=T z$, so that $T z=\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} x_{n+1}=z$.

Now we assume that (ii) holds, that is $\beta\left(x_{n}\right) \geq 1$ for all n. Then we have $\beta(z) \geq 1$. We assume that $T z \neq z$. From the triangular inequality, we have $d(z, T z) \leq s\left[d\left(z, T x_{n}\right)+d\left(T x_{n}, T z\right)\right]$. On taking the upper limit as $n \rightarrow \infty$, we have

$$
\begin{equation*}
\frac{1}{s} d(z, T z) \leq \limsup _{n \rightarrow \infty} d\left(T x_{n}, T z\right) \tag{3.9}
\end{equation*}
$$

Also we have $d\left(T x_{n}, T z\right) \leq s\left[d\left(T x_{n}, z\right)+d(z, T z)\right]$. On taking the upper limit as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} d\left(T x_{n}, T z\right) \leq s d(z, T z) \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we have

$$
\begin{equation*}
\frac{1}{s} d(z, T z) \leq \limsup _{n \rightarrow \infty} d\left(T x_{n}, T z\right) \leq s d(z, T z) \tag{3.11}
\end{equation*}
$$

Since $\alpha\left(x_{n}\right) \beta(z) \geq 1$, from (3.1), we get

$$
\begin{align*}
\psi(d(z, T z)) & \leq \psi\left(s^{2} d(z, T z)\right)=\psi\left(s^{3}\left[\frac{1}{s} d(z, T z)\right]\right) \leq \psi\left(s^{3}\left[\limsup _{n \rightarrow \infty} d\left(T x_{n}, T z\right)\right]\right) \\
& =\limsup _{n \rightarrow \infty} \psi\left(s^{3}\left[d\left(T x_{n}, T z\right)\right]\right) \leq \limsup _{n \rightarrow \infty} f\left(\psi\left(M_{s}\left(x_{n}, z\right)\right), \phi\left(M_{s}\left(x_{n}, z\right)\right)\right) \\
& \leq f\left(\limsup _{n \rightarrow \infty} \psi\left(M_{s}\left(x_{n}, z\right)\right), \limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{n}, z\right)\right)\right) \tag{3.12}
\end{align*}
$$

where $M_{s}\left(x_{n}, z\right)=\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, T x_{n}\right), d(z, T z), \frac{d\left(x_{n}, T z\right)+d\left(z, T x_{n}\right)}{2 s}\right\}$.
On taking the upper limit and using (3.11), we have $\limsup _{n \rightarrow \infty} M_{s}\left(x_{n}, z\right)=$ $\max \left\{0,0, d(z, T z), \lim \sup _{n \rightarrow \infty} \frac{d\left(x_{n}, T z\right)}{2 s}\right\}=d(z, T z)$. Now, from (3.12) we obtain

$$
\begin{aligned}
\psi(d(z, T z)) & \leq f\left(\psi\left(\limsup _{n \rightarrow \infty} M_{s}\left(x_{n}, z\right)\right), \limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{n}, z\right)\right)\right) \\
& \leq f\left(\psi(d(z, T z)), \limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{n}, z\right)\right)\right) \leq \psi(d(z, T z))
\end{aligned}
$$

so that $f\left(\psi(d(z, T z)), \limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{n}, z\right)\right)\right)=\psi(d(z, T z))$. Hence, either $\psi(d(z, T z))=0$ or $\limsup _{n \rightarrow \infty} \phi\left(M_{s}\left(x_{n}, z\right)\right)=0$. In either case it is a contradiction. Hence $T z=z$.

Theorem 3.3. In addition to the hypotheses of Theorem 3.2, suppose that $\alpha(u) \geq 1$ and $\beta(u) \geq 1$ whenever $T u=u$. Then T has a unique fixed point.

Proof. Let u and v be fixed points of T; by hypothesis $\alpha(u) \geq 1$ and $\beta(v) \geq 1$. Hence, from (3.1) we have

$$
\begin{equation*}
\psi(d(u, v))=\psi(d(T u, T v)) \leq \psi\left(s^{3} d(T u, T v)\right) \leq f\left(\psi\left(M_{s}(u, v)\right), \phi\left(M_{s}(u, v)\right)\right) \tag{3.13}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}(u, v) & =\max \left\{d(u, v), d(u, T u), d(v, T v), \frac{d(u, T v)+d(v, T u)}{2 s}\right\} \\
& =\max \left\{d(u, v), 0, \frac{d(u, v)}{s}\right\}=d(u, v)
\end{aligned}
$$

By using inequality (3.13), we get

$$
\begin{aligned}
\psi(d(u, v)) & =\psi(d(T u, T v)) \leq \psi\left(s^{3} d(T u, T v)\right) \leq f\left(\psi\left(M_{s}(u, v)\right), \phi\left(M_{s}(u, v)\right)\right) \\
& =f(\psi(d(u, v)), \phi(d(u, v))) \leq \psi(d(u, v))
\end{aligned}
$$

so that $f\left(\psi\left(M_{s}(u, v)\right), \phi\left(\left(M_{s}(u, v)\right)\right)=\psi(d(u, v))\right.$. Hence, either $\psi(d(u, v))=0$ or $\phi(d(u, v))=0$. In any case it implies that $d(u, v)=0$. Thus, $u=v$. Therefore f has a unique fixed point.

Remark 3.4. Theorem 3.2 and Theorem 3.3 extend Theorem 1.2 to b-metric spaces.

Definition 3.5. Let (X, d) be a b-metric space with coefficient $s \geq 1$, and A and B be two closed subsets of X such that $A \cap B \neq \emptyset$. Let $T: A \cup B \rightarrow A \cup B$ be a cyclic mapping. If there exist $\psi \in \Psi, \phi \in \Phi$ and $f \in \mathcal{C}$ such that

$$
\begin{equation*}
\psi\left(s^{3} d(T x, T y)\right) \leq f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right) \tag{3.14}
\end{equation*}
$$

for all $x \in A$ and $y \in B$. Then we say that T is a generalized $T A C$-cyclic contractive mapping.

Theorem 3.6. Let A and B be two nonempty closed subsets of a b-complete b-metric space (X, d) such that $A \cap B \neq \emptyset$, and let $T: A \cup B \rightarrow A \cup B$ be a cyclic mapping. If T is a generalized $T A C$-cyclic contractive mapping, then T has a unique fixed point in $A \cap B$.

Proof. We define $\alpha, \beta: A \cup B \rightarrow[0, \infty)$ by

$$
\alpha(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in A \\
0, & \text { otherwise },
\end{array} \quad \text { and } \quad \beta(x)= \begin{cases}1, & \text { if } x \in B \\
0, & \text { otherwise }\end{cases}\right.
$$

For any $x, y \in A \cup B$ with $\alpha(x) \beta(y) \geq 1$, we have $x \in A$ and $y \in B$. Hence, by the hypotheses, the inequality (3.14) holds, which in turn means that the inequality (3.1) holds. Therefore T is a generalized $T A C$-contractive mapping on $A \cup B$.

Since $A \cap B \neq \emptyset$, there exists $x_{0} \in A \cap B$ and hence $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1$. Let $\left\{x_{n}\right\}$ be a sequence in X such that $\beta\left(x_{n}\right) \geq 1$ for all $n \in \mathbb{N} \cup\{0\}$ so that $x_{n} \in B$ for all $n \in \mathbb{N} \cup\{0\}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$. Since B is b-closed we have $x \in B$ and hence $\beta(x) \geq 1$. Therefore all the hypotheses of Theorem 3.2 hold and hence T has a fixed point.

Let u (say) be a fixed point of T. If $u \in A$, then $u=T u \in B$. Similarly, if $u \in B$, then $u=T u \in A$, hence $u \in A \cap B$. This implies that $\alpha(u) \geq 1$ and $\beta(u) \geq 1$. Therefore, by Theorem 3.3, T has a unique fixed point.

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a b-complete metric space with coefficient $s \geq 1$ and $T: X \rightarrow X$ be a selfmap of X. If there exist $\psi \in \Psi, \phi \in \Phi$ and $f \in \mathcal{C}$ such that

$$
\begin{equation*}
\psi\left(s^{3} d(T x, T y)\right) \leq f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right) \text { for all } x, y \in X \tag{4.1}
\end{equation*}
$$

then T has a unique fixed point.

Proof. By choosing $\alpha(x)=\beta(x)=1$ for all $x \in X$, clearly the inequality (4.1) implies the inequality (3.1) and hence by Theorem 3.3, the conclusion of corollary follows.

Corollary 4.2. Let (X, d) be a complete metric space. Let $T: X \rightarrow X$ be a selfmap of X. Assume that there exist two mappings $\alpha, \beta: X \rightarrow[0, \infty)$ and $\psi \in \Psi, \phi \in \Phi$ and $f \in \mathcal{C}$ such that $\alpha(x) \beta(y) \geq 1$ implies $\psi(d(T x, T y)) \leq$ $f(\psi(M(x, y)), \phi(M(x, y)))$ for all x, y in X, where $M(x, y)=\max \{d(x, y), d(x, T x)$, $\left.d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}$. Further, suppose that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1, T$ is a cyclic (α, β)-admissible mapping and either of the following conditions hold:
(i) T is continuous,
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow z$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\beta(z) \geq 1$.
Then T has a fixed point.
Proof. The result follows from Theorem 3.2 by taking $s=1$.
From Theorem 3.3 by taking $s=1$ and $\alpha(x)=\beta(x)=1$ we deduce the following corollary.

Corollary 4.3. Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a selfmap of X. If there exist $\psi \in \Psi, \phi \in \Phi$ and $f \in \mathcal{C}$ such that $\psi(d(T x, T y)) \leq$ $f(\psi(M(x, y)), \phi(M(x, y)))$ for all $x, y \in X$, where $M(x, y)$ is defined as in Corollary 4.2. Then T has a unique fixed point.

Corollary 4.4. Let (X, d) be a b-complete metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ be a selfmap of X. Assume that there exist two mappings α, β : $X \rightarrow[0, \infty)$ and $\psi \in \Psi, \phi \in \Phi$ such that $\alpha(x) \beta(y) \geq 1$ implies $\psi\left(s^{3} d(T x, T y)\right) \leq$ $\psi\left(M_{s}(x, y)\right)-\phi\left(M_{s}(x, y)\right)$. Further, suppose that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}\right) \geq 1$ and $\beta\left(x_{0}\right) \geq 1, T$ is a cyclic (α, β)-admissible mapping and either of the following conditions hold:
(i) T is continuous,
(ii) if $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow z$ and $\beta\left(x_{n}\right) \geq 1$ for all n, then $\beta(z) \geq 1$.
Then T has a fixed point.
Proof. Follows from Theorem 3.2 by taking $f(a, t)=a-t$.
Remark 4.5. Theorem 2.11 follows as a corollary to Corollary 4.4 by taking $s=1$ and $\alpha(x)=\beta(x)=1$ for all $x \in X$, since $\Phi_{1} \subset \Phi$.

Corollary 4.6. Let A and B be two nonempty closed subsets of a b-complete metric space (X, d) such that $A \cap B \neq \emptyset$, and let $T: A \cup B \rightarrow A \cup B$ be a cyclic mapping. If there exist $\psi \in \Psi$ and $\phi \in \Phi$ such that $\psi\left(s^{3} d(T x, T y)\right) \leq$ $\psi\left(M_{s}(x, y)\right)-\phi\left(M_{s}(x, y)\right)$, for all $x \in A$ and $y \in B$, then T has a unique fixed point in $A \cap B$.

Proof. The result follows from Theorem 3.6 by taking $f(a, t)=a-t$.

The following is an example in support of Theorem 3.2.
Example 4.7. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ \frac{7}{2}+x+y, & \text { if } x, y \in[0,1), x \neq y \\ 5+\frac{1}{x+y}, & \text { if } x, y \in(1, \infty), x \neq y \\ \frac{5}{2}, & \text { otherwise }\end{cases}
$$

Clearly (X, d) is a b-metric space with coefficient $s=\frac{11}{10}$. Define $T: X \rightarrow X$ by $T x=\left\{\begin{array}{ll}2-x, & \text { if } x \in[0,2] \\ x, & \text { if } x \in(2, \infty)\end{array}\right.$ and $\alpha, \beta: X \rightarrow[0, \infty)$ by

$$
\alpha(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in[1,2] \\
0, & \text { if } x \in[0,1) \cup(2, \infty),
\end{array} \quad \text { and } \quad \beta(x)= \begin{cases}1, & \text { if } x \in[0,1] \\
0, & \text { if } x \in(1, \infty)\end{cases}\right.
$$

Since for any $x \in X, \alpha(x) \geq 1 \Leftrightarrow x \in[1,2]$, where $T x=2-x \in[0,1]$, hence $\beta(T x) \geq 1$. Also for $x \in X, \beta(x) \geq 1 \Leftrightarrow x \in[0,1]$, where $T x=2-x \in[1,2]$, hence $\alpha(T x) \geq 1$. Therefore T is a cyclic (α, β)-admissible mapping.

Next we show that T is a generalized $T A C$-contractive mapping. For any $x \in[0,1]$ and $y \in[1,2]$ we have $\alpha(x) \beta(y) \geq 1$; also $T x \in[1,2]$ and $T y \in[0,1]$. Hence $d(T x, T y)=\frac{5}{2}$. Now, we choose $\psi(t)=t, \phi(t)=\frac{4295}{110000} t$ and $f(a, t)=a-t$. For $x \in[0,1]$ and $y \in[1,2]$ we have

$$
\begin{aligned}
M_{s}(x, y) & =\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} \\
& =\max \left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5+\frac{1}{y+2-x}+\frac{7}{2}+x+y-2}{2\left(\frac{11}{10}\right)}\right\}
\end{aligned}
$$

so that $\frac{3875}{1100} \leq M_{s}(x, y) \leq 5$. Now, we have

$$
\begin{aligned}
\psi\left(s^{3} d(T x, T y)\right) & =\psi\left(\left(\frac{11}{10}\right)^{3}\left(\frac{5}{2}\right)\right)=\psi\left(\frac{33275}{10000}\right)=\frac{33275}{10000} \\
& =\frac{3875}{1100}-\frac{21475}{110000}=\psi\left(\frac{3875}{1100}\right)-\phi(5) \\
& \leq \psi\left(M_{s}(x, y)\right)-\phi\left(M_{s}(x, y)\right)=f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
\end{aligned}
$$

Hence, T is a generalized $T A C$-contractive mapping. Clearly condition (ii) of Theorem 3.2 holds. Hence T satisfies all the hypotheses of Theorem 3.2 and $x=1$ and every element of $(2, \infty)$ are fixed points of T. So T has more than one fixed point in X.

Here we observe that in the usual metric sense, for any $\alpha, \beta: X \rightarrow[0, \infty)$ such that T is a cyclic (α, β)-admissible mapping, we can easily verify that

$$
\psi(d(T x, T y)) \not \leq f(\psi(d(x, y)), \phi(d(x, y)))
$$

for any $\psi \in \Psi, \phi \in \Phi$ and f defined as in Definition 1.1, and for any $x \neq y$ with $\alpha(x) \beta(y) \geq 1$. Hence T is not a $T A C$-contractive mapping. Therefore Theorem 1.2 is not applicable.

One more example in support of Theorem 3.2 is the following:
Example 4.8. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by $d(x, y)=|x-y|^{2}$ for all $x, y \in X$. Then clearly (X, d) is a b-metric space with coefficient $s=2$. Let us define $T: X \rightarrow X$ by $T(x)=\left\{\begin{array}{ll}1-\frac{x}{4}, & \text { if } x \in[0,1] \\ x, & \text { if } x \in(1, \infty)\end{array}\right.$ and $\alpha, \beta: X \rightarrow[0, \infty)$ by

$$
\alpha(x)=\beta(x)= \begin{cases}\frac{2}{x+1}, & \text { if } x \in[0,1] \\ 0, & \text { if } x \in(1, \infty) .\end{cases}
$$

Since for any $x \in X, \alpha(x) \geq 1 \Leftrightarrow x \in[0,1]$, we have $\beta(T x)=\frac{2}{T x+1}=\frac{2}{2-\frac{x}{4}} \geq 1$. Since $\alpha(x)=\beta(x)$, clearly T is a cyclic (α, β)-admissible mapping.

Next we show that T is generalized $T A C$-contractive mapping. We assume that $\alpha(x) \beta(y) \geq 1$. This implies that $x, y \in[0,1]$ and hence $T x=1-\frac{x}{4}$ and $T y=1-\frac{y}{4}$. We choose

$$
\psi(t)=t, \quad f(a, t)=\frac{a}{1+t} \text { and } \phi(x)= \begin{cases}\frac{2}{3}, & \text { if } x \in[0,2] \\ 1, & \text { if } x \in(2, \infty) .\end{cases}
$$

Then

$$
\begin{aligned}
M_{s}(x, y) & =\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} \\
& =\max \left\{|x-y|^{2},\left|x-1-\frac{x}{4}\right|^{2},\left|y-1-\frac{y}{4}\right|^{2}, \frac{\left|x-1-\frac{y}{4}\right|^{2}+\left|x-1-\frac{x}{4}\right|^{2}}{4}\right\},
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\psi\left(s^{3} d(T x, T y)\right) & =\psi\left(8\left|\frac{x}{4}-\frac{y}{4}\right|^{2}\right)=\psi\left(\frac{1}{2}|x-y|^{2}\right)=|x-y|^{2} \\
& \leq M_{s}(x, y)=\frac{\left.2 M_{s}(x, y)\right)}{1+1} \leq \frac{\left.2 M_{s}(x, y)\right)}{1+\frac{2}{3}} \\
& =\frac{\psi\left(M_{s}(x, y)\right)}{1+\phi\left(M_{s}(x, y)\right)}=f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right) .
\end{aligned}
$$

Hence T is generalized $T A C$-contractive mapping. For a sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x$ and $\alpha\left(x_{n}\right) \geq 1$ for all n, this implies that $\left\{x_{n}\right\} \subseteq[0,1]$. Since $[0,1]$ is a closed subset of X then $x \in[0,1]$, therefore $\beta(x) \geq 1$. Hence T satisfies all the hypotheses of Theorem 3.2 and $x=\frac{4}{5}$ and also every element of the interval $(1, \infty)$ is a fixed point of T.

Here we observe that with the usual metric on $[0, \infty)$, the inequality (2.1) fails to hold: for any $x, y \in(1, \infty)$ with $x \neq y$, we have $d(x, y)=M(x, y)$, and hence $\psi(d(T x, T y))=\psi(d(x, y)) \not \leq \psi(d(x, y))-\varphi(d(x, y))=\psi(M(x, y))-\varphi(M(x, y))$, for any $\psi \in \Psi$ and $\varphi \in \Phi$. Hence, Theorem 2.11 is not applicable.

Example 4.9. Let $X=\mathbb{R}$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
d(x, y)= \begin{cases}0, & \text { if } x=y \\ \frac{5}{2}+|x|+|y|, & \text { if } x, y \in\left(-\frac{3}{2}, \frac{3}{2}\right), x \neq y \\ 5+\frac{1}{|x|+|y|}, & \text { if } x, y \in\left(-\infty,-\frac{3}{2}\right] \cup\left(\frac{3}{2}, \infty\right), x \neq y \\ \frac{5}{2}, & \text { otherwise. }\end{cases}
$$

Clearly, d is a b-metric with coefficient $s=\frac{11}{10}$. We define $T: X \rightarrow X$ by $T x=3-x$ and $\alpha, \beta: X \rightarrow[0, \infty)$ by

$$
\alpha(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in\left[0, \frac{3}{2}\right] \\
0, & \text { otherwise, }
\end{array} \quad \text { and } \quad \beta(x)= \begin{cases}e, & \text { if } x \in\left[\frac{3}{2}, 3\right] \\
0, & \text { otherwise. }\end{cases}\right.
$$

Since for any $x \in X, \alpha(x) \geq 1 \Leftrightarrow x \in\left[0, \frac{3}{2}\right]$, where $T x=3-x \in\left[\frac{3}{2}, 3\right]$, hence $\beta(T x) \geq 1$. Also for $x \in X, \beta(x) \geq 1 \Leftrightarrow x \in\left[\frac{3}{2}, 3\right]$, where $T x=3-x \in\left[0, \frac{3}{2}\right]$, hence $\alpha(T x) \geq 1$. Therefore T is a cyclic (α, β)-admissible mapping.

We now show that T is a generalized $T A C$-contractive mapping. For any $x \in\left[0, \frac{3}{2}\right]$ and $y \in\left[\frac{3}{2}, 3\right]$ we have $\alpha(x) \beta(y) \geq 1$; also $T x \in\left[\frac{3}{2}, 3\right]$ and $T y \in\left[0, \frac{3}{2}\right]$. Hence $d(T x, T y)=\frac{5}{2}$. Now, for $t, s \geq 0$ we choose

$$
\psi(t)=t, \quad f(a, t)=\frac{a}{1+t} \quad \text { and } \quad \phi(t)= \begin{cases}t, & \text { if } t \in\left[0, \frac{3}{2}\right] \\ \frac{2077}{43923}, & \text { if } t \in \mathbb{R} \backslash\left[0, \frac{3}{2}\right]\end{cases}
$$

Then, for $x \in\left[0, \frac{3}{2}\right]$ and $y \in\left[\frac{3}{2}, 3\right]$, we have

$$
\begin{aligned}
M_{s}(x, y) & =\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} \\
& =\max \left\{\frac{5}{2}, \frac{5}{2}, \frac{5}{2}, \frac{5+\frac{1}{|y|+|3-x|}+\frac{5}{2}+|x|+|3-y|}{2\left(\frac{11}{10}\right)}\right\}
\end{aligned}
$$

hence $\frac{230}{66} \leq M_{s}(x, y) \leq \frac{325}{66}$.
Now, we have

$$
\begin{aligned}
\psi\left(s^{3} d(T x, T y)\right) & =\psi\left(\left(\frac{11}{10}\right)^{3}\left(\frac{5}{2}\right)\right)=\psi\left(\frac{33275}{10000}\right)=\frac{33275}{10000} \\
& =\frac{\frac{115}{33}}{1+\frac{2077}{43923}} \leq \frac{M_{s}(x, y)}{1+\frac{2077}{43923}}=\frac{\psi\left(M_{s}(x, y)\right)}{1+\phi\left(M_{s}(x, y)\right)} \\
& =f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right)
\end{aligned}
$$

Hence, T is a generalized $T A C$-contractive mapping. Thus, T satisfies all the hypotheses of Theorem 3.3 and $x=\frac{3}{2}$ is the (unique) fixed point of T.

Here we observe that in the usual metric sense, for any $\alpha, \beta: X \rightarrow[0, \infty)$ such that T is a cyclic (α, β)-admissible mapping, we can easily verify that

$$
\psi(d(T x, T y)) \not \leq f(\psi(d(x, y)), \phi(d(x, y))),
$$

for any $\psi \in \Psi, \phi \in \Phi$ and f defined as in Definition 1.1, and for any $x \neq y$ with $\alpha(x) \beta(y) \geq 1$, so that T is not a $T A C$-contractive mapping. Hence Theorem 1.2 is not applicable.

Example 4.10. Let $X=[0,1]$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by $d(x, y)=|x-y|^{2}$. Then (X, d) is a b-metric space with $s=2$. Let $A=\left[0, \frac{7}{24}\right]$ and $B=\left[\frac{1}{8}, 1\right]$, and define $T: A \cup B \rightarrow A \cup B$ by $T(x)=\frac{1}{3}-\frac{x}{3}$. Hence, we have $T A=\left[\frac{17}{72}, \frac{1}{3}\right] \subset B$ and $T B=\left[0, \frac{7}{24}\right]=A$ which implies that T is cyclic.

We now show that T is a generalized $T A C$-cyclic contractive mapping. We choose $\psi(t)=t, \phi(t)=\frac{1}{8}, t \geq 0$ and $f(a, t)=\frac{a}{1+t}$. For $x \in A$ and $y \in B$ we have

$$
\begin{aligned}
M_{s}(x, y) & =\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\} \\
& =\max \left\{|x-y|^{2},\left|\frac{4 x}{3}-\frac{1}{3}\right|^{2},\left|\frac{4 y}{3}-\frac{1}{3}\right|^{2}, \frac{\left|x-\frac{y}{3}+\frac{1}{3}\right|^{2}+\left|y-\frac{x}{3}+\frac{1}{3}\right|^{2}}{4}\right\},
\end{aligned}
$$

Now, we obtain

$$
\begin{aligned}
\psi\left(s^{3} d(T x, T y)\right) & =\psi\left(2^{3} d\left(\frac{x}{3}, \frac{y}{3}\right)\right)=\psi\left(\left(8\left|\frac{x}{3}-\frac{y}{3}\right|^{2}\right) \leq \psi\left(\left(\frac{8}{9}|x-y|^{2}\right)\right)\right. \\
& =\frac{8}{9}|x-y|^{2} \leq \frac{8}{9} M_{s}(x, y)=\frac{M_{s}(x, y)}{1+\frac{1}{8}} \\
& =\frac{\psi\left(M_{s}(x, y)\right)}{1+\phi\left(M_{s}(x, y)\right)}=f\left(\psi\left(M_{s}(x, y)\right), \phi\left(M_{s}(x, y)\right)\right.
\end{aligned}
$$

Therefore, T is a generalized $T A C$-cyclic contractive mapping. Hence T satisfies all the hypotheses of Theorem 3.6 and $x=\frac{1}{4}$ is the fixed point of T.

Acknowledgement. The authors express their gratitude to the referee(s) for their useful comments and suggestions.

REFERENCES

[1] Ya. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and Its Applications, Oper. Theory Adv. Appl., 98, Birkhäuser, Basel, (1997), 7-22.
[2] S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $(\alpha, \beta)-(\psi, \phi)$-contractive mappings, Filomat, 28 (3) (2014), 635-647.
[3] G. V. R. Babu, T. M. Dula, Fixed points of almost generalized $(\alpha, \beta)-(\psi, \varphi)$-contractive mappings in b-metric spaces, (communicated).
[4] M. Boriceanu, M. Bota, A. Petrusel, Mutivalued fractals in b-metric spaces, Cent. Eur. J. Math, 8 (2010), 367-377.
[5] S. Chandok, K. Tas, A. H. Ansari, Some fixed point results for TAC-type contractive mappings, J. Function Spaces, 2016, Article ID 1907676, 6 pages.
[6] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
[7] D. Đorić, Common fixed point for generalized (ψ, φ)-weak contractions, Appl. Math. Lett. 22 (2009) 1896-1900.
[8] P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory Appl., 2008, Article ID 406368, 8 pages.
[9] N. Hussain, D. Đorić, Z. Kadelburg, S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl. 2012:126 (2012).
[10] N. Hussain, V. Parvaneh, J.R. Roshan, Z. Kadelburg, Fixed points of cyclic $(\psi, \varphi, L, A, B)-$ contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013:256 (2013).
[11] M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9.
[12] W. A. Kirk, P. S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.
[13] P. K. Mishra, Sh. Sachdeva, S. K. Banerjee, Some fixed point theorems in b-metric space, Turkish J. Anal. Number Theory, 2 (2014), 19-22.
[14] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683-2693.
[15] J. R. Roshan, V. Parvaneh, Z. Kadelburg, Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl. 7 (2014), 229-245.
[16] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), 703-711.
[17] O. Yamaod, W. Sintunavarat, Fixed point theorems for $(\alpha, \beta)-(\psi, \phi)$-contractive mappings in b-metric spaces with some numerical results and applications, J. Nonlinear Sci. Appl. 9 (2016), 22-33.
[18] Z. Yang, H. Sadati, Sh. Sedghi, N. Shobe, Common fixed point theorems for non-compatible self-maps in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 1022-1031.
(received 09.04.2016; in revised form 10.01.2017; available online 26.01.2017)
G.V.R.B.: Department of Mathematics, Andhra University, Visakhapatnam-530 003, India.

E-mail: gvr_babu@hotmail.com
T.M.D.: Present address: Department of Mathematics, Andhra University, Visakhapatnam-530 003, India
Permanent address: Department of Mathematics, Wollega University, Nekemte-395, Ethiopia
E-mail: dulamosissa@gmail.com

[^0]: 2010 Mathematics Subject Classification: 47H10, 54H25
 Keywords and phrases: b-metric space; cyclic (α, β)-admissible mapping; generalized $T A C$ contractive mapping; fixed point.

