# SOME CONSTRUCTIONS OF GRAPHS WITH INTEGRAL SPECTRUM 

B. R. Rakshith


#### Abstract

A graph $G$ is said to be an integral graph if all the eigenvalues of the adjacency matrix of $G$ are integers. A natural question to ask is which graphs are integral. In general, characterizing integral graphs seems to be a difficult task. In this paper, we define some graph operations on ordered triple of graphs. We compute their spectrum and, as an application, we give some new methods to construct infinite families of integral graphs starting with either an arbitrary integral graph or integral regular graph. Also, we present some new infinite families of integral graphs by applying our graph operations to some standard graphs like complete graphs, complete bipartite graphs etc.


## 1. Introduction

Throughout the paper we consider only graphs with no loops and no multiple edges. Let $G$ be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The adjacency matrix $A(G)$ of $G$ is the $n \times n$ real symmetric matrix $\left[a_{i j}\right]$, where $a_{i j}=1$ if the vertices $v_{i}$ and $v_{j}$ are adjacent in $G$, otherwise $a_{i j}=0$. The spectrum of the adjacency matrix of a graph $G$ is known as adjacency spectrum of $G$ or simply, spectrum of $G$. For studies on spectrum of graphs, we refer to a classical book by Cvetković, Doob and Sachs [5]. If all the eigenvalues of the adjacency matrix of a graph $G$ are integers, then the graph $G$ is said to be an integral graph. The graphs $K_{n}, K_{m, n}$ ( $m n$ a perfect square), $C_{6}$, the cocktail parity graph $C P(n)=\overline{n K_{2}}$, are some examples of integral graphs. Integral graphs finds its applications in perfect state transfers in graphs [7]. The notion of integral graph was first introduced by Harary and Schwenk in 1974 [10]. In general, the problem of characterizing integral graphs is a difficult task. A result of Ahmadi et al. [3] shows that for a sufficiently large $n$, the number of integral graphs on $n$ vertices can be at most $2^{\frac{n(n-1)}{2}-\frac{n}{400}}$. In literature, researchers mainly focussed on classifying integral graphs among some interesting families of graphs such as trees, regular graphs, complete $r$-partite graphs etc. Some works on integral trees and complete $r$-partite integral

[^0]graphs can be found in a PhD thesis of Wang [18] and also in [8]. In [9], Hansen et al. characterized integral graphs in the families of complete split graphs and multiple complete split-like graphs. So [16] considered circulant graphs and characterized integral graphs among them. In [1], Abdollahi and Vatandoost determined all connected cubic integral Cayley graphs. Some studies on integral regular graphs can be found in $[6,17,21]$.

We now recall some well-known graph products [11]. Let $H$ be a graph with vertex set $V(H)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. The cartesian product $G \square H$ of two graphs $G$ and $H$ is the graph with vertex set $V(G \square H)=V(G) \times V(H)$ and in which two vertices $\left(v_{i}, u_{k}\right)$ and $\left(v_{j}, u_{l}\right)$ are adjacent if either $v_{i}=v_{j}$ and $u_{k} u_{l}$ is an edge in $H$ or $u_{k}=u_{l}$ and $v_{i} v_{j}$ is an edge in $G$. The Kronecker product $G \otimes H$ of two graphs $G$ and $H$ is the graph with vertex set $V(G \otimes H)=V(G) \times V(H)$ and in which two vertices $\left(v_{i}, u_{k}\right)$ and $\left(v_{j}, u_{l}\right)$ are adjacent if and only if $v_{i} v_{j}$ is an edge in $G$ and $u_{k} u_{l}$ is an edge in $H$. The strong product $G \boxtimes H$ of two graphs $G$ and $H$ is the union of cartesian and Kronecker product of graphs $G$ and $H$. It is worth to note that the cartesian and strong product of graphs $G$ and $H$ consists of $|V(G)|$ copies of $H$ and $|V(H)|$ copies of $G$. Also the Kronecker product consists of $|V(G)|$ copies of $\overline{K_{m}}$. Interestingly, these graph products when applied on integral graphs produces again integral graphs.

The problem of constructing infinite families of integral graphs has attracted many researchers. In [12,19-21], several families of integral graphs are constructed by employing some known graphs (integral graphs). Mohammadian and TayfehRezaie [15] investigated various forms of ( 0,1 )-matrices (obtained using Kronecker product) for integer eigenvalues. More information about integral graphs can be found in [4]. Most of the graph constructions demonstrated in literature are applied either on complete graphs or complete bipartite graphs to produce infinite families of integral graphs, for example, see $[2,12-15,20]$. Our aim in this paper is to construct infinite families of integral graphs starting with an arbitrary integral graph. We define some graph operations on ordered triple of graphs using some well-known graph products. We compute their spectrum and as an application, we give some new methods to construct infinite families of integral graphs starting with either an arbitrary integral graph or integral regular graph. Also, we present some new infinite families of integral graphs by applying our graph operations on some standard graphs like complete graphs, complete bipartite graphs etc. In the sequel, we denote $n$ copies of a graph $G$ by $n G$.

## 2. Spectrum of $\psi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)$

Let $G_{i}(i=1,2,3)$ be a graph on $n_{i}$ vertices. Let $V\left(G_{1}\right)=\left\{u_{1}, u_{2} \ldots, u_{n_{1}}\right\}$, $V\left(G_{2}\right)=\left\{v_{1}, v_{2} \ldots, v_{n_{2}}\right\}$ and $V\left(G_{3}\right)=\left\{w_{1}, w_{2}, \ldots, w_{n_{3}}\right\}$ be the vertex sets of $G_{1}, G_{2}$ and $G_{3}$, respectively. Denote by $\psi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)(\alpha=1,2,3)$, the graph obtained from $G_{i}(i=1,2,3)$ as follows:

DEFINITION 2.1. $\psi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph obtained from $G_{1} \square G_{3}$ and $G_{2} \square G_{3}$, by joining each vertex in the i-th copy of $G_{1}$ in $G_{1} \square G_{3}$ to every vertex
in the j-th copy of $G_{2}$ in $G_{2} \square G_{3}$, whenever the vertices $w_{i}$ and $w_{j}$ are adjacent in $G_{3}$.

Definition 2.2. $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph with vertex set
$V\left(\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)\right)=\left(V\left(G_{1}\right) \times V\left(G_{3}\right)\right) \cup\left(V\left(G_{2}\right) \times V\left(G_{3}\right)\right)$ and edge set defined as follows:
a. $\left(u_{i}, w_{k}\right)$ and $\left(u_{j}, w_{l}\right)$ are adjacent in $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ if either $u_{i} u_{j}$ is an edge in $G_{1}$ and $w_{k}=w_{l}$.
b. $\left(v_{i}, w_{k}\right)$ and $\left(v_{j}, w_{l}\right)$ are adjacent in $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ if either $v_{i} v_{j}$ is an edge in $G_{2}$ and $w_{k}=w_{l}$.
c. $\left(u_{i}, w_{k}\right)$ and $\left(u_{j}, w_{l}\right)$ are adjacent in $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ if $u_{i} u_{j}$ is an edge in $G_{1}$ and $w_{k} w_{l}$ is an edge in $G_{3}$.
d. $\left(v_{i}, w_{k}\right)$ and $\left(v_{j}, w_{l}\right)$ are adjacent in $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ if $v_{i} v_{j}$ is an edge in $G_{2}$ and $w_{k} w_{l}$ is an edge in $G_{3}$.
e. $\left(v_{i}, w_{k}\right)$ and $\left(u_{j}, w_{l}\right)$ are adjacent in $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ if $w_{k} w_{l}$ is an edge in $G_{3}$.

DEFINITION 2.3. $\psi_{3}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph obtained from $G_{1} \boxtimes G_{3}$ and $G_{2} \boxtimes G_{3}$, by joining each vertex in the i-th copy of $G_{1}$ in $G_{1} \boxtimes G_{3}$ to every vertex in the j-th copy of $G_{2}$ in $G_{2} \boxtimes G_{3}$, whenever the vertices $w_{i}$ and $w_{j}$ are adjacent in $G_{3}$.

Let $A=\left(a_{i j}\right)$ be a $n \times m$ matrix and $B=\left(b_{i j}\right)$ be a $p \times q$ matrix. Then the Kronecker product $A \otimes B$ of $A$ and $B$ is the $n p \times m q$ matrix obtained by replacing each entry $a_{i j}$ of $A$ by $a_{i j} B$. It is well-known that $(A \otimes B)(C \otimes D)=A C \otimes B D$, whenever the products $A C, B D$ are defined and $\lambda \mu$ is the eigenvalue of $A \otimes B$, whenever $\lambda$ and $\mu$ are the eigenvalues of $A$ and $B$, respectively.

In this section, we compute the spectrum of $\psi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right), \alpha=1,2,3$, when $G_{1}$ and $G_{2}$ are regular graphs.

Theorem 2.4. Let $G_{i}(i=1,2)$ be an $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph on $n_{3}$ vertices. Suppose $\operatorname{Spec}\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq\right.$ $\left.\cdots \geq \lambda_{n_{1}}\right\}, \operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq\right.$ $\left.\cdots \geq \nu_{n_{3}}\right\}$, then the spectrum of $\psi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ consists of
a. $\lambda_{i}+\nu_{j}, i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i}+\nu_{j}, i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(2 \nu_{i}+r_{1}+r_{2} \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{1}-r_{2}\right)^{2}}\right) / 2, i=1,2, \ldots, n_{3}$.

Proof. With suitable labelling of the vertices of $G:=\psi_{1}\left(G_{1}, G_{2}, G_{3}\right)$, the adjacency matrix of $G$ can be formulated as follows:

$$
A(G)=\left[\begin{array}{cc}
I_{n_{3}} \otimes A\left(G_{1}\right)+A\left(G_{3}\right) \otimes I_{n_{1}} & A\left(G_{3}\right) \otimes J_{n_{1} \times n_{2}} \\
A\left(G_{3}\right) \otimes J_{n_{2} \times n_{1}} & I_{n_{3}} \otimes A\left(G_{2}\right)+A\left(G_{3}\right) \otimes I_{n_{2}}
\end{array}\right]
$$

where $J_{n_{1} \times n_{2}}$ is the $n_{1} \times n_{2}$ matrix whose all entries are 1 .
Since $A\left(G_{3}\right)$ is a real symmetric matrix of order $n_{3}$, it has $n_{3}$ orthonormal eigenvectors. Let $X_{1}, X_{2}, \ldots, X_{n_{3}}$ be a set of orthonormal eigenvectors of $A\left(G_{3}\right)$ corresponding to the eigenvalues $\nu_{1}, \nu_{2}, \ldots, \nu_{n_{3}}$, respectively.

Case 1: $\nu_{i} \neq 0$.
Let $\omega_{i}=\left(2 \nu_{i}+r_{1}+r_{2}+\sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{1}-r_{2}\right)^{2}}\right) / 2$,
$\overline{\omega_{i}}=\left(2 \nu_{i}+r_{1}+r_{2}-\sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{1}-r_{2}\right)^{2}}\right) / 2$,
$\Phi_{i}=\left[\begin{array}{c}\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1} \\ \frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}\end{array}\right]$ and $\overline{\Phi_{i}}=\left[\begin{array}{c}\frac{X_{i}}{\overline{\omega_{i}}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1} \\ \frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}\end{array}\right]$,
where $i=1,2, \ldots, n_{3}$ and $\mathbf{1}=(1,1, \ldots, 1)^{T}$. Then

$$
\begin{aligned}
& A(G) \Phi_{i}=\left[\begin{array}{cc}
I_{n_{3}} \otimes A\left(G_{1}\right)+A\left(G_{3}\right) \otimes I_{n_{1}} & A\left(G_{3}\right) \otimes J_{n_{1} \times n_{2}} \\
A\left(G_{3}\right) \otimes J_{n_{2} \times n_{1}} & I_{n_{3}} \otimes A\left(G_{2}\right)+A\left(G_{3}\right) \otimes I_{n_{2}}
\end{array}\right] \\
& \times\left[\begin{array}{c}
\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1} \\
\frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}
\end{array}\right] \\
& {\left[\left(I_{n_{3}} \otimes A\left(G_{1}\right)+A\left(G_{3}\right) \otimes I_{n_{1}}\right)\left(\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1}\right)\right.} \\
& +\left(A\left(G_{3}\right) \otimes J_{n_{1} \times n_{2}}\right)\left(\frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}\right) \\
& \left(A\left(G_{3}\right) \otimes J_{n_{2} \times n_{1}}\right)\left(\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1}\right) \\
& \left.+\left(I_{n_{3}} \otimes A\left(G_{2}\right)+A\left(G_{3}\right) \otimes I_{n_{2}}\right)\left(\frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}\right)\right] \\
& =\left[\begin{array}{c}
\left(\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}}\right) \otimes r_{1} \mathbf{1}_{n_{1} \times 1}+\left(\frac{\nu_{i} X_{i}}{\omega_{i}-\nu_{i}-r_{1}}\right) \otimes \mathbf{1}_{n_{1} \times 1}+\left(X_{i} \otimes \mathbf{1}_{n_{1} \times 1}\right) \\
\left(\frac{\nu_{i} n_{1} X_{i}}{\omega_{i}-\nu_{i}-r_{1}}\right) \otimes \mathbf{1}_{n_{2} \times 1}+\left(\frac{X_{i}}{\nu_{i} n_{2}} \otimes r_{2} \mathbf{1}_{n_{2} \times 1}\right)+\left(\frac{X_{i}}{n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}\right)
\end{array}\right] \\
& =\omega_{i}\left[\begin{array}{c}
\frac{X_{i}}{\omega_{i}-\nu_{i}-r_{1}} \otimes \mathbf{1}_{n_{1} \times 1} \\
\frac{X_{i}}{\nu_{i} n_{2}} \otimes \mathbf{1}_{n_{2} \times 1}
\end{array}\right]=\omega_{i} \Phi_{i} .
\end{aligned}
$$

Thus $\Phi_{i}\left(i=1,2, \ldots, n_{3}\right)$ is an eigenvector of $A(G)$ corresponding to the eigenvalue $\omega_{i}$. Similarly, it can be proved that $\overline{\Phi_{i}}\left(i=1,2, \ldots, n_{3}\right)$ is an eigenvector of $A(G)$ corresponding to the eigenvalue $\overline{\omega_{i}}$.

Case 2: $\nu_{i}=0$.
Let $X_{i}$ be an eigenvector of $A\left(G_{3}\right)$ with corresponding eigenvalue $\nu_{i}=0$. Then

$$
A(G)\left[\begin{array}{c}
X_{i} \otimes \mathbf{1}_{n_{1} \times 1} \\
\mathbf{0}
\end{array}\right]=r_{1}\left[\begin{array}{c}
X_{i} \otimes \mathbf{1}_{n_{1} \times 1} \\
\mathbf{0}
\end{array}\right]
$$

Hence, $\left[\begin{array}{c}X_{i} \otimes \mathbf{1}_{n_{1} \times 1} \\ \mathbf{0}\end{array}\right]$ is an eigenvector of $A(G)$ with corresponding eigenvalue $r_{1}$.

Similarly, it can be shown that $\left[\begin{array}{c}\mathbf{0} \\ X_{i} \otimes \mathbf{1}_{n_{2} \times 1}\end{array}\right]$ is an eigenvector of $A(G)$ corresponding to the eigenvalue $r_{2}$.

Since $A\left(G_{1}\right)$ is a $r_{1}$-regular graph, it follows that $\mathbf{1}_{n_{1} \times 1}$ is an eigenvector of $A\left(G_{1}\right)$ corresponding to the eigenvalue $r_{1}$. Let $Z_{1}=\mathbf{1}_{n_{1} \times 1} / \sqrt{n_{1}}, Z_{2}, \ldots, Z_{n_{1}}$ be a set of orthonormal eigenvectors of $A\left(G_{1}\right)$ corresponding to the eigenvalues $\lambda_{1}=$ $r_{1}, \lambda_{2}, \ldots, \lambda_{n_{1}}$, respectively. For $i=1,2, \ldots, n_{3}$ and $j=2,3, \ldots, n_{1}$, we have

$$
\begin{aligned}
A(G) & {\left[\begin{array}{c}
X_{i} \otimes Z_{j} \\
\mathbf{0}
\end{array}\right] } \\
& =\left[\begin{array}{cc}
I_{n_{3}} \otimes A\left(G_{1}\right)+A\left(G_{3}\right) \otimes I_{n_{2}} & A\left(G_{3}\right) \otimes J_{n_{1} \times n_{2}} \\
A\left(G_{3}\right) \otimes J_{n_{2} \times n_{1}} & I_{n_{3}} \otimes A\left(G_{2}\right)+A\left(G_{3}\right) \otimes I_{n_{2}}
\end{array}\right]\left[\begin{array}{c}
X_{i} \otimes Z_{j} \\
\mathbf{0}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(X_{i} \otimes \lambda_{j} Z_{j}\right)+\left(\nu_{i} X_{i} \otimes Z_{j}\right) \\
\nu_{i} X_{i} \otimes 0
\end{array}\right]=\left(\nu_{i}+\lambda_{j}\right)\left[\begin{array}{c}
X_{i} \otimes Z_{j} \\
\mathbf{0}
\end{array}\right] .
\end{aligned}
$$

Thus, $\left[\begin{array}{c}X_{i} \otimes Z_{j} \\ \mathbf{0}\end{array}\right]$ is an eigenvector of $A(G)$ corresponding to the eigenvalue $\nu_{i}+\lambda_{j}$, where $i=1,2, \ldots, n_{3}$ and $j=2,3, \ldots, n_{1}$.

Let $Y_{1}=\mathbf{1}_{n_{2} \times 1} / \sqrt{n_{2}}, Y_{2}, \ldots, Y_{n_{2}}$ be an orthonormal set of eigenvectors of $A\left(G_{2}\right)$ corresponding to the eigenvalues $\mu_{1}=r_{2}, \mu_{2}, \ldots, \mu_{n_{2}}$, respectively. Then it is easy to see that $\left[\begin{array}{c}\mathbf{0} \\ X_{i} \otimes Y_{j}\end{array}\right]$ is an eigenvector with corresponding eigenvalue $\nu_{i}+\mu_{j}$ for $i=1,2, \ldots, n_{3}$ and $j=2,3, \ldots, n_{2}$. This completes the proof of the theorem.

The following corollary is an immediate consequence of the above theorem.
Corollary 2.5. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph and let $G_{3}$ be an integral graph. Then $\psi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ is integral if and only if $4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{1}-r_{2}\right)^{2}$ is a perfect square for $i=1,2, \ldots, n_{3}$.

The following theorems give the spectrum of $\psi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)(\alpha=2,3)$ when $G_{1}$ and $G_{2}$ are regular graphs. As the proofs of these theorems are analogous to that of the above one, we omit the details.

Theorem 2.6. For $i=1,2$, let $G_{i}$ be a $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph. Suppose $\operatorname{Spec}\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n_{1}}\right\}$, $\operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{n_{3}}\right\}$. Then the spectrum of $\psi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ consists of:
a. $\lambda_{i}\left(1+\nu_{j}\right), i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i}\left(1+\nu_{j}\right), i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(\left(\nu_{i}+1\right)\left(r_{1}+r_{2}\right) \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}+1\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\right) / 2, i=1,2, \ldots, n_{3}$.

Theorem 2.7. Let $G_{i}(i=1,2)$ be a $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph. Suppose $\operatorname{Spec}\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n_{1}}\right\}$,
$\operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{n_{3}}\right\}$.
Then the spectrum of $\psi_{3}\left(G_{1}, G_{2}, G_{3}\right)$ consists of:
a. $\lambda_{i}+\nu_{j}+\lambda_{i} \nu_{j}, i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i}+\nu_{j}+\mu_{i} \nu_{j}, i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(\left(\nu_{i}+1\right)\left(r_{1}+r_{2}\right)+2 \nu_{i} \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}+1\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\right) / 2, i=1,2, \ldots, n_{3}$.

Corollary 2.8. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph and let $G_{3}$ be an integral graph. Then $\psi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)(\alpha=2,3)$ is integral if and only if $4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}+1\right)^{2}\left(r_{1}-r_{2}\right)^{2}$ is a perfect square for $i=1,2, \ldots, n_{3}$.

Using Corollaries 2.5 and 2.8, in the following propositions, we give some families of integral graphs.

Proposition 2.9. Let $G_{1}, G_{2}$ be integral regular graphs of same degrees on $n_{1}, n_{2}$ vertices, respectively and let $G_{3}$ be an integral graph. Then $\psi_{\alpha}\left(a G_{1}, b G_{2}, G_{3}\right)$ $(\alpha=1,2,3)$ is an integral graph for $a, b \in \mathbb{N}$ and $a b n_{1} n_{2}$ a perfect square.

Proposition 2.10. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph on $n_{i}$ vertices. Let $a, b \in \mathbb{N}$ and $a b=\left(r_{1}-r_{2}\right)^{2} p\left(p n^{2} n_{1} n_{2} \pm 1\right)(p=1,2,3, \ldots)$. Then $\psi_{1}\left(a G_{1}, b G_{2}, K_{n, n}\right)$ is an integral graph.

Proposition 2.11. Let $G_{1}$ be an integral $(n+k)$-regular graph on $n_{1}$ vertices and $G_{2}$ be an integral $k$-regular graph on $n_{2}$ vertices. Then $\psi_{1}\left(a G_{1}, b G_{2}, K_{n, n}\right)$ is an integral graph for $a, b \in \mathbb{N}$ and $a b=p\left(p n_{1} n_{2} \pm 1\right)(p=1,2,3, \ldots)$. Also if $k=0$ and $n_{2}=a b n_{1} \pm 1$, then $\psi_{1}\left(a G_{1}, b G_{2}, K_{n, n}\right)$ is an integral graph.

Proposition 2.12. Let $a, b$ and $j$ be arbitrary positive integers. Then:
(1) the graph $\psi_{1}\left(a K_{2 n j, 2 n j}, b K_{2}, K_{n, n}\right)$ is integral for $a b=\frac{j(n j-1)^{2}}{8 n} \in \mathbb{N}$.
(2) For $a b=\frac{j(n j-1)^{2}}{2 n} \in \mathbb{N}$, the graph $\psi_{1}\left(a K_{2 n j}, b K_{1}, K_{n, n}\right)$ is integral.
(3) The graph $\psi_{1}\left(a H, b C_{4}, K_{n, n}\right)$, where $H=K_{2 n j, 2 n j} \square K_{2}$ is integral for $a b=$ $\frac{j(n j-1)^{2}}{32 n} \in \mathbb{N}$.
(4) for $a b=\frac{(n j-1)^{2}}{2 n^{2}} \in \mathbb{N}$, the graph $\psi_{1}\left(a\left(K_{n j, n j} \square K_{n j}\right)\right.$, b $\left.K_{1}, K_{n, n}\right)$ is integral.

Proposition 2.13. Let $a, b$ and $j$ be arbitrary positive integers and let $\alpha=$ 2, 3. Then:
(1) For $a b=(n+1)^{2} \frac{j(n j-1)^{2}}{8 n} \in \mathbb{N}$, the graph $\psi_{\alpha}\left(a K_{2 n j, 2 n j}, b K_{2}, K_{n+1}\right)$ is integral.
(2) The graph $\psi_{\alpha}\left(a K_{2 n j}, b K_{1}, K_{n+1}\right)$ is integral for $a b=(n+1)^{2} \frac{j(n j-1)^{2}}{2 n} \in \mathbb{N}$.


Fig. 1. Some integral graphs obtained from Corollaries 2.5 and 2.8
(3) For $a b=(n+1)^{2} \frac{j(n j-1)^{2}}{32 n} \in \mathbb{N}$, the graph $\psi_{\alpha}\left(a H, b C_{4}, K_{n+1}\right)$ is integral, where $H=K_{2 n j, 2 n j} \square K_{2}$.
(4) The graph $\psi_{\alpha}\left(a\left(K_{n j, n j} \square K_{n j}\right)\right.$, b $\left.K_{1}, K_{n+1}\right)$ is integral for $a b=(n+1)^{2} \frac{(n j-1)^{2}}{2 n^{2}} \in \mathbb{N}$.

## 3. Spectrum of $\phi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)$

Denote by $\phi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)(\alpha=1,2,3)$, the graph obtained from $G_{i}(i=1,2,3)$ as follows:

DEFINITION 3.1. $\phi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph obtained from $G_{1} \square G_{3}$ and $G_{2} \otimes G_{3}$, by joining each vertex in the $i$-th copy of $G_{1}$ in $G_{1} \square G_{3}$ to every vertex in the $j$-th copy of $G_{2}$ in $G_{2} \otimes G_{3}$, whenever the vertices $w_{i}$ and $w_{j}$ are adjacent in $G_{3}$.

DEFINITION 3.2. $\phi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph obtained from $G_{1} \square G_{3}$ and $G_{2} \boxtimes G_{3}$, by joining each vertex in the $i$-th copy of $G_{1}$ in $G_{1} \square G_{3}$ to every vertex
in the $j$-th copy of $G_{2}$ in $G_{2} \boxtimes G_{3}$, whenever the vertices $w_{i}$ and $w_{j}$ are adjacent in $G_{3}$.

DEFINITION 3.3. $\phi_{3}\left(G_{1}, G_{2}, G_{3}\right)$ is the graph obtained from $G_{1} \otimes G_{3}$ and $G_{2} \boxtimes G_{3}$, by joining each vertex in the $i$-th copy of $G_{1}$ in $G_{1} \otimes G_{3}$ to every vertex in the $j$-th copy of $G_{2}$ in $G_{2} \boxtimes G_{3}$, whenever the vertices $w_{i}$ and $w_{j}$ are adjacent in $G_{3}$.

In this section, we give the spectrum of $\phi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)(\alpha=1,2,3)$ when $G_{1}$ and $G_{2}$ are regular graphs. We use the following lemma to prove our main results.

Lemma 3.4. (see [5]) If $M, N, P, Q$ are matrices with $M$ being non-singular then

$$
\left|\begin{array}{cc}
M & N \\
P & Q
\end{array}\right|=|M|\left|Q-P M^{-1} N\right| .
$$

The proof of the following theorem can be given in an analogous way as that of Theorem 2.4, but here we give a different proof using the above lemma.

THEOREM 3.5. Let $G_{i}(i=1,2)$ be an $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph. Suppose $\operatorname{Spec}\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n_{1}}\right\}$, $\operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{n_{3}}\right\}$. Then the spectrum of $\phi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ consists of:
a. $\lambda_{i}+\nu_{j}, i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i} \nu_{j}, i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(r_{1}+\nu_{i}\left(r_{2}+1\right) \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}\left(r_{2}-1\right)-r_{1}\right)^{2}}\right) / 2, i=1,2, \ldots, n_{3}$.

Proof. Since $A\left(G_{i}\right)(i=1,2,3)$ is a real symmetric matrix, it is orthogonally diagonalizable. Let $P_{i}(i=1,2,3)$ be an orthogonal matrix such that $P_{i}^{T} A\left(G_{i}\right) P_{i}=D_{i}$, where $D_{1}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n_{1}}\right), D_{2}=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n_{2}}\right)$ and $D_{3}=\operatorname{diag}\left(\nu_{1}, \nu_{2}, \ldots, \nu_{n_{3}}\right)$. As $G_{i}(i=1,2)$ is an $r_{i}$-regular graph, without loss of generality, we can assume that the first column of $P_{i}$ is $\mathbf{1}_{n_{i} \times 1} / \sqrt{n_{i}}$, where $\mathbf{1}=(1,1, \ldots, 1)^{T}$.

Upon labelling the vertices of $G:=\phi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ suitably, the adjacency matrix of $G$ can be formulated as follows:

$$
A(G)=\left[\begin{array}{cc}
I_{n_{3}} \otimes A\left(G_{1}\right)+A\left(G_{3}\right) \otimes I_{n_{1}} & A\left(G_{3}\right) \otimes J_{n_{1} \times n_{2}} \\
A\left(G_{3}\right) \otimes J_{n_{2} \times n_{1}} & A\left(G_{3}\right) \otimes A\left(G_{2}\right)
\end{array}\right]
$$

where $J_{n_{1} \times n_{2}}$ is the $n_{1} \times n_{2}$ matrix whose all entries are 1 . Now,

$$
\begin{aligned}
A(G)= & {\left[\begin{array}{cc}
I_{n_{3}} \otimes P_{1} D_{1} P_{1}^{T}+P_{3} D_{3} P_{3}^{T} \otimes I_{n_{1}} & P_{3} D_{3} P_{3}^{T} \otimes J_{n_{1} \times n_{2}} \\
P_{3} D_{3} P_{3}^{T} \otimes J_{n_{2} \times n_{1}} & P_{3} D_{3} P_{3}^{T} \otimes P_{2} D_{2} P_{2}^{T}
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
P_{3} \otimes P_{1} & \mathbf{0} \\
\mathbf{0} & P_{3} \otimes P_{2}
\end{array}\right]\left[\begin{array}{cc}
I_{n_{3}} \otimes D_{1}+D_{3} \otimes I_{n_{1}} & D_{3} \otimes P_{1}^{T} J_{n_{1} \times n_{2}} P_{2} \\
D_{3} \otimes P_{2}^{T} J_{n_{2} \times n_{1}} P_{1} & D_{3} \otimes D_{2}
\end{array}\right] } \\
& \times\left[\begin{array}{cc}
P_{3}^{T} \otimes P_{1}^{T} & \mathbf{0} \\
\mathbf{0} & P_{3}^{T} \otimes P_{2}^{T}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
=\left[\begin{array}{cc}
P_{3} \otimes P_{1} & \mathbf{0} \\
\mathbf{0} & P_{3} \otimes P_{2}
\end{array}\right]\left[\begin{array}{cc}
I_{n_{3}} \otimes D_{1}+D_{3} \otimes I_{n_{1}} & D_{3} \otimes \sqrt{n_{1} n_{2}} J_{n_{1} \times n_{2}}^{\prime} \\
D_{3} \otimes \sqrt{n_{1} n_{2}} J_{n_{2} \times n_{1}}^{\prime} & D_{3} \otimes D_{2}
\end{array}\right] \\
\\
\times\left[\begin{array}{cc}
P_{3}^{T} \otimes P_{1}^{T} & \mathbf{0} \\
\mathbf{0} & P_{3}^{T} \otimes P_{2}^{T}
\end{array}\right]
\end{gathered}
$$

where $J_{n_{1} \times n_{2}}^{\prime}$ is the matrix obtained from $J_{n_{1} \times n_{2}}^{\prime}$ by replacing all its entry except the first diagonal entry by 0 . Thus $A(G)$ is similar to

$$
B:=\left[\begin{array}{cc}
I_{n_{3}} \otimes D_{1}+D_{3} \otimes I_{n_{1}} & D_{3} \otimes \sqrt{n_{1} n_{2}} J_{n_{1} \times n_{2}}^{\prime} \\
D_{3} \otimes \sqrt{n_{1} n_{2}} J_{n_{2} \times n_{1}}^{\prime} & D_{3} \otimes D_{2}
\end{array}\right]
$$

The rest of the proof follows by applying Lemma 3.4 to the matrix $B$.
Corollary 3.6. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph and let $G_{3}$ be an integral graph. Then $\phi_{1}\left(G_{1}, G_{2}, G_{3}\right)$ is integral if and only if $4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}\left(r_{2}-\right.\right.$ $\left.1)-r_{1}\right)^{2}$ is a perfect square for $i=1,2, \ldots, n_{3}$.

The following theorems give the spectrum of $\phi_{\alpha}\left(G_{1}, G_{2}, G_{3}\right)$, when $G_{1}$ and $G_{2}$ are regular graphs. As the proofs are analogous to those of Theorems 2.4 and 3.5, we omit the details.

Theorem 3.7. For $i=1,2$, let $G_{i}$ be an $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph. Suppose $\operatorname{Spec}\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n_{1}}\right\}$, $\operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{n_{3}}\right\}$. Then the spectrum of $\phi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ consists of:
a. $\lambda_{i}+\nu_{j}, i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i}+\nu_{j}+\mu_{i} \nu_{j}, i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(r_{1}+r_{2}+\nu_{i}\left(r_{2}+2\right) \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{2}\left(\nu_{i}+1\right)-r_{1}\right)^{2}}\right) / 2, i=1,2, \ldots, n_{3}$.

Corollary 3.8. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph and let $G_{3}$ be an integral graph. Then $\phi_{2}\left(G_{1}, G_{2}, G_{3}\right)$ is integral if and only if $4 \nu_{i}^{2} n_{1} n_{2}+\left(r_{2}\left(\nu_{i}+\right.\right.$ $\left.1)-r_{1}\right)^{2}$ is a perfect square for $i=1,2, \ldots, n_{3}$.

Theorem 3.9. Let $G_{i}(i=1,2)$ be a $r_{i}$-regular graph on $n_{i}$ vertices and let $G_{3}$ be an arbitrary graph. Suppose Spec $\left(G_{1}\right)=\left\{\lambda_{1}=r_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n_{1}}\right\}$, $\operatorname{Spec}\left(G_{2}\right)=\left\{\mu_{1}=r_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n_{2}}\right\}$ and $\operatorname{Spec}\left(G_{3}\right)=\left\{\nu_{1} \geq \nu_{2} \geq \cdots \geq \nu_{n_{3}}\right\}$.
Then the spectrum of $\phi_{3}\left(G_{1}, G_{2}, G_{3}\right)$ consists of:
a. $\lambda_{i} \nu_{j}, i=2,3, \ldots, n_{1}$ and $j=1,2,3, \ldots, n_{3}$.
b. $\mu_{i}+\nu_{j}+\mu_{i} \nu_{j}, i=2,3, \ldots, n_{2}$ and $j=1,2,3, \ldots, n_{3}$.
c. $\left(r_{2}\left(\nu_{i}+1\right)+\nu_{i}\left(r_{1}+1\right) \pm \sqrt{4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}\left(r_{1}-1\right)-r_{2}\left(\nu_{i}+1\right)\right)^{2}}\right) / 2$,
$i=1,2, \ldots, n_{3}$.
Corollary 3.10. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph and $G_{3}$ be an integral graph. Then $\phi_{3}\left(G_{1}, G_{2}, G_{3}\right)$ is integral if and only if $4 \nu_{i}^{2} n_{1} n_{2}+\left(\nu_{i}\left(r_{1}-\right.\right.$ $\left.1)-r_{2}\left(\nu_{i}+1\right)\right)^{2}$ is a perfect square for $i=1,2, \ldots, n_{3}$.

c) $\phi_{1}\left(4 K_{1}, 2 K_{2}, C_{4}\right)$ with spectrum $\left\{10^{1}, 6^{1}, 2^{6}, 0^{16},-2^{6},-6^{1},-10^{1}\right\}$

Fig. 2. Some integral graphs obtained from Corollaries 3.6, 3.8 and 3.10

Using Corollaries 3.6, 3.8 and 3.10, in the following propositions, we give some families of integral graphs.

Proposition 3.11. Let $G$ and $H$ be integral graphs of order $m$ and $n$ with $G$ being an r-regular graph. Let $a, b \in \mathbb{N}$ and $a b=(r-1)^{2} p(p m \pm 1)(p=1,2,3, \ldots)$. Then $\phi_{1}\left(a K_{1}, b G, H\right)$ is an integral graph.

Proposition 3.12. Let $G$ be an integral graph and let $a, b \in \mathbb{N}$ and $a b=$ $\frac{j(j-1)^{2}}{4} \in \mathbb{N}, j=1,2,3, \ldots$. Then the graph $\phi_{1}\left(a K_{1}, b K_{2 j, 2 j}, G\right)$ is integral.

Proposition 3.13. Let $G$ be an integral graph and let $a, b \in \mathbb{N}$ and $a b=$ $\frac{j(j+1)^{2}}{16}, j=1,2,3, \ldots$. Then the graph $\phi_{1}\left(a K_{1}, b\left(K_{2 j, 2 j} \square C_{4}\right), G\right)$ is integral.

Proposition 3.14. Let $G$ be an integral graph and let $a, b \in \mathbb{N}$ and $a b=\frac{(j-1)^{2}}{4} \in \mathbb{N}, j=1,2,3, \ldots$. Then the graph $\phi_{1}\left(a K_{1}, b\left(K_{j, j} \square K_{j, j}\right), G\right)$ is integral.

Proposition 3.15. Let $G_{i}(i=1,2)$ be an integral $r$-regular graph on $n_{i}$ vertices and $G_{3}$ be an integral graph. Let $a, b \in \mathbb{N}$ and $a b=r^{2} p\left(p n_{1} n_{2} \pm 1\right)(p=$ $1,2,3 \ldots)$. Then $\phi_{2}\left(a G_{1}, b G_{2}, G_{3}\right)$ is an integral graph.

Proposition 3.16. Let $G$ be an integral graph and let $a, b \in \mathbb{N}$ and $a b=$ $\frac{(j-1)^{2}}{4} \in \mathbb{N}, j=1,2,3, \ldots$. Then the graph $\phi_{2}\left(a K_{2 j}, b K_{2 j}, G\right)$ is integral.

Proposition 3.17. Let $G$ be an integral graph and let $a, b \in \mathbb{N}$ and $a b=$ $\left(\frac{j+1}{8}\right)^{2} \in \mathbb{N}, j=1,2,3, \ldots$. Then the graph $\phi_{2}(a H, b H, G)$ is integral, where $H=K_{2 j, 2 j} \square K_{2}$.

Proposition 3.18. Let $G_{i}(i=1,2)$ be an integral $r_{i}$-regular graph on $n_{i}$ vertices. Let $r_{1}=r_{2}+1, a, b \in \mathbb{N}$ and $a b=r_{2}^{2} p\left(p n^{2} n_{1} n_{2} \pm 1\right)$. Then $\phi_{3}\left(a G_{1}, b G_{2}, K_{n, n}\right)$ is an integral graph.

Proposition 3.19. For $a, b \in \mathbb{N}$ and $a b=\frac{(j-1)^{2}}{8} \in \mathbb{N}, j=1,2,3, \ldots$, the graph $\phi_{3}\left(a K_{2 j, 2 j}, b K_{2 j}, K_{n, n}\right)$ is integral.

Proposition 3.20. For $a, b \in \mathbb{N}$ and $a b=\frac{j^{2}}{128} \in \mathbb{N}, j=1,2,3, \ldots$, the graph $\phi_{3}\left(a H, b G, K_{n, n}\right)$ is integral, where $H=K_{2(j-1), 2(j-1)} \square C_{4}$ and $G=$ $K_{2(j-1), 2(j-1)} \square K_{2}$.

Acknowledgement. The author is indebted to an anonymous referee whose comments led to an improved presentation of the paper. The author is grateful to Prof. Chandrashekar Adiga for encouraging to write this article. The author is also thankful to UGC, New Delhi, for UGC-JRF, under which this work has been done.

## REFERENCES

[1] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral?, Electron. J. Combin. 16:122 (2009).
[2] C. Adiga, B. R. Rakshith, Spectra of graph operations based on corona and neighborhood corona of the graphs $G$ and $K_{1}$, J. Int. Math. Virtual Inst. 5 (2015) 55-69.
[3] O. Ahmadi, N. Alon, I. F. Blake, I. E. Shparlinski, Graphs with integral spectrum, Linear Algebra Appl. 430 (2009) 547-552.
[4] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović, A survey on integral graphs, Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002) 42-65.
[5] D. Cvetković, M. Doob, H. Sachs, Spectra of Graph Theory and Applications, Johann Ambrosius Barth Verlag, Third edition, 1995.
[6] D. Cvetković, S. Simić, D. Stevanović, 4-regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 9 (1998) 109-123.
[7] C. Godsil, State transfer on graphs, Discrete Math. 312 (2011) 129-147.
[8] E. Ghorbani, A. Mohammadian, B. Tayfeh-Rezaie, Integral trees with given nullity, Discrete Math. 339 (2016) 157-164.
[9] P. Hansen, H. Mélot, D. Stevanović, Integral complete split graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 13 (2002) 89-95.
[10] F. Harary, A. J. Schwenk, Which graphs have integral spectra?, in: Graphs and Combinatorics, Lecture Notes Math., 406 (1974) 45-51.
[11] W. Imrich, S. Klavžar, Product Graphs, Wiley-Interscience, New York, 2000.
[12] G. Indulal, A. Vijayakumar, Some new integral graphs, Appl. Anal. Discrete Math. 1 (2007) 420-426.
[13] G. Indulal, Spectrum of two new joins of graphs and infinite families of integral graphs, Kragujevac J. Math. 36 (2012) 133-139.
[14] G. Indulal, R. Balakrishnan, A. Anuradha, Some new families of integral graphs, Indian J. Pure Appl. Math. 45 (2014) 805-817.
[15] A. Mohammadian, B. Tayfeh-Rezaie, Some constructions of integral graphs, Linear Multilin. Algebra 59, 11 (2011) 1269-1279.
[16] W. So, Integral circulant graphs, Discrete Math. 306 (2006) 153-158.
[17] D. Stevanović, Nonexistence of some 4-regular integral graphs, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 10 (1999) 81-86.
[18] L. Wang, Integral Graphs and Integral Trees, Ph.D. thesis, 2005.
[19] L. Wang, C. Hoede, Constructing fifteen infinite classes of nonregular bipartite integral graphs, Electron. J. Combin. 15:8 (2008).
[20] L. Wang, X. Liu, Integral complete multipartite graphs, Discrete Math. 308 (2008) 3860-3870.
[21] L. Wang, X. Li, C. Hoede, Two classes of integral regular graphs, Ars Combin. 76 (2005) 303-319.
(received 04.07.2016; in revised form 20.09.2016; available online 01.10.2016)
Department of Studies in Mathematics, University of Mysore, Manasagangothri, Mysuru - 570 006, India
E-mail: ranmsc08@yahoo.co.in


[^0]:    2010 Mathematics Subject Classification: 05C50
    Keywords and phrases: Integral graphs; Kronecker product.

