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DIFFERENCE SCHEME FOR AN INTERFACE
PROBLEM FOR SUBDIFFUSION EQUATION

Aleksandra Delić, Sandra Hodžić and Boško S. Jovanović

Abstract. An implicit finite-difference scheme for numerical approximation of an initial-
boundary value problem with an interface for a two-dimensional subdiffusion equation with vari-
able coefficients is proposed. Its stability is investigated and the corresponding convergence rate
estimate is obtained. In a special case an efficient factorized scheme is proposed and investigated.

1. Introduction

Fractional partial differential equations have become increasingly popular in
recent years. Such equations are used as models for diverse physical and chemical
processes, especially those that exhibit memory type effects: anomalous diffusion,
turbulent flow, chaotic dynamics, processes in media with fractal geometry, disor-
dered materials, viscoelastic media etc. (see [10, 16, 17]).

Interface problems arise in different situations, for example: in the heat transfer
process in composite materials, in transmission and diffraction processes etc. They
are characterized by non-zero jump of the flux across the given interface (line or
surface). Such jumps can be modelled by various types of conjugation conditions
or involving singular distributions in the coefficients of partial differential equation
(see [12, 14, 18, 21]).

In this article we consider the first initial-boundary value problem for a two-
dimensional fractional in time diffusion equation with variable coefficients. A Dirac
distribution concentrated at the line interface is involved in the coefficient of the
time fractional derivative. We note that the first space derivatives of its solution
may have discontinuities across the given interface. The problem is approximated
by an implicit finite difference scheme and its stability and convergence are inves-
tigated. In the case when the coefficient of the Dirac distribution is constant an
efficient factorized scheme is proposed and investigated.
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The paper is organized as follows. In Section 2 we introduce the notion of frac-
tional derivatives. In Section 3 we define the first initial-boundary value problem
for a two-dimensional fractional in time diffusion equation with variable coefficients
and prove existence and uniqueness of its weak solution. In Section 4 we define the
simplest implicit finite difference scheme approximating the considered problem
and prove its stability. Section 5 is devoted to the investigation of the convergence
of the implicit difference scheme. In Section 6 an efficient factorized difference
scheme for the numerical solution of the considered initial-boundary value problem
is proposed and investigated.

2. Fractional derivatives

Let u be a function defined on a nonempty bounded interval [a, b] and let
k − 1 ≤ α < k, k ∈ N. The left Riemann-Liouville fractional derivative of order α
is defined as [17]

Dα
a+u(t) =

1
Γ(k − α)

dk

dtk

∫ t

a

u(s)
(t− s)α+1−k

ds, t ≥ a, (1)

where the Γ(·) is the Gamma function. The right Riemann-Liouville fractional
derivative is defined analogously

Dα
b−u(t) =

(−1)k

Γ(k − α)
dk

dtk

∫ b

t

u(s)
(s− t)α+1−k

ds, t ≤ b.

For α = k−1 from (1) it immediately follows that Dk−1
a+ u(t) = u(k−1)(t). Moreover,

under some natural assumptions, limα→k Dα
a+u(t) = u(k)(t) (see [17]).

The Caputo fractional derivative is obtained by interchanging the derivative
and integral operators in (1)

CDα
a+u(t) =

1
Γ(k − α)

∫ t

a

u(k)(s)
(t− s)α+1−k

ds.

For sufficiently smooth u(t) the following relation holds

Dα
a+u(t) = CDα

a+u(t) +
k−1∑
j=0

u(j)(a)
(x− a)j−α

Γ(j − α + 1)
.

In particular, Dα
a+u(t) = CDα

a+u(t) if u(a) = u′(a) = · · · = u(k−1)(a) = 0.

Let us mention some result that will be used in the sequel.

Fractional derivatives satisfy the semigroup property, unlike classical ones, only
under certain additional assumptions [17]. For example, for continuous functions:

Dα
a+Dβ

a+u(t) = Dα+β
a+ u(t) if 0 < α, β < 1, u(a) = 0. (2)

Let 0 < α < 1, and let u(t) and v(t) be continuously differentiable functions.
Then:

(Dα
a+u, v)L2(a,b) = (u, Dα

b−v)L2(a,b) . (3)
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Let α > 0 and let u be an infinitely differentiable function in R, with supp u ⊂
(a, b). Then (see [5]):

(Dα
a+u, Dα

b−u)L2(a,b) = cos πα ‖Dα
a+u‖2L2(a,+∞) . (4)

For functions of several variables, partial fractional derivatives are defined in
an analogous manner, for example

∂α
t,a+u(x, t) =

1
Γ(k − α)

∂k

∂tk

∫ t

a

u(x, s)
(t− s)α+1−k

ds, k − 1 ≤ α < k, k ∈ N.

3. Problem formulation

Let 0 < α < 1, Ω = (0, 1) × (0, 1), Γ = ∂Ω and Q = Ω × (0, T ). We shall
consider the time fractional diffusion equation

(1 + KδS) ∂α
t,0+u + Lu = f(x, t), x = (x1, x2) ∈ Ω̄, t ∈ (0, T ) (5)

subject to homogeneous boundary and initial conditions

u(x, t) = 0, x ∈ Γ, t ∈ (0, T ), (6)

u(x, 0) = 0, x ∈ Ω̄, (7)

where L is an elliptic operator with variable coefficients

Lu = −
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+

2∑
i=1

[
bi

∂u

∂xi
+

∂(biu)
∂xi

]
+ cu,

and δS(x) = δ(x2 − 1/2) is the Dirac distribution concentrated on the straight line
S: x2 = 1/2.

Notice that the presence of the Dirac distribution in equation (5) causes a
discontinuity of the first space derivatives of the solution across the interface S. An
analogous problem for α = 1 is considered in [9].

Let us denote Ω− = (0, 1) × (0, 1/2), Ω+ = (0, 1) × (1/2, 1) and Q∓ = Ω∓ ×
(0, T ). Using the theory of generalized functions equation (5) reduces to

∂α
t,0+u + Lu = f(x, t) in Q− and Q+, (8)

while on S, in the case when f(x, t) does not contain a term with δS , we obtain
the following conjugation conditions (comp. [9]):

[u]S = u(x1, 1/2 + 0, t)− u(x1, 1/2− 0, t) = 0 (9)

and

K ∂α
t,0+u

∣∣∣
x2=1/2

=
[ 2∑

j=1

a2j
∂u

∂xj

]
S
. (10)

We assume that the coefficients of equation (5) satisfy the standard ellipticity
assumptions

K ∈ L∞(S), K ≥ K0 > 0, aij , bi, c ∈ L∞(Ω), c ≥ 0, aij = aji,

2∑
i,j=1

aijξiξj ≥ c0

2∑
i=1

ξ2
i , x ∈ Ω, ξ = (ξ1, ξ2) ∈ R2, c0 > 0.

(11)
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In the sequel by C we shall denote a positive generic constant which does not
depend on the solution of the initial-boundary value problem and the discretization
parameters and which may take different values in different formulas.

As usual, with Ck(Ω), Ck(Ω̄), k ∈ N0 = N ∪ {0}, we denote the spaces of
k-fold differentiable functions, with Lp(Ω), p ≥ 1, the Lebesgue spaces, while with
Hα(Ω), Ḣα(Ω) = Hα

0 (Ω), α ≥ 0, we denote the Sobolev spaces [1]. For α > 0 we
further set

|u|Cα
+[a,b] = ‖Dα

a+u‖C[a,b], |u|Cα
−[a,b] = ‖Dα

b−u‖C[a,b],

‖u‖2Cα
±[a,b] = ‖u‖2

C[α]− [a,b]
+ |u|2Cα

±[a,b],

|u|Hα
+(a,b) = ‖Dα

a+u‖L2(a,b), |u|Hα
−(a,b) = ‖Dα

b−u‖L2(a,b),

‖u‖2Hα
±(a,b) = ‖u‖2

H[α]− (a,b)
+ |u|2Hα

±(a,b),

where [α]− denotes the largest integer < α. Then we define Cα
±[a, b] as the space

of functions u ∈ C [α]− [a, b] with finite norm ‖u‖Cα
±[a,b]. The space Hα

±(a, b) is

defined analogously, while the space Ḣα
±(a, b) is defined as the closure of Ċ∞(a, b) =

C∞0 (a, b) with respect to the norm ‖ · ‖Hα
±(a,b). Since for α = k ∈ N0 the fractional

derivative reduces to the standard k-th derivative, we have Ck
±[a, b] = Ck[a, b] and

Hk
±(a, b) = Hk(a, b).

The next result holds:

Lemma 1. (see [11]) For α > 0, α 6= k + 1/2, k ∈ N0, the spaces Ḣα
+(a, b),

Ḣα
−(a, b) and Ḣα(a, b) are equal and their norms are equivalent.

For vector valued functions mapping a real interval [0, T ] or (0, T ) into a Ba-
nach space X we introduce the spaces Ck([0, T ], X), k ∈ N0 and Hα((0, T ), X),
α ≥ 0, in the usual way [13]. In an analogous manner we define the spaces
Cα
±([0, T ], X) and Hα

±((0, T ), X).

Let L̃2(Ω) be the space of functions defined on Ω, with the inner product

(v, w)L̃2(Ω) = (v, w)L2(Ω) + (v, w)L2(S).

For functions defined on Q = Ω × (0, T ), we define the space L̃2(Q) = L2((0, T ),
L̃2(Ω)), with inner product

(v, w)L̃2(Q) = (v, w)L2(Q) + (v, w)L2(Σ), Σ = S × (0, T ).

Finally, for α, β ≥ 0, we introduce the anisotropic Sobolev type spaces:

H̃α,β(Q) = L2((0, T ),Hα(Ω)) ∩Hβ((0, T ), L̃2(Ω))

and
H̃α,β
± (Q) = L2((0, T ),Hα(Ω)) ∩Hβ

±((0, T ), L̃2(Ω)).

Notice that for 0 ≤ β < 1/2: H̃α,β
+ (Q) = H̃α,β

− (Q) = H̃α,β(Q).
Taking the inner product of equation (5) with a test function v and formally

applying partial integration and relations (2)–(4) one obtains the following weak
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formulation of the problem (5)–(7): find u ∈ ˙̃H1,α/2(Q) = L2((0, T ), Ḣ1(Ω)) ∩
Ḣα/2((0, T ), L̃2(Ω)) such that

a(u, v) = l(v), ∀v ∈ ˙̃H1,α/2(Q),

where

a(u, v) =
(
∂

α/2
t,0+u, ∂

α/2
t,T−v

)
L2(Q)

+
(
K∂

α/2
t,0+u, ∂

α/2
t,T−v

)
L2(Σ)

+
2∑

i,j=1

(
aij

∂u

∂xj
,

∂v

∂xi

)

L2(Q)

+
2∑

i=1

[(
∂u

∂xi
, biv

)

L2(Q)

−
(

∂v

∂xi
, biu

)

L2(Q)

]
+ (cu, v)L2(Q)

and
l(v) = (f, v)L2(Q) .

It is easy to check that the problem (8)–(10), (6), (7) has the same weak for-
mulation. In such a manner, problems (5)–(7) and (8)–(10), (6), (7) are equivalent.

Lemma 2. Let α ∈ (0, 1), f ∈ L2(Q) and let the assumptions (11) hold. Then

the problem (5)–(7) is well posed in ˙̃H
1,α/2

(Q) and its weak solution satisfies a
priori estimate

‖u‖H̃1,α/2(Q) ≤ C‖f‖L2(Q). (12)

The proof follows immediately using relations (2)–(4), (11) and the Lax-
Milgram lemma.

It immediately follows from (12) that the a priori estimate

‖u‖B̃1,α/2(Q) ≤ C‖f‖L2(Q)

in the weaker norm [13] is

‖u‖2
B̃1,α/2(Q)

=
∫ T

0

[
(T − t)−α‖u(·, t)‖2

L̃2(Ω)
+ ‖u(·, t)‖2H1(Ω)

]
dt.

4. Finite difference approximation – implicit scheme

In the area Q̄ = Ω̄ × [0, T ], we define the uniform mesh Q̄hτ = Ω̄h × Ω̄τ ,
where Ω̄h = {(x1i, x2j) = (ih, jh) | i, j = 0, 1, . . . , 2n; h = 1/2n} and Ω̄τ = {tk =
kτ | k = 0, 1, . . . ,m; τ = T/m}. We also define Ωh = Ω̄h ∩ Ω, Γh = Ω̄h \ Ωh,
Ω1h = Ω̄h∩(0, 1]×(0, 1), Ω2h = Ω̄h∩(0, 1)×(0, 1], Sh = Ωh∩S, S−h = Sh∪{(0, 1/2)},
Ωτ = Ω̄τ ∩ (0, T ), Ω−τ = Ω̄τ ∩ [0, T ), Ω+

τ = Ω̄τ ∩ (0, T ] and Σhτ = Sh ×Ωτ . We will
use standard notation from the theory of the finite difference schemes (see [19]):

v = v(x, t), v̂ = v(x, t + τ), vk = v(x, tk), x = (x1, x2) ∈ Ω̄h, t ∈ Ω̄τ ,

vxi =
v(x + hei, t)− v(x, t)

h
= vx̄i(x− hei, t), ei = (2− i, i− 1).
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For a function u defined on Q̄ which satisfies a homogeneous initial condition,
we approximate the left Riemann-Liouville fractional derivative ∂α

t,0+u(x, tk) by
(see [4]):

(∂α
t,0+,τu)k =

1
Γ(2− α)

k−1∑
l=0

(t1−α
k−l − t1−α

k−l−1)u
l
t.

The next result holds:

Lemma 3. (see [20]) Suppose that u ∈ C2([0, T ], C(Ω̄)), t ∈ Ω+
τ and u(x, 0) =

0. Then

|∂α
t,0+u− ∂α

t,0+,τu| ≤ τ2−α 1
1− α

[
1− α

12
+

22−α

2− α
− (1 + 2−α)

]
max
0≤s≤t

∣∣∣∣
∂2u

∂t2
(x, s)

∣∣∣∣ .

We approximate the initial-boundary value problem (5)–(7) with the following
implicit finite difference scheme:

(1 + KδSh
)
(
∂α

t,0+,τv
)k + Lhvk = f̄k, x ∈ Ωh, k = 1, 2, . . . , m, (13)

subject to homogeneous boundary and initial conditions:

v(x, t) = 0, (x, t) ∈ Γh × Ω+
τ ,

v(x, 0) = 0, x ∈ Ω̄h,
(14)

where it is denoted

Lhv=−1
2

2∑
i,j=1

[
(aijvx̄j )xi +(aijvxj )x̄i

]
+

1
2

2∑
i=1

[
bivx̄i +bivxi +(biv)x̄i +(biv)xi

]
+c̄v

and

δSh
(x) = δh(x2 − 1/2) =

{
0, x ∈ Ωh \ Sh,

1/h, x ∈ Sh.

When the right-hand side f is a continuous function, we set f̄ = f , otherwise
we must use some averaged value, for example f̄ = T 2

1 T 2
2 f , where T1 and T2 are

Steklov averaging operators:

Tif(x, t) = T−i f(x+0.5hei, t) = T+
i f(x−0.5hei, t) =

∫ 1/2

−1/2

f(x+hsei, t) ds, i = 1, 2.

Analogously, we set c̄ = c or c̄ = T 2
1 T 2

2 c.
We define the following discrete inner products and norms:

(v, w)h = (v, w)L2(Ωh) = h2 ∑
x∈Ωh

vw, ‖v‖2h = ‖v‖2L2(Ωh) = (v, v)h,

(v, w)ih = (v, w)L2(Ωih) = h2 ∑
x∈Ωih

vw, ‖v‖2ih = ‖v‖2L2(Ωih) = (v, v)ih, i = 1, 2,

(v, w)L2(Sh) = h
∑

x∈Sh

vw, ‖v‖2L2(Sh) = (v, v)L2(Sh),

|v|2H1/2(Sh) = h2 ∑
x∈S−

h

∑
x′∈S−

h
, x′ 6=x

|v(x)− v(x′)|2
|x1 − x′1|2

,
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(v, w)L̃2(Ωh) = (v, w)L2(Ωh) + (v, w)L2(Sh), ‖v‖2
L̃2(Ωh)

= (v, v)L̃2(Ωh),

|v|2H1(Ωh) = ‖vx̄1‖21h + ‖vx̄2‖22h, ‖v‖2H1(Ωh) = |v|2H1(Ωh) + ‖v‖2h,

‖v‖2L2(Qhτ ) = τ
m∑

k=1

‖vk‖2h, ‖v‖2L2(Qihτ ) = τ
m∑

k=1

‖vk‖2ih,

‖v‖2
L̃2(Qhτ )

= τ
m∑

k=1

‖vk‖2
L̃2(Ωh)

,

‖v‖2L2(Σhτ ) = τ
m∑

k=1

‖vk‖2L2(Sh), |v|2
L2(Ωτ ;H1/2(Sh))

= τ
m∑

k=1

|vk|2
H1/2(Sh)

,

‖v‖2
B̃1,α/2(Qhτ )

= τ
m∑

k=1

‖vk‖2H1(Ωh) + τ
m∑

k=1

(
∂α

t,0+,τ

(‖v‖2
L̃2(Ωh)

))k

.

For every function v(·, t) defined on the mesh Ω̄τ , which satisfies the initial
condition v(·, 0) = 0, the following equality is valid (see [4])

τ
m∑

k=1

(
∂α

t,0+,τ (v2)
)k =

1
Γ(2− α)

m∑
k=1

(
t1−α
m−k+1 − t1−α

m−k

)
(vk)2.

In particular, from here it follows that the norm ‖v‖B̃1,α/2(Qhτ ) is well defined. It
can be treated as the discrete analogue of ‖ · ‖B̃1,α/2(Q), since

(1− α)τ(T − tk−1)−α ≤ t1−α
m−k+1 − t1−α

m−k ≤ (1− α)τ(T − tk)−α.

Lemma 4. (see [2, 7]) For 0 < α < 1 and any function v(·, t) defined for t ∈ Ω̄τ

the following inequality is valid

vk
(
∂α

t,0+,τv
)k ≥ 1

2
(
∂α

t,0+,τ (v2)
)k

+
τ2−α(1− 2−α)

Γ(2− α)
(vk−1

t )2, k = 1, 2, . . . , m. (15)

Theorem 1. Let α ∈ (0, 1), f ∈ L2(Q) and let the assumptions (11) hold. Let
also aij, bi and K be continuous functions. Then the finite difference scheme (13)-
(14) is absolutely stable and its solution satisfies the following a priori estimate:

‖v‖B̃1,α/2(Qhτ ) ≤ C‖f̄‖L2(Qhτ ). (16)

Proof. Taking the inner product of (13) with vk, we obtain(
vk, (1 + KδSh

)∂α
t,0+,τvk

)
h

+
(
vk,Lvk

)
h

=
(
vk, f̄k

)
h

.

From inequality (15) it follows that(
vk, (1 + KδSh

)∂α
t,0+,τvk

)
h

=
(
vk, ∂α

t,0+,τvk
)
h

+
(
Kvk, ∂α

t,0+,τvk
)
L2(Sh)

≥ 1
2

(
∂α

t,0+,τ (‖v‖2h)
)k

+
K0

2

(
∂α

t,0+,τ (‖v‖2L2(Sh))
)k

.

Using partial summation and assumptions (11) we obtain(
vk,Lvk

)
h
≥ c0|vk|2H1(Ωh)

while the right-hand side we estimate by applying the Cauchy-Schwarz and the
ε-inequality (

vk, f̄k
)
h
≤ ε‖vk‖2h +

1
4ε
‖f̄k‖2h.
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In such a way, the result follows by taking a sufficiently small ε, applying the
discrete Poincaré inequality (see [19])

‖v‖h ≤ 1
4
|v|H1(Ωh) (17)

and summing obtained inequalities for k = 1, 2, . . . , m.

We also need the following assertion.

Lemma 5. (see [8]) Let the function v be defined on the mesh Ω̄h, v = 0 on Γh

and let the function w be defined on the mesh S−h . Then
∣∣(v, wx̄1)L2(Sh)

∣∣ ≤ C ‖v‖H1(Ωh)|w|H1/2(Sh).

5. Convergence of implicit scheme

Let u be the solution of the initial-boundary value problem (5)–(7) and v the
solution of the finite difference scheme (13)–(14), where f̄ = T 2

1 T 2
2 f and c̄ = T 2

1 T 2
2 c.

The error z = u− v satisfies the finite difference scheme

(1 + KδSh
) ∂α

t,0+,τz + Lh z = ϕ in Ωh × Ω+
τ ,

z = 0 on Γh × Ω+
τ ,

z(x, 0) = 0 on Ωh,

(18)

where

ϕ =
2∑

i,j=1

ηij,x̄i +
2∑

i=1

ηi,x̄i +
2∑

i=1

ζi + η + χ + δSh
µ ,

ηij = T+
i T 2

3−i

(
aij

∂u

∂xj

)
− 1

2

[
aijuxj +

(
aijux̄j

) ∣∣∣
(x+hei,t)

]
,

ηi =
1
2

[
(biu)

∣∣∣
(x+hei,t)

+ biu
]
− T+

i T 2
3−i(biu),

ζi =
1
2
(
biux̄i + biuxi

)− T 2
1 T 2

2

(
bi

∂u

∂xi

)
,

η = (T 2
1 T 2

2 c)u− T 2
1 T 2

2 (cu),

χ = ∂α
t,0+,τu− T 2

1 T 2
2 (∂α

t,0+u),

µ = K∂α
t,0+,τu− T 2

1 (K∂α
t,0+u).

Let us set

η1j = η̃1j + δSh
η̂1j , η1 = η̃1 + δSh

η̂1, ζj = ζ̃j + δSh
ζ̂j ,

η = η̃ + δSh
η̂, χ = χ̃ + δSh

χ̂,

where

η̂11 =
h2

6
T+

1

([
a11

∂2u

∂x1∂x2
+

∂a11

∂x2

∂u

∂x1

]
S

)
,
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η̂12 =
h2

6
T+

1

([
a12

∂2u

∂x2
2

+
∂a12

∂x2

∂u

∂x2

]
S

)
− h2

4
T+

1

([ ∂

∂x1

(
a12

∂u

∂x2

)]
S

)
,

η̂1 = −h2

6
T+

1

([∂(b1u)
∂x2

]
S

)
,

ζ̂1 = −h2

6
T 2

1

([ ∂

∂x2

(
b1

∂u

∂x1

)]
S

)
,

ζ̂2 =
h2

4

[
b2 T 2

1

(∂2u

∂x2
2

)]

S

− h2

6
T 2

1

([ ∂

∂x2

(
b2

∂u

∂x2

)]
S

)
,

η̂ = −h2

3

[
(T 2

1 c)
(
T 2

1

∂u

∂x2

)]

S

,

χ̂ =
h2

6
T 2

1

([∂(∂α
t,0+u)
∂x2

]
S

)
.

Theorem 2. Under the assumptions of Theorem 1 the finite difference scheme
(18) is absolutely stable and its solution satisfies the following a priori estimate:

‖z‖B̃1,1/2(Qhτ ) ≤ C
{ 2∑

j=1

(
‖η2j‖L2(Q2hτ ) + ‖η̃1j‖L2(Q1hτ )

+ |η̂1j |L2(Ωτ ;H1/2(Sh)) + ‖ζ̃j‖L2(Qhτ ) + ‖ζ̂j‖L2(Σhτ )

)

+ ‖η2‖L2(Q2hτ ) + ‖η̃1‖L2(Q1hτ ) + |η̂1|L2(Ωτ ;H1/2(Sh)) + ‖η̃‖L2(Qhτ )

+ ‖η̂‖L2(Σhτ ) + ‖χ̃‖L2(Qhτ ) + ‖χ̂‖L2(Σhτ ) + ‖µ‖L2(Σhτ )

}
. (19)

The proof is analogous to the proof of Theorem 1, while the right-hand side
terms are estimated using summation by part, Lemma 5 and the discrete trace
theorem [19]

‖v‖L2(Sh) ≤ 2 ‖vx̄2‖2h.

In such a way, in order to estimate the rate of convergence of the finite difference
scheme (13)-(14) it is sufficient to estimate the right-hand side terms of (19).

Theorem 3. Let the assumptions of Theorem 1 hold, aij , bi ∈ H2(Ω±), c ∈
H1(Ω±), K ∈ H2(S), and let the solution u of initial-boundary value problem (5)–
(7) belong to the space C2([0, T ], C(Ω̄))∩C([0, T ], H3(Ω±))∩Cα

+([0, T ],H2(Ω±))∩
Cα

+([0, T ],H2(S)). Then the solution v of finite difference scheme (13)–(14) with
c̄ = T 2

1 T 2
2 c and f̄ = T 2

1 T 2
2 f converges to u and the following convergence rate

estimate holds:
‖u− v‖B̃1,α/2(Qhτ ) = O(h2 + τ2−α).

Proof. The terms η2j , η̃1j , η̂1j , η2, η̃1, η̂1, ζ̃j , ζ̂j , η̃ and η̂ are estimated in [9]
for fixed t = tk:

‖ηk
2j‖L2(Ω2h) ≤ Ch2

(‖a2j‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖a2j‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖η̃k
1j‖L2(Ω1h) ≤ Ch2

(‖a1j‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖a1j‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,
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|η̂k
1j |H1/2(Sh) ≤ Ch2

(‖a1j‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖a1j‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖ηk
2‖L2(Ω2h) ≤ Ch2

(‖b2‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖b2‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖η̃k
1‖L2(Ω1h) ≤ Ch2

(‖b1‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖b1‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

|η̂k
1 |H1/2(Sh) ≤ Ch2

(‖b1‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖b1‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖ζ̃k
j ‖L2(Ωh) ≤ Ch2

(‖bj‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖bj‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖ζ̂k
j ‖L2(Sh) ≤ Ch2

(‖bj‖H2(Ω−)‖u(·, tk)‖H3(Ω−) + ‖bj‖H2(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖η̃k‖L2(Ωh) ≤ Ch2
(‖c‖H1(Ω−)‖u(·, tk)‖H3(Ω−) + ‖c‖H1(Ω+)‖u(·, tk)‖H3(Ω+)

)
,

‖η̂k‖L2(Sh) ≤ Ch2
(‖c‖H1(Ω−)‖u(·, tk)‖H3(Ω−) + ‖c‖H1(Ω+)‖u(·, tk)‖H3(Ω+)

)
.

From these inequalities we immediately obtain the following bounds:

‖η2j‖L2(Q2hτ ) ≤ Ch2
(‖a2j‖H2(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖a2j‖H2(Ω+)‖u‖C([0,T ],H3(Ω+))

)
, (20)

‖η̃1j‖L2(Q1hτ ), |η̂1j |L2(Ωτ ;H1/2(Sh)) ≤ Ch2
(‖a1j‖H2(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖a1j‖H2(Ω+)‖u‖C([0,T ],H3(Ω+))

)
, (21)

‖η2‖L2(Q2hτ ) ≤ Ch2
(‖b2‖H2(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖b2‖H2(Ω+)‖u‖C([0,T ],H3(Ω+))

)
, (22)

‖η̃1‖L2(Q1hτ ), |η̂1|L2(Ωτ ;H1/2(Sh)) ≤ Ch2
(‖b1‖H2(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖b1‖H2(Ω+)‖u‖C([0,T ],H3(Ω+))

)
, (23)

‖ζ̃j‖L2(Qhτ ), ‖ζ̂j‖L2(Σhτ ) ≤ Ch2
(‖bj‖H2(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖bj‖H2(Ω+)‖u‖C([0,T ],H3(Ω+))

)
(24)

and

‖η̃‖L2(Qhτ ), ‖η̂‖L2(Σhτ ) ≤ Ch2
(‖c‖H1(Ω−)‖u‖C([0,T ],H3(Ω−))

+‖c‖H1(Ω+)‖u‖C([0,T ],H3(Ω+))

)
, (25)

Let us set χ̃ = χ̃1 + χ̃2, where

χ̃1 = ∂α
t,0+,tu− ∂α

t,0+u,

χ̃2 = ∂α
t,0+u− T 2

1 T 2
2 ∂α

t,0+u, x ∈ Ωh \ S2,

χ̃2 = χ̃−2 + χ̃+
2 , x ∈ S2,

χ̃±2 =
1
2

(
∂α

t,0+u− T 2
1 T 2±

2 ∂α
t,0+u∓ h

3
T 2

1

(
∂(∂α

t,0+u)
∂x2

)) ∣∣∣∣
x2=1/2±0

,

T 2±
2 u =

∫ 1

0

(1− s)u(x1, x2 ± hs, t) ds.

Using Lemma 3 we immediately obtain the bound:

‖χ̃1‖L2(Qhτ ) ≤ Cτ2−α‖u‖C2([0,T ],C(Ω̄)). (26)
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For x ∈ Ωh \ S2, χ̃2 is a linear bounded functional of ∂α
t,0+u ∈ H2(e), e = e(x) =

(x1 − h, x1 + h)× (x2 − h, x2 + h), which vanishes on first order polynomials in x1

and x2. Using the Bramble-Hilbert lemma [3], we obtain

|χ̃2(x, t)| ≤ Ch |∂α
t,0+u(·, t)|H2(e).

Analogous result holds for χ̃±2 :

|χ̃±2 (x, t)| ≤ Ch |∂α
t,0+u(·, t)|H2(e±), x = (x1, 1/2) ∈ Sh,

where we denoted e+ = (x1 − h, x1 + h) × (1/2, 1/2 + h) and e− = (x1 − h, x1 +
h) × (1/2 − h, 1/2). Summing these inequalities over the mesh Qhτ we obtain the
bound:

‖χ̃2‖L2(Qhτ ) ≤ Ch2
(‖u‖Cα

+([0,T ],H2(Ω−)) + ‖u‖Cα
+([0,T ],H2(Ω+))

)
. (27)

The term χ̂ can be estimated directly, using the trace theorem for Sobolev spaces [1]:

‖χ̂‖L2(Σhτ ) ≤ Ch2
(‖u‖Cα

+([0,T ],H2(Ω−)) + ‖u‖Cα
+([0,T ],H2(Ω+))

)
. (28)

Let us set µ = µ1 + µ2, where

µ1 = K(∂α
t,0+,tu− ∂α

t,0+u),

µ2 = K∂α
t,0+u− T 2

1 T 2
2

(
K∂α

t,0+u
)
.

Using Lemma 3 we immediately obtain the bound:

‖µ1‖L2(Σhτ ) ≤ Cτ2−α‖K‖C(S̄)‖u‖C2([0,T ],C(Ω̄)). (29)

Using the Bramble-Hilbert lemma and properties of multipliers in Sobolev spaces
[15] we obtain:

‖µ2‖L2(Σhτ )≤ Ch2 max
t∈[0,T ]

‖K∂α
t,0+u‖H2(S) ≤ Ch2‖K‖H2(S)‖u‖Cα

+([0,T ],H2(S)). (30)

The result follows from (19)–(30).

6. Factorized scheme

The finite difference scheme (13)–(14) is not efficient, because a discrete elliptic
problem has to be solved at every time level t = tk. In this Section, assuming for
the sake of simplicity that K = const > 0, we propose the following factorized
difference scheme approximating the initial-boundary value problem (5)–(7):

(I+θταΛ1)(B+θταΛ2)(∂t,0+,τv)k+Lhvk−1 = f̄k, x ∈ Ωh, k = 1, 2, . . . , m, (31)

subject to homogeneous boundary and initial conditions (14). Here I is the identity
operator, Λiv = −vxix̄i , Bv = (1 + KδSh

)v and θ is a real positive parameter.
Obviously, when the values v = vk−1 are known, for the determination of values
v = vk on the next time level t = tk we need to invert the operators I+θτΛ1 and B+
θτΛ2. Both operators can be represented by tridiagonal matrices and consequently
the required values of the solution may be obtained by two applications of the
Thomas algorithm. In this sense the finite difference scheme (31), (14) is efficient.
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Notice that the scheme (31), (14) can be regarded as a kind of alternating-direction-
implicit (ADI) scheme (see [19]). In [6, 22], analogous schemes are constructed for
the subdiffusion equation with constant coefficients, without an interface.

Theorem 4. Let K = const > 0 and let the assumptions of Theorem 1 hold.
Then, for sufficiently large θ, the finite difference scheme (31), (14) is absolutely
stable and its solution satisfies the a priori estimate (16).

Proof. Let us denote B̃ = (I +θταΛ1)(B+θταΛ2). The operators B and B̃
are positive and selfadjoint, so the corresponding energy norms (see [19]) ‖v‖B =
(Bv, v)1/2

h and ‖v‖B̃ = (B̃v, v)1/2
h are well defined. Further:

B̃ = B + θτα(Λ1 + Λ2) + θKταδSh
Λ1 + θ2τ2αΛ1Λ2,

whereby it follows that

‖v‖2
B̃
≥ ‖v‖2B + θτα‖v‖2Λ1+Λ2

= ‖v‖2
L̃2(Ωh)

+ θτα|v|2H1(Ωh). (32)

Taking the inner product of equation (31) with vk we obtain(
B̃(∂t,0+,τv)k, vk

)
h

+ (Lhvk, vk)h = τ(Lhvk−1
t , vk)h + (f̄k, vk)h.

From Lemma 4 and inequality (32) it follows that
(
B̃(∂t,0+,τv)k, vk

)
h
≥ 1

2

(
∂t,0+,τ

(‖v‖2
L̃2(Ωh)

)k
)

+ θτατ2−α 1− 2−α

Γ(2− α)
|vk−1

t |2H1(Ωh).

Using (11) and (17) we obtain

(Lhvk, vk)h ≥ c0|vk|2H1(Ωh),

τ(Lhvk−1
t , vk)h≤ c1τ‖vk−1

t ‖H1(Ωh)‖vk‖H1(Ωh)≤ c2τ
2‖vk−1

t ‖2H1(Ωh) +
c0

4
‖vk‖2H1(Ωh),

where c1 and c2 are computable constants, and

(f̄k, vk)h ≤ c0

4
‖vk‖2H1(Ωh) +

1
16c0

‖f̄k‖2h.

Setting θ ≥ c2Γ(2 − α)/(1 − 2−α) we obtain the desired result after summation
through k = 1, 2, . . . , m.

Let u be the solution of the initial-boundary value problem (5)–(7) and v the
solution of the finite difference scheme (31), (14). The error z = u− v satisfies the
finite difference scheme

(I+θταΛ1)(B+θταΛ2)(∂t,0+,τz)k+Lh zk−1 = ϕ̄k, x ∈ Ωh, k = 1, 2, . . . , m, (33)

subject to homogeneous boundary and initial conditions

z(x, t) = 0, (x, t) ∈ Γh × Ω+
τ ,

z(x, 0) = 0 x ∈ Ωh,
(34)

where

ϕ̄ = ϕ +
2∑

i,j=1

η̄ij,x̄i +
2∑

i=1

(η̄i,x̄i + ξi,x̄i) + ξx̄2 +
2∑

i=1

ζ̄i + η̄ + δSh
ν ,
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ϕ is the same as before and

η̄ij =
τ

2
[
aijut̄xj

+
(
aijut̄x̄j

) ∣∣
(x+hei,t)

]
,

η̄i = −τ

2
[
(biut̄)

∣∣
(x+hei,t)

+ biut̄

]
,

ζ̄i = −τ

2
(
biut̄x̄i

+ biut̄xi

)
,

η̄ = −τ(T 2
1 T 2

2 c)ut̄,

ξi = −θτα∂α
t,0+,τuxi ,

ξ = θ2τ2α∂α
t,0+,τux1x̄1x2 ,

ν = −θταK∂α
t,0+,τux1x̄1 .

Theorem 5. Under the assumptions of Theorems 1 and 4 the finite difference
scheme (33)–(34) is absolutely stable and its solution satisfies the following a priori
estimate:

‖z‖B̃1,1/2(Qhτ ) ≤ C
{ 2∑

i,j=1

‖η̄ij‖L2(Qihτ ) +
2∑

j=1

(‖η2j‖L2(Q2hτ )

+ ‖η̃1j‖L2(Q1hτ ) + |η̂1j |L2(Ωτ ;H1/2(Sh)) + ‖ξj‖L2(Qjhτ ) + ‖η̄j‖L2(Qjhτ )

+ ‖ζ̄j‖L2(Qhτ ) + ‖ζ̃j‖L2(Qhτ ) + ‖ζ̂j‖L2(Σhτ )

)
+ ‖ξ‖L2(Q2hτ ) + ‖η2‖L2(Q2hτ )

+ ‖η̃1‖L2(Q1hτ ) + |η̂1|L2(Ωτ ;H1/2(Sh)) + ‖η̃‖L2(Qhτ ) + ‖η̄‖L2(Qhτ )

+ ‖η̂‖L2(Σhτ ) + ‖χ̃‖L2(Qhτ ) + ‖χ̂‖L2(Σhτ ) + ‖µ‖L2(Σhτ ) + ‖ν‖L2(Σhτ )

}
. (35)

The proof is similar to the proof of Theorem 4.

Theorem 6. Let the assumptions of Theorem 1 hold, aij , bi ∈ H2(Ω±), c ∈
H1(Ω±), K = const > 0, and let the solution u of the initial-boundary value problem
(5)–(7) belong to the space C2([0, T ], C(Ω̄))∩C2([0, T ], H3(Ω±)). Then the solution
v of finite difference scheme (33)–(34) with c̄ = T 2

1 T 2
2 c, f̄ = T 2

1 T 2
2 f and sufficiently

large θ converges to u and the following convergence rate estimate holds:

‖u− v‖B̃1,α/2(Qhτ ) = O(h2 + τα).

Proof. The terms containing in ϕ were estimated in (20)-(30) while η̄ij , η̄i, η̄,
ζ̄i, ξi, ξ and ν can be estimated directly. For example, from the definition of η̄11 it
follows that

|η̄11(x, t)| ≤ τ√
hτ

max
x1≤x′1≤x1+h

|a11(x′1, x2)|
∥∥∥∥

∂2u

∂x1∂t
(·, x2, ·)

∥∥∥∥
L2((x1,x1+h)×(t−τ,t))

,

whereby, after summation over the mesh Ω1h×Ω+
τ and using the trace theorem for

Sobolev spaces [1], one obtains

‖η̄11‖L2(Q1hτ ) ≤ τ max
x2∈{h,...,(2n−1)h}

‖a11(·, x2)‖C[0,1]

∥∥∥∥
∂2u

∂x1∂t
(·, x2, ·)

∥∥∥∥
L2((0,1)×(0,T ))

≤ Cτ
(‖a11‖C(Ω−)‖u‖H1((0,T ),H2(Ω−)) + ‖a11‖C(Ω+)‖u‖H1((0,T ),H2(Ω+))

)
.



Difference scheme for an interface problem 311

Analogous bounds hold for the other η̄ij , η̄i, η̄ and ζ̄i:

‖η̄ij‖L2(Qihτ ) ≤ Cτ
(‖aij‖C(Ω−)‖u‖H1((0,T ),H2(Ω−))

+‖aij‖C(Ω+)‖u‖H1((0,T ),H2(Ω+))

)
, (36)

‖η̄i‖L2(Qihτ ) ≤ Cτ
(‖bi‖C(Ω−)‖u‖H1((0,T ),H2(Ω−))

+‖bi‖C(Ω+)‖u‖H1((0,T ),H2(Ω+))

)
, (37)

‖ζ̄ij‖L2(Qhτ ) ≤ Cτ
(‖bi‖C(Ω−)‖u‖H1((0,T ),H2(Ω−))

+‖bi‖C(Ω+)‖u‖H1((0,T ),H2(Ω+))

)
, (38)

‖η̄‖L2(Qhτ ) ≤ Cτ
(‖c‖L2(Ω−)‖u‖H1((0,T ),H2(Ω−))

+‖c‖L2(Ω+)‖u‖H1((0,T ),H2(Ω+))

)
. (39)

Let us set ξi = ξi1 + ξi2 = −θτα∂α
t,0+uxi

+ θτα
(
∂α

t,0+uxi
− ∂α

t,0+,τuxi

)
. Then,

similarly as in the previous cases:

‖ξi1‖L2(Qihτ ) ≤ Cτα
(‖∂α

t,0+u‖C([0,T ],H2(Ω−)) + ‖∂α
t,0+u‖C([0,T ],H2(Ω+))

)

≤ Cτα
(‖u‖Cα

+([0,T ],H2(Ω−)) + ‖u‖Cα
+([0,T ],H2(Ω+))

)
.

The second term we estimate using Lemma 3:

‖ξi2‖L2(Qihτ ) ≤ Cτατ2−α
(‖u‖C2([0,T ],H2(Ω−)) + ‖u‖C2([0,T ],H2(Ω+))

)
.

Hence, after obvious majorization, we obtain:

‖ξi‖L2(Qihτ ) ≤ Cτα
(‖u‖C2([0,T ],H2(Ω−)) + ‖u‖C2([0,T ],H2(Ω+))

)
. (40)

The terms ξ and ν can be estimated in analogous manner:

‖ξ‖L2(Q2hτ ) ≤ Cτ2α
(‖u‖C2([0,T ],H3(Ω−)) + ‖u‖C2([0,T ],H3(Ω+))

)
, (41)

‖ν‖L2(Σhτ ) ≤ Cτα
(‖u‖C2([0,T ],H3(Ω−)) + ‖u‖C2([0,T ],H3(Ω+))

)
. (42)

Finally, the result follows from (35), (20)–(30) and (36)–(42).

7. Numerical experiment

We consider the problem (5)–(7) in the domain Ω× (0, T ) with forcing term

f(x1, x2, t) = sin(πx1)
[
sin(πx2)

(
2t2−α

Γ(3− α)
+ 2π2t2

)

+2 |sin(2πx2)|
(

t2−2α

Γ(3− 2α)
+

5π2t2−α

Γ(3− α)

)]
,

aii = 1, aij , bi, c = 0 for i, j = 1, 2, K = 4π and T = 1. The exact solution is

u(x1, x2, t) = sin(πx1)
(

sin(πx2) t2 + |sin(2πx2)| 2t2−α

Γ(3− α)

)
.

We compute the problem using the factorized scheme (31), (14). We test
the temporal errors and convergence orders by letting τ vary and fixing h = 2−8.
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Fig. 1. The exact solution for α = 0.9 and t = 1

Table 1 presents the computational results. It shows that the proposed factorized
scheme generates temporal convergence rate α.

Table 1. The experimental error results and temporal convergence orders for the factorized scheme

when θ =
Γ(2−α)

4(1−2−α)
and h = 2−8 is fixed

α τ ‖z‖B̃1,α/2(Qh,τ ) log2

‖z‖
B̃1,α/2(Qh,τ )

‖z‖
B̃1,α/2(Qh,τ/2)

0.9 2−5 1.62311806 · 10−1 0.7931
2−6 9.36718006 · 10−2 0.8391
2−7 5.23618878 · 10−2 0.8614
2−8 2.88210355 · 10−2 0.8709
2−9 1.57594461 · 10−2 /

0.4 2−5 1.54556906 0.3577
2−6 1.20613588 0.3783
2−7 9.27935048 · 10−1 0.3887
2−8 7.08795916 · 10−1 0.3901
2−9 5.40849987 · 10−1 /

The computational results for the spatial errors and convergence orders are
given in Table 2. We fixed τ sufficiently small to make sure that the dominant
error is from the space discretization. It can be seen that the factorized scheme
achieves second order spatial accuracy.

In Figure 2 we have displayed the exact and numerical solutions on the last
time level for comparison.
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Table 2. The experimental error results and spatial convergence orders for the factorized scheme

when θ =
Γ(2−α)

4(1−2−α)
and τ = 2−14 is fixed

α h ‖z‖B̃1,α/2(Qh,τ ) log2

‖z‖
B̃1,α/2(Qh,τ )

‖z‖
B̃1,α/2(Qh/2,τ )

0.9 2−2 7.20603969 · 10−1 2.0100
2−3 1.78901098 · 10−1 2.0009
2−4 4.46971707 · 10−2 1.9017
2−5 1.12387233 · 10−2 1.9317
2−6 2.94593731 · 10−3 /

Fig. 2. Solution behavior for α = 0.9, T = 1, h = 2−5 and τ = 2−8.
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