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CHARACTERIZATION OF (η, γ, k,2)-DINI-LIPSCHITZ FUNCTIONS
IN TERMS OF THEIR HELGASON FOURIER TRANSFORM

Radouan Daher and Salah El Ouadih

Abstract. In this paper, using a generalized translation operator, we obtain an analog
of Younis Theorem 5.2 in [M. S. Younis, Fourier transforms of Dini-Lipschitz functions, Int. J.
Math. Math. Sci. 9 (2),(1986), 301–312.] for the Helgason Fourier transform of a set of functions
satisfying the (η, γ, k, 2)-Dini-Lipschitz condition in the space L2 for functions on noncompact
rank one Riemannian symmetric spaces.

1. Introduction

Younis Theorem 5.2 [10] characterized the set of functions in L2(R) satisfying
the Dini-Lipschitz condition by means of an asymptotic estimate growth of the
norm of their Fourier transforms, namely we have

Theorem 1.1 [10] Let f ∈ L2(R). Then the following are equivalent

(i) ‖f(x + t)− f(x)‖ = O
(

tη

(log 1
t )γ

)
, as t → 0, 0 < η < 1, γ ≥ 0,

(ii)
∫

|λ|≥r

|f̂(λ)|2dλ = O

(
r−2η

(log r)2γ

)
, as r → ∞, where f̂ stands for the

Fourier transform of f .

In this paper, for rank one symmetric spaces, we prove the generalization of
Theorem 1.1 for the Helgason Fourier transform of a class of functions satisfying
the (η, γ, k, 2)-Dini-Lipschitz condition in the space L2. For this purpose, we use
the generalized translation operator. We point out that similar results have been
established in the context of non compact rank one Riemannian symetric spaces [9].

2. Helgason Fourier transformation on symmetric spaces

Riemannian symmetric spaces constitute a remarkable class of Riemannian
manifolds on which various problems of geometry, function theory, and mathemat-
ical physics are actively studied (e.g., see [2–6]). For example, the Fourier series
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expansion (more exactly, its analog) is defined on compact symmetric spaces and
the Fourier transform is defined on noncompact symmetric spaces; moreover, many
problems of the classical harmonic analysis have their natural analogs for sym-
metric spaces. Among all Riemannian symmetric spaces we especially distinguish
the class of rank 1 Riemannian symmetric spaces. These manifolds possess nice
geometric properties; in particular, they are two-point homogeneous spaces (see [9,
Chapter 8]), while all geodesics on compact rank 1 symmetric spaces are closed
and have the same length (see [1]). The class of rank 1 Riemannian symmetric
spaces includes the n-dimensional sphere Sn and the n-dimensional Lobachevskĭi
space. Henceforth by a rank 1 symmetric space we mean a noncompact rank 1
Riemannian symmetric space.

Here we collect the necessary facts about the Fourier transformation on sym-
metric spaces and the spherical Fourier transformation (see [2, 3]). For the required
properties of semisimple Lie groups and symmetric spaces, we refer the reader, e.g.,
to [4, 5]. An arbitrary Riemannian symmetric space X of noncompact type can be
represented as the factor space G/K, where G is a connected noncompact semisim-
ple Lie group with finite center, and K is a maximal Compact subgroup of G. ON
X = G/K the group G acts transitively by left shifts, and K coincides with the
stabilizer of the point o = eK (e is the unity of G). Let G = NAK be an Iwasawa
decomposition for G, and let g, k, a, n be the Lie algebras of the groups G, K, A,
N , respectively. We denote by M we mean the centralizer of the subgroup A in K
and put B = K/M . Let dx be a G-invariant measure on X; the symbols db and dk
will denote the normalized K-invariant measures on B and K, respectively.

We denote by a∗ the real space dual to a, and by W the finite Weyl group
acting on a∗. Let

∑
be the set of restricted roots (

∑ ⊂ a∗), let
∑+ be the set of

restricted positive roots, and let

a+ =
{

h ∈ a : α(h) > 0, α ∈ ∑+
}

be the positive Weyl chamber. If ρ is the half-sum of the positive roots (with
multiplicity), then ρ ∈ a∗. Let 〈, 〉 be the Killing form on the Lie algebra g. This
form is positive definite on a. For λ ∈ a∗, let Hλ denote a vector in a such that
λ(H) = 〈Hλ, H〉 for all H ∈ a. For λ, µ ∈ a∗ we put 〈λ, µ〉 := 〈Hλ,Hµ〉. The
correspondence λ 7→ Hλ enables us to identify a∗ and a. Via this identification, the
action of the Weyl group W can be transferred to a. Let

a∗+ =
{
λ ∈ a∗ : Hλ ∈ a+

}
.

If X is a symmetric space of rank 1, then dim a∗ = 1, and the set
∑+ consists of

the roots α and 2α with some multiplicities a and b depending on X (see [2]). In
this case we identify the set a∗ with R via the correspondence λ ↔ λα, λ ∈ R.
Upon this identification positive numbers correspond to the set a∗+. The numbers
mα and m2α are frequent in various formulas for rank 1 symmetric spaces. For
example, the area of a sphere of radius t on X is equal to

S(t) = c(sinh t)mα(sinh 2t)m2α ,
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where c is some constant; the dimension of X is equal to

dim X = mα + m2α + 1.

We return to the case in which X = G/K is an arbitrary symmetric space.
Given g ∈ G, denote by A(g) ∈ a the unique element satisfying

g = n · exp A(g) · u,

where u ∈ K and n ∈ N . For x = gK ∈ X and b = kM ∈ B = K/M , we put

A(x, b) := A(k−1g).

We denote by D(X) and D(G) the sets of infinitely differentiable compactly-
supported functions on X and G. Let dg be the element of the Haar measure
on G. We assume that the Haar measure on G is normed so that

∫

X

f(x) dx =
∫

G

f(go) dg, f ∈ D(X).

For a function f ∈ D(X), the Helgason Fourier transform on X was introduced by
S. Helgason (see [3] or [6]) and is defined by the formula

f̂(λ, b) :=
∫

X

f(x)e(iλ+ρ)(A(x,b)) dx, λ ∈ a∗, b ∈ B = K/M.

We can norm the measure on X so that the inverse Fourier transform on X
would have the form

f(x) =
1
|W |

∫

a∗×B

f̂(λ, b)e(iλ+ρ)(A(x,b))|c(λ)|−2dλ db,

where |W | is the order of the Weyl group, dλ is the element of the Euclidean
measure on a∗, and c(λ) is the Harish-Chandra function. Henceforth, for brevity,
we use the notation

dµ(λ) := |c(λ)|−2dλ.

Also, the Plancherel formula is valid:

‖f‖22 :=
∫

X

|f(x)|2 dx =
1
|W |

∫

a∗×B

|f̂(λ, b)|2 dµ(λ) db =
∫

a∗+×B

|f̂(λ, b)|2 dµ(λ) db.

By continuity, the mapping f 7→ f̂(λ, b) extends from D(X) to an isomorphism of
the Hilbert space L2(X) = L2(X, dx) onto the Hilbert space L2(a∗+ ×B, dµ(λ)db).

Introduce the translation operator on X. Let n = dim X. Denote by d(x, y)
the distance between points x, y ∈ X and let

σ(x; t) = {y ∈ X : d(x, y) = t},
be the sphere of radius t > 0 on X centered at x. Let dσx(y) be the (n − 1)-
dimensional area element of the sphere σ(x; t) and let |σ(t)| be the area of the
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whole sphere σ(x; t) (it is independent of the point x). We denote by C0(X) the set
of all continuous compactly-supported functions on X. Given f ∈ C0(X), define
the generalized translation operator Sh by the formula

(Stf)(x) =
1

|σ(t)|
∫

σ(x;t)

f(y) dσx(y), t > 0;

i.e., (Stf)(x) is the average of f over σ(x; t). Observe that the operator St can also
be called the spherical mean operator (this is the usual term if X coincides with the
Euclidean space Rn when we have the natural translation operator f(x) → f(x+a)).

Lemma 2.1. [8] The following inequality is valid for every function f ∈ L2(X)
and every t ∈ R+ = [0; +∞):

‖Stf‖2 ≤ ‖f‖2.

An important role in harmonic analysis on symmetric spaces is played by
spherical functions (see [2]). For λ ∈ a∗, let ϕλ(t) denote the zonal spherical
function on G defined by the Harish-Chandra formula

ϕλ(g) =
∫

K

e(iλ+ρ)(A(kg)) dk, g ∈ G.

We list some properties of the spherical functions to be used later on

ϕλ(u1gu2) = ϕλ(g), u1, u2 ∈ K,

ϕλ(e) = 1,

Λϕλ = −(λ2 + ρ2)ϕλ,

where Λ is the Laplace operator on X, and∫

K

ϕλ(gkh) dk = ϕλ(g)ϕλ(h), g, h ∈ G.

Lemma 2.2. [8] If f ∈ L2(X), then

Ŝtf(λ, b) = ϕλ(t)f̂(λ, b), λ, t ∈ R+ = [0; +∞).

Lemma 2.3. [7] The following inequalities are valid for a spherical function
ϕλ(t) (λ, t ∈ R+):

(i) |ϕλ(t)| ≤ 1,
(ii) 1− ϕλ(t) ≤ t2(λ2 + ρ2),
(iii) there is a constant c > 0 such that 1− ϕλ(t) ≥ c, for λt ≥ 1.

For f ∈ L2(X), we define the finite differences of first and higher order as
follows:

∆1
t f = ∆tf = (I − St)f,

∆k
t f = ∆t(∆k−1

t f) = (I − St)kf, k = 2, 3, . . . ,

where I is the unit operator in the space L2(X).
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3. Main result

In this section we give the main result of this paper. We need first to define
the (η, γ, k, 2)-Dini-Lipschitz class.

Definition 3.1. Let η ∈ (0, 1) and γ ≥ 0. A function f ∈ L2(X) is said to
be in the (η, γ, k, 2)-Dini-Lipschitz class, denoted by Lip(η, γ, k, 2), if

‖∆k
t f‖2 = O

(
tη

(log 1
t )

γ

)
as t → 0.

Lemma 3.2. For f ∈ L2(X),

‖∆k
t f‖22 =

∫ +∞

0

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db.

Proof. From Lemma 2.2, we have

∆̂k
t f(λ, b)) = (1− ϕλ(t))kf̂(λ, b), λ, t ∈ R+ = [0; +∞).

Now by Plancherel formula, we have the result.

Theorem 3.3. Let f ∈ L2(X). Then the following are equivalent:
(a) f ∈ Lip(η, γ, k, 2), η ∈ (0, 1),

(b)
∫ +∞

r

∫

B

|f̂(λ, b)|2 dλ db = O

(
r−2η−n+1

(log r)2γ

)
, as r →∞.

Proof. (a) ⇒ (b) Let f ∈ Lip(η, γ, k, 2). Then we have

‖∆k
t f‖22 = O

(
tη

(log 1
t )

γ

)
as t → 0.

From Lemma 3.2, we have

‖∆k
t f‖22 =

∫ +∞

0

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db.

If λ ∈ [ 1t ,
2
t ], then λt ≥ 1 and (iii) of Lemma 2.3 implies that

1 ≤ 1
c2k

|1− ϕλ(t)|2k.

Then
∫ 2

t

1
t

∫

B

|f̂(λ, b)|2 dµ(λ)db ≤ 1
c2k

∫ 2
t

1
t

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db

≤ 1
c2k

∫ +∞

0

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db

≤ 1
c2k

‖∆k
t f‖22 = O

(
t2η

(log 1
t )

2γ

)
.
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From [8], we have |c(λ)|−2 ³ λn−1, n = dim X. Hence,
∫ 2

h

1
t

∫

B

|f̂(λ, b)|2λn−1 dλ db = O

(
t2η

(log 1
t )

2γ

)
,

or, equivalently,
∫ 2r

r

∫

B

|f̂(λ, b)|2 dλ db ≤ C
r−2η−n+1

(log r)2γ
, r →∞,

where C is a positive constant. Now,
∫ +∞

r

∫

B

|f̂(λ, b)|2 dλ db =
∞∑

i=0

∫ 2i+1r

2ir

∫

B

|f̂(λ, b)|2 dλ db

≤ C

(
r−2η−n+1

(log r)2γ
+

(2r)−2η−n+1

(log 2r)2γ
+

(4r)−2η−n+1

(log 4r)2γ
+ · · ·

)

≤ C
r−2η−n+1

(log r)2γ

(
1 + 2−2η−n+1 + (2−2η−n+1)2 + (2−2η−n+1)3 + · · · )

≤ Kη,n
r−2η−n+1

(log r)2γ
,

where Kη,n = C(1− 2−2η−n+1)−1 since 2−2η−n+1 < 1. Consequently
∫ +∞

r

∫

B

|f̂(λ, b)|2 dλ db = O

(
r−2η−n+1

(log r)2γ

)
, as r →∞.

(b) ⇒ (a). Suppose now that
∫ +∞

r

∫

B

|f̂(λ, b)|2 dλ db = O

(
r−2η−n+1

(log r)2γ

)
, as r →∞. (1)

Then ∫ 2r

r

∫

B

|f̂(λ, b)|2 dλ db = O

(
r−2η−n+1

(log r)2γ

)
,

whence
∫ 2r

r

∫

B

|f̂(λ, b)|2λn−1 dλ db ≤ 2n−1rn−1

∫ 2r

r

∫

B

|f̂(λ, b)|2 dλ db

≤ C ′
r−2η

(log r)2γ
.

Now,
∫ +∞

r

∫

B

|f̂(λ, b)|2λn−1 dλ db ≤
∞∑

k=0

∫ 2k+1r

2kr

∫

B

|f̂(λ, b)|2λn−1 dλ

≤ C ′
∞∑

k=0

2−2kη r−2η

(log r)2γ
.
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Consequently,
∫ +∞

r

∫

B

|f̂(λ, b)|2λn−1 dλ db = O

(
r−2η

(log r)2γ

)
,

and, by |c(λ)|−2 ³ λn−1,
∫ +∞

r

∫

B

|f̂(λ, b)|2 dµ(λ) db = O

(
r−2η

(log r)2γ

)
. (2)

Write ‖∆k
t f‖22 = I1 + I2, where

I1 =
∫ 1

t

0

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db,

and

I2 =
∫ +∞

1
t

∫

B

|1− ϕλ(t)|2k|f̂(λ, b)|2 dµ(λ) db.

Firstly, it follows from the inequality |ϕλ(t)| ≤ 1 that

I2 ≤ 22k

∫ +∞

1
t

∫

B

|f̂(λ, b)|2 dµ(λ) db = O

(
t2η

(log 1
t )

2γ

)
, as t → 0.

In order to estimate I1, we use the inequalities (i) and (ii) of Lemma 2.3:

I1 =
∫ 1

t

0

∫

B

|1− ϕλ(t)|2k−1|1− ϕλ(t)||f̂(λ, b)|2 dµ(λ)db

≤ 22k−1

∫ 1
t

0

∫

B

|1− ϕλ(t)||f̂(λ, b)|2 dµ(λ) db

≤ 22k−1t2
∫ 1

t

0

∫

B

(λ2 + ρ2)|f̂(λ, b)|2 dµ(λ) db.

Now, we apply integration by parts for the function

φ(r) =
∫ +∞

r

∫

B

|f̂(λ, b)|2 dµ(λ) db,

to get

I1 ≤ 22k−1t2
∫ 1/t

0

−(r2 + ρ2)φ′(r) dr

≤ 22k−1t2
∫ 1/t

0

−r2φ′(r) dr

≤ 22k−1t2
(
− 1

t2
φ(

1
t
) + 2

∫ 1/t

0

rφ(r) dr

)

≤ −22k−1φ(
1
t
) + 22kt2

∫ 1/t

0

rφ(r) dr

≤ 22kt2
∫ 1/t

0

rφ(r) dr.
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Since φ(r) = O
(

r−2η

(log r)2γ

)
, we have rφ(r) = O

(
r1−2η

(log r)2γ

)
and

∫ 1/t

0

rφ(r) dr = O

(∫ 1/t

0

r1−2η

(log r)2γ
dr

)
= O

(
t2η−2

(log 1
t )

2γ

)
,

so that

I1 = O

(
t2η

(log 1
t )

2γ

)
.

Combining the estimates for I1 and I2 gives

‖∆k
t f‖2 = O

(
tη

(log 1
t )

γ

)
as t → 0,

and this ends the proof of the theorem.

4. Remarks

Noncompact rank 1 Riemannian symmetric spaces together with Euclidean
spaces constitute the class of noncompact two-point homogeneous Riemannian
spaces (see [9]), and many theorems of analysis on rank 1 symmetric spaces have
natural analogs for Euclidean spaces. We now consider analogs of the Younis The-
orem 5.2 [10] for the Euclidean space Rn, n ≥ 1, which can be obtained from
Theorems 1.1 and 3.3.

Let x, y ∈ Rn, x = (x1, . . . , xn), y = (y1, . . . , yn). By definition we put

〈x, y〉 := x1y1 + · · ·+ xnyn, |x| :=
√
〈x, y〉,

where dx is the element of the Lebesgue measure on Rn. For every function f ∈
C0(Rn), the Fourier transform f̂(λ) is defined by

f̂(λ) = (2π)−n/2

∫

Rn

f(x)e−i〈λ,x〉 dx, λ ∈ Rn,

and the Fourier transform extends by continuity to the Hilbert space L2(Rn).

Let f ∈ L2(Rn). We say that the function f belongs to the Dini-Lipschitz
class LipRn(η, γ, k, 2), 0 < η < 1, γ ≥ 0, if

‖∆k
yf‖L2(Rn) = O

(
|y|η

(log 1
|y| )

γ

)
, as |y| → 0,

where

∆1
yf(x) = ∆yf(x) = f(x + y)− f(x), ∆k

t f(x) = ∆y(∆k−1
y f(x)), k = 2, 3, . . . .

By analogy with the proof of Theorem 1.1 (see [10, Theorem 5.2]), we can establish
the following
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Theorem 4.1. If f ∈ L2(Rn) and f̂(λ) is its Fourier transform then the
conditions

f ∈ LipRn(η, γ, k, 2), 0 < η < 1, γ ≥ 0

and ∫

|λ|≥r

|f̂(λ)|2 dλ = O

(
r−2η

(log r)2γ

)
, as r →∞, (3)

are equivalent.

Suppose that σ = σn−1 := {w ∈ Rn : |w| = 1} is the unit sphere in Rn, dw
is the (n − 1)-dimensional area element of the sphere σ, and |σ| is the area of the
whole sphere σ. Given f ∈ C0(Rn), define the operator St by the following formula
(if it is given on the space Rn then we call it the spherical mean operator):

(Stf)(x) :=
1
|σ|

∫

σ

f(x + tw) dw, t ≥ 0.

In particular, for n = 1 the operator St has the form (Stf)(x) = 1
2 (f(x+ t)+f(x−

t)). The operator St extends by continuity to the Hilbert space L2(Rn).
We say that a function f belongs to the spherical Dini-Lipschitz class

Lips
Rn(η, γ, k, 2), 0 < η < 1, γ ≥ 0 if f ∈ L2(Rn) and

‖∆k
t f‖L2(Rn) = O

(
tη

(log 1
t )

γ

)
, as t → 0,

where

∆1
t f = ∆tf = (I − St)f, ∆k

t f = ∆t(∆k−1
t f) = (I − St)kf, k = 2, 3, . . . .

By analogy with the proof of Theorem 3.3, we can establish the following

Theorem 4.2. If f ∈ L2(Rn) and f̂(λ) = f̂(tw) (λ ∈ Rn, t ≥ 0, and
w ∈ σn−1) is its Fourier transform then the conditions

f ∈ Lips
Rn(η, γ, k, 2), (4)

and ∫ ∞

r

∫

σn−1
|f̂(tw)|2 dt dw = O

(
r−2η−n+1

(log r)2γ

)
, as r →∞, (5)

are equivalent.

Suppose that the function f̂(λ) satisfies (3). We pass to the polar coordinates
λ = tw, t ≥ 0, w ∈ σn−1. Then (3) takes the form

∫ ∞

r

∫

σn−1
|f̂(tw)|2tn−1 dt dw = O

(
r−2η

(log r)2γ

)
, as r →∞. (6)

It is easy to see that (6) is equivalent to (5) (the corresponding arguments can be
carried out by analogy with the proof of equivalence of (1) and (2) in Theorem 3.3);
therefore, (3) and (4) are equivalent, and we obtain the following
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Corollary 4.3. The function classes LipRn(η, γ, k, 2) and Lips
Rn(η, γ, k, 2)

coincide.
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