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CONSTRUCTION OF COSPECTRAL REGULAR GRAPHS

Ravindra B. Bapat and Masoud Karimi

Abstract. Graphs G and H are called cospectral if they have the same characteristic poly-
nomial, equivalently, if they have the same eigenvalues considering multiplicities. In this article
we introduce a construction to produce pairs of cospectral regular graphs. We also investigate
conditions under which the graphs are integral.

1. Introduction

We consider simple graphs, that is, graphs without loops or parallel edges. For
basic notions in graph theory we refer to [6], whereas for preliminaries on graphs
and matrices, see [1]. By the eigenvalues of a graph G, we mean the eigenvalues
of its adjacency matrix A(G). Graphs G and H are said to be cospectral if they
have the same eigenvalues, counting multiplicities, or equivalently, they have the
same characteristic polynomial. There are considerable literatures on construction
of cospectral graphs [4, 5].

A graph with only integer eigenvalues is termed an integral graph. In Section
2 of this paper we first describe a construction starting with r copies each of regular
graphs G and H. It is possible to explicitly describe the eigenvalues of the resulting
graph. Under certain conditions on the parameters, we get an infinite family of
regular integral graphs. The construction allows us to obtain cospectral integral
regular graphs. In certain cases we obtain biregular graphs (that is, graphs with two
possible degrees) and graphs which have the same eigenvalues, but with different
multiplicities.

2. The construction

In this section we present a new method of constructing cospectral graphs.
Graph T r(G, H) from r > 1 copies of given graphs G and H by adding three types
of edges is defined. Formulas for eigenvalues of the resulting graph, conditions for
being regular (Corollary 2.3), and integral (Proposition 2.9) have been derived. It
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is shown in what way infinitely many pairs of cospectral (regular) graphs can be
constructed. We also provide some figures and examples of constructed graphs.

A square matrix is said to be regular if all its row sums and column sums are
equal. The common value of the row and column sum is called the regularity of
the matrix. Clearly, in this case the regularity is an eigenvalue with the all ones
vector as an eigenvector. The next result is known when A and B are adjacency
matrices of graphs (see [3, Theorem 2.8, p. 57]). We present a proof of the more
general statement for completeness.

Theorem 2.1. Let A and B be symmetric, regular matrices of orders p, s and
regularity q, w, respectively. If q, µ2, · · · , µp and w, λ2, · · · , λs, are respectively the
eigenvalues of A and B, then the eigenvalues of the matrix

T =
(

A Jp×s

Js×p B

)

are µ2, · · · , µp, λ2, · · · , λs and [q + w ±
√

(q + w)2 + 4(ps− wq)]/2.

Proof. First suppose that U = [u1, . . . , up]′ is an eigenvector of A corresponding
to µi 6= q. Since 1 is an eigenvector of A corresponding to q, we may assume that
1′U = 0. We see that

(
A Jn×s

Js×n B

)



U
0
...
0


 = µi




U
0
...
0




and thus µi is an eigenvalue of T for i = 2, . . . p. Similarly we can show that λi,
for i = 1, . . . , s, is an eigenvalue of T . Let the remaining two eigenvalues of T be x
and y. Since

x + y + λ2 + · · ·+ λp + µ2 + · · ·+ µs = tr(T ) = tr(B) + tr(A)

w + λ2 + · · ·+ λp = tr(B)

q + µ2 + · · ·+ µs = tr(A),

then x + y = q + w. It is well-known that the sum of all 2× 2 principal minors of a
square matrix, say H, is equal to the second elementary symmetric function of the
eigenvalues of H, which we denote by σ2(H). We have

σ2(T ) = xy + x(µ2 + · · ·+ µp) + x(λ2 + · · ·+ λs)

+ y(µ2 + · · ·+ µp) + y(λ2 + · · ·+ λs)

+
∑

2≤i<j

µiµj +
∑

2≤i<j

λiλj +
∑

2≤i,j

λiµj .

Hence

σ2(T ) = xy + (x + y)(tr(B) + tr(A)− q − w)

+
∑

2≤i<j

µiµj +
∑

2≤i<j

λiλj + (tr(B)− w)(tr(A)− q).
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Similarly,

σ2(A) = q(µ2 + · · ·+ µp) +
∑

2≤i<j

µiµj = q(tr(A)− q) +
∑

2≤i<j

µiµj

σ2(B) = w(λ2 + · · ·+ λs) +
∑

2≤i<j

λiλj = w(tr(B)− w) +
∑

2≤i<j

λiλj .

Note that every 2× 2 principal minor of T is either a 2× 2 principal minor of A or
B, or has the form

∣∣∣∣
aii 1
1 bjj

∣∣∣∣ = aiibjj − 1, i = 1, . . . , p, j = 1, . . . , s,

where aii and bjj are diagonal entries of A and B, respectively. Therefore,

σ2(T ) = σ2(A) + σ2(B) +
s∑

j=1

p∑

i=1

(aiibjj − 1)

= σ2(A) + σ2(B) + tr(A) tr(B)− ps.

From the previous relations we get

xy + (x + y)(tr(B) + tr(A)− q − w) + (tr(B)− w)(tr(A)− q)

= q(tr(A)− q) + w(tr(B)− w) + tr(A) tr(B)− ps.

This, together with x + y = q + w yields xy = qw − ps, giving the values of x and
y as [w + q ±

√
(q + w)2 + 4(ps− wq)]/2.

Lemma 2.2. Suppose that X and Y are square matrices of the same order.
Let

T =




X Y . . . Y
Y X . . . Y
...

...
. . .

...
Y Y . . . X


 (1)

be an r × r block matrix. Then the eigenvalues of T are the eigenvalues of X − Y ,
r − 1 times, and the eigenvalues of X + (r − 1)Y .

Proof. By transforming T into a triangular block matrix we can compute the
characteristic polynomial of T as product of the characteristic polynomials of the
diagonal block matrices, and then we see that the eigenvalues of T are the same as
the eigenvalues of the diagonal block entries. To this end, to the first column add
all the other columns. Then we have
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(2)

Now subtract the first row from the other rows to get

(3)

Since T − λI has a form similar to T , we conclude that |T − λI| = |X +
(r − 1)Y − λI| |X − Y − λI| . . . |X − Y − λI|︸ ︷︷ ︸

r−1

. It follows that the eigenvalues of

T are the eigenvalues of X −Y , r− 1 times, and the eigenvalues of X + (r− 1)Y .

We now introduce the definition of graph in accordance with the title of this
section. Let G and H be graphs of p and s vertices respectively. Take r > 1 copies
of G, say G1, . . . , Gr and r copies of H, say H1, . . . , Hr. Then T r(G,H) is defined
as the graph with vertex set

⋃r
i=1(V (Gi)∪ V (Hi)) and edge set defined as follows:

(i) Each vertex of Hi is adjacent to each vertex of Gi, i = 1, . . . , r.

(ii) Each vertex of Gi is adjacent to the corresponding vertex of Gj for all i 6= j.

(iii) Each vertex of Gi is adjacent to the corresponding neighbors in Gj for all i 6= j.

Note that the adjacency matrix of T r(G,H), denoted A(T r(G,H)), is in the
block form given in (1) with

(4)

Figure 1 illustrates some graphs constructed by this definition.

Theorem 2.3. Let G be a q-regular graph and H a w-regular graph. If
q, µ2, . . . , µp are eigenvalues of A(G) and w, λ2, . . . , λs are eigenvalues of A(H),
then the eigenvalues of A(T r(G,H)) are as follows.
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eigenvalue multiplicity

rµi + r − 1 (i = 2, . . . , p) 1

λi (i = 2, . . . , s) r

−1 (r − 1)(p− 1)

rq+r−1+w±
√

(rq+r−1+w)2+4(ps−(rq+r−1)w)

2 1

w−1±
√

(w−1)2+4(ps+w)

2 r − 1

Fig. 1. T r(2K1, K1) for r = 2, 3, 4 and 5

Proof. In view of Lemma 2.2 the eigenvalues of A(T r(G, H)) are the eigenvalues
of

(5)

and the eigenvalues of

(6)

of multiplicity r− 1. On the other hand, the matrices rA(G) + (r− 1)I, B and −I
are regular, hence by Theorem 2.1, we can compute the eigenvalues of X +(r−1)Y
and X − Y which are listed as follows:
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eigenvalues of X + (r − 1)Y multiplicity

(r − 1) + rµi (i = 2, . . . , p) 1

λi (i = 2, . . . , s) 1

rq+r−1+w±
√

(rq+r−1+w)2+4(ps−(rq+r−1)w)

2 1

Also

eigenvalues of X − Y multiplicity

−1 (p− 1)(r − 1)

λi (i = 2, . . . , s) r − 1

w−1±
√

(w−1)2+4(ps+w)

2 r − 1

Hence the proof is complete.

Corollary 2.4. T r(G,H) is a regular graph if and only if G is q-regular and
H is w-regular for some q and w such that

s + rq + (r − 1) = p + w.

In this case, the eigenvalues of A(T r(G,H)) are as follows.

eigenvalue multiplicity

λi (i = 2, . . . , s) r

rµi + r − 1 (i = 2, . . . , p) 1

−1 (r − 1)(p− 1)

p + w 1

w − s 1

w−1±
√

(w−1)2+4(ps+w)

2 r − 1 (7)

Proof. First suppose that T r(G,H) is regular. By considering the matrices X,
Y and A(T r(G,H)) in the definition of T r(G,H), it is not hard to see that A(G)
and A(H) are regular matrices, and so G and H are regular graphs. Thus G is a
q−regular graph and H is a w−regular graph for some q and w. Since every row
sum of A(T r(G, H)) is equal to p + w or q + s + (r − 1)(q + 1), the regularity of
T r(G,H) implies s + rq + (r − 1) = p + w.

The converse statement is clear.
To see the second statement, assume T r(G, H) is regular. Using s + rq +

(r − 1) = p + w we see after some simplification that

rq + r − 1 + w +
√

(rq + r − 1 + w)2 + 4(ps− (rq + r − 1)w)
2

= p + w
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and

rq + r − 1 + w −
√

(rq + r − 1 + w)2 + 4(ps− (rq + r − 1)w)
2

= w − s.

To complete the proof, update the table in Theorem 2.3.

In view of Corollary 2.4, if G and H are regular graphs, then T r(G,H) is either
a regular or a biregular graph.

Remark 2.5 (i) Let G and H be graphs. Set T r
0 (G,H) := T r(G,H), and for

n ≥ 1 set T r
n(G,H) := T r(T r

n−1(G,H),H). If pn+1 is the number of vertices of
T r

n+1(G,H) then pn+1 = r(pn + s). The solution of this recurrence relation with
the initial condition p0 =: p is pn = prn + rs

r−1 (rn − 1).

(ii) Suppose that G,G′ and H, H ′ are pairs of cospectral graphs. Then for
any n, T r

n(G,H) and T r
n(G′, H ′) are also cospectral graphs. In this manner we

can construct infinitely many pairs of cospectral graphs. If we take G,G′ to be
cospectral and H = H ′ to be a complete graph then we obtain infinitely many
pairs of cospectral regular graphs in view of the following result.

Theorem 2.6. Suppose that the hypotheses of Theorem 2.3 hold. If T r
m(G,H)

is regular for some m ≥ 2, then H is a complete graph and T r
n(G,H) is a regular

graph for all n.

Proof. Suppose that T r
m(G,H) is regular where m ≥ 2. Since

T r(T r
n−1(G,H),H) = T r

n(G,H), in view of Corollary 2.4, T r
n(G,H) is regular for

all n ≤ m. In particular, T r
1 (G, H) and T r

2 (G,H) are regular.

Let T r
1 (G,H) be q1-regular with p1 vertices. Then q1 = p+w and p1 = r(p+s).

By Corollary 2.4 we have

s = p1 + w − rq1 − r + 1 = r(p + s) + w − r(p + w)− r + 1, (8)

and it follows that w = s− 1. Therefore H is a complete graph.

We proceed by induction on n. So assume that T r
n(G,H) is regular for n = k ≥

2. Let qk be the regularity of T r
k (G,H). Since qn = rqn−1 + r− 1, for n = 1, . . . , k,

then Corollary 2.4 implies that

s = pn−1 + w − rqn−1 − r + 1, for n = 1, . . . , k. (9)

Now apply w = s− 1 in (9) and deduce that

pn−1 = r(qn−1 + 1) for n = 1, . . . , k. (10)

In view of the fact that H is complete we can use (10) as a necessary and sufficient
condition for the regularity of T r

n(G, H). Hence to complete the proof we need to
verify that (10) is also valid for n = k + 1. To achieve this, first note that the
recurrence relation qn = rqn−1 + r − 1 implies qk = s+r−1

r−1 (rk − 1) + qrk, where
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q0 = q. Now assume n = k. Hence

r(qk + 1) = r

(
s + r − 1

r − 1
(rk − 1) + qrk + 1

)

= r

((
s

r − 1
+ 1

)
(rk − 1) + qrk + 1

)

=
rs

r − 1
(rk − 1) + rrk − r + qrk + r

=
rs

r − 1
(rk − 1) + rrk(q + 1)

=
rs

r − 1
(rk − 1) + rpk

= pk.

Therefore T r
n(G,H) is regular for all n.

In view of Theorem 2.6, that T r
1 (G,H) is regular does not guarantee the reg-

ularity of T r
2 (G,H), whereas if T r

2 (G, H) is regular, then T r
n(G,H) is regular for

all n.

Corollary 2.7. Suppose that for all n ≥ 0 the graph T r
n(G,H) is qn-regular

with eigenvalues qn, µn
2 , . . . , µn

pn
. Then the eigenvalues of T r

n+1(G,H) are given as
follows.

eigenvalue multiplicity

rµn
i + r − 1 (i = 2, . . . , pn) 1

−1 (r − 1)(pn − 1) + r(s− 1) + 1

qn+1 1

w−1±
√

(w−1)2+4(pns+w)

2 r − 1

Proof. Since T r
n(G, H) is a regular graph for n ≥ 0, by Theorem 2.6, H is a

complete graph, say H = Ks. Hence in Table (7), we have λi = −1 for i = 2, . . . , s,
appearing a total of r times. Note that w − s = −1 appearing once. Thus −1 will
appear as many as (r − 1)(pn − 1) + r(s − 1) + 1 times. Furthermore, qn+1, as
regularity of T r

n+1(G,H) equals p+w in (7). The remaining eigenvalues come from
those of T r

n(G,H) which has pn vertices.

Fig. 2. The graph of T 2
1 (pK1, K1) for p = 1, . . . , k
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Example 2.8. Let pK1 denote p copies of K1, that is, an empty graph with
p vertices. For p = 1, 2, 3, . . . , k, Figure 2 illustrates the graph T 2

1 (pK1,K1). If we
put r = 2, s = 1, w = 0 and q = 0 in Theorem 2.3, then eigenvalues are as below.

Note that T 2
1 (pK1,K1) is always bipartite, and it is an integral graph if and only

if p = m(m + 1) for some integer m. In this case the eigenvalues are

eigenvalue multiplicity

1 p− 1

−1 p− 1

±m,±(m + 1) 1

For the general case we have the following proposition.

Proposition 2.9. T r
1 (pK1, sK1) is integral if and only if one of the following

holds.
(i) r = 2k and there exist integers m and n such that ps = n(n+1) = (m+k)(m−

k + 1).
(ii) r = 2k + 1 and there exist integers m and n such that ps = n(n + 1) =

(m + k)(m− k).
Furthermore, in this case the eigenvalues are

Proof. Suppose that T r
1 (pK1, sK1) is integral. Since w = q = 0, in Theorem

2.3 we have
rq + r − 1 + w ±

√
(rq + r − 1 + w)2 + 4(ps− (rq + r − 1)w)

2

=
r − 1±

√
(r − 1)2 + 4ps

2
(11)
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and
w − 1±

√
(w − 1)2 + 4(ps + w)

2
=
−1±√1 + 4ps

2
. (12)

By our assumption, (11) and (12) must be integers. We have two cases.

Case 1. r = 2k for some k. Then A :=
√

(r − 1)2 + 4ps is an odd integer,
say A = 2m + 1 for some m. This shows that

4ps = (2m+1)2−(r−1)2 = (2m+1+2k−1)(2m+1−2k+1) = 4(m+k)(m−k+1),

and so ps = (m + k)(m− k + 1).

On the other hand, B :=
√

1 + 4ps is also an odd integer, say B = 2n + 1 for
some n. Again we have ps = n(n + 1). Hence n(n + 1) = (m + k)(m − k + 1). In
this case, relation (11) reduces to 2k−1±(2m+1)

2 and (12) reduces to −1±(2n+1)
2 .

Case 2. r = 2k + 1 for some k. Then r − 1 ±
√

(r − 1)2 + 4ps = 2k ±√
(r − 1)2 + 4ps is an even integer. This means that

√
(r − 1)2 + 4ps must be

an even integer, say 2m for some m. Hence 4ps = (2m)2 − (2k)2, and so ps =
(m− k)(m + k). Also as in Case 1, we must have ps = n(n + 1) for some n. Hence
n(n + 1) = (m − k)(m + k). In this case relation (11) reduces to k ±m and (12)
reduces to −1±(2n+1)

2 .

The proof of the converse is straightforward.

Remark 2.10. (i) In view of Proposition 2.9, whether T r
1 (pK1, sK1) is integral

or not just depends on the value of ps and not on the individual values of p and
s. Using Maple we explored parameters (r, ps, m, n, k) such that T r

1 (pK1, sK1) is
integral. In Table 1 we have listed all possible values for r ≤ 12 and ps ≤ 42 such
that T r

1 (pK1, sK1) is integral.

Table 1. All possible values for r ≤ 12 and ps ≤ 42 such that T r
1 (pK1, sK1) is integral

(ii) Suppose that p, s > 1 and that T r
1 (pK1, sK1) is integral. If ps = t1t2 such

that t1, t2 > 1, then in view of Proposition 2.9, T r
1 (pK1, sK1) and T r

1 (t1K1, t2K1)
have the same eigenvalues regardless of multiplicity. Furthermore, T r

1 (pK1, sK1)
and T r

1 (t1K1, t2K1) have the same number of vertices whenever p + s = t1 + t2.
Consequently, T r

1 (pK1, sK1) and T r
1 (pK1, sK1) have the same number of vertices

and have the same eigenvalues regardless of multiplicity. Note that T r
1 (pK1, sK1)

is never an integral graph if p = s because in this case ps is a perfect square that
by Proposition 2.9 must satisfy ps = n(n + 1) for some n, which is impossible.
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Example 2.11. By Table 1, if ps = 12 and r = 2, then T 2
1 (3K1, 4K1),

T 2
1 (4K1, 3K1), T 2

1 (2K1, 6K1) and T 2
1 (6K1, 2K1) are all integral biregular graphs,

and regardless of multiplicity they have the same eigenvalues. By Proposition 2.9,
these eigenvalues are 0, 1,−1, 3,−3, 4 and −4. See Figure 3.

Fig. 3. T 2
1 (3K1, 4K1), T 2

1 (4K1, 3K1), T 2
1 (2K1, 6K1) and T 2

1 (6K1, 2K1)
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