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INTEGRAL INEQUALITIES OF JENSEN TYPE
FOR λ-CONVEX FUNCTIONS

S. S. Dragomir

Abstract. Some integral inequalities of Jensen type for λ-convex functions defined on real
intervals are given.

1. Introduction

Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and f are
real non-negative functions defined in J and I, respectively.

Definition 1. [20] Let h:J → [0,∞) with h not identical to 0. We say that
f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f(tx + (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) (1.1)

for all t ∈ (0, 1).

For some results concerning this class of functions see [3, 13, 17–20].
This class of functions contains the class of Godunova-Levin type functions [9,

10, 14, 16]. It also contains the class of P functions and quasi-convex functions.
For some results on P -functions see [15] while for quasi convex functions, the reader
can consult [11].

Definition 2. [4] Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) →
[0,∞) is said to be s-convex (in the second sense) or Breckner s-convex if

f(tx + (1− t)y) ≤ tsf(x) + (1− t)sf(y)

for all x, y ∈ [0,∞) and t ∈ [0, 1].

For some properties of this class of functions see [1, 2, 4, 7, 8, 12].
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We can introduce now another class of functions defined on a convex subset C
of a linear space X that contains as limiting cases the classes of Godunova-Levin
and P -functions.

Definition 3. We say that the function f : C ⊆ X → [0,∞) is of s-Godunova-
Levin type, with s ∈ [0, 1], if

f(tx + (1− t)y) ≤ 1
ts

f(x) +
1

(1− t)s
f(y), (1.2)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by Qs(C) the class of s-
Godunova-Levin functions defined on C, then we obviously have

P (C) = Q0(C) ⊆ Qs1(C) ⊆ Qs2(C) ⊆ Q1(C) = Q(C)

for 0 ≤ s1 ≤ s2 ≤ 1.
For different inequalities of Hermite-Hadamard or Jensen type related to these

classes of functions, see [1, 3, 13, 15–19].
A function h:J → R is said to be supermultiplicative if

h(ts) ≥ h(t)h(s) for any t, s ∈ J. (1.3)

If the inequality (1.3) is reversed, then h is said to be submultiplicative. If the
equality holds in (1.3) then h is said to be a multiplicative function on J .

In [15], we introduced the following concept of functions:

Definition 4. Let λ: [0,∞) → [0,∞) be a function with the property that
λ(t) > 0 for all t > 0. A mapping f : C → R defined on convex subset C of a linear
space X is called λ-convex on C if

f

(
αx + βy

α + β

)
≤ λ(α)f(x) + λ(β)f(y)

λ(α + β)
(1.4)

for all α, β ≥ 0 with α + β > 0 and x, y ∈ C.

We observe that if f :C → R is λ-convex on C, then f is h-convex on C with
h(t) = λ(t)

λ(1) , t ∈ [0, 1]. If f :C → [0,∞) is h-convex function with h supermulti-
plicative on [0,∞), then f is λ-convex with λ = h.

We have the following result providing many examples of subadditive functions
λ: [0,∞) → [0,∞).

Theorem 1. [5] Let h(z) =
∑∞

n=0 anzn be a power series with nonnegative
coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D(0, R) with
R > 0 or R = ∞. If r ∈ (0, R) then the function λr: [0,∞) → [0,∞) given by

λr(t) := ln
[

h(r)
h(r exp(−t))

]
(1.5)

is nonnegative, increasing and subadditive on [0,∞).



Integral inequalities of Jensen type 47

Now, if we take h(z) = 1
1−z , z ∈ D(0, 1), then

λr(t) = ln
[
1− r exp(−t)

1− r

]
(1.6)

is nonnegative, increasing and subadditive on [0,∞) for any r ∈ (0, 1).
If we take h(z) = exp(z), z ∈ C then

λr(t) = r[1− exp(−t)] (1.7)

is nonnegative, increasing and subadditive on [0,∞) for any r > 0.

Corollary 1. [5] Let h(z) =
∑∞

n=0 anzn be a power series with nonnegative
coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D(0, R) with
R > 0 or R = ∞ and r ∈ (0, R). For a mapping f :C → R defined on convex subset
C of a linear space X, the following statements are equivalent:

(i) The function f is λr-convex with λr: [0,∞) → [0,∞),

λr(t) := ln
[

h(r)
h(r exp(−t))

]
;

(ii) We have the inequality
[

h(r)
h(r exp(−α− β))

]f( αx+βy
α+β )

≤
[

h(r)
h(r exp(−α))

]f(x) [
h(r)

h(r exp(−β))

]f(y)

(1.8)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
(iii) We have the inequality

[h(r exp(−α))]f(x)[h(r exp(−β))]f(y)

[h(r exp(−α− β))]f( αx+βy
α+β )

≤ [h(r)]f(x)+f(y)−f( αx+βy
α+β ) (1.9)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.

We observe that, in the case when

λr(t) = r[1− exp(−t)], t ≥ 0

then the function f is λr-convex on convex subset C of a linear space X iff

f

(
αx + βy

α + β

)
≤ [1− exp(−α)]f(x) + [1− exp(−β)]f(y)

1− exp(−α− β)
(1.10)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C. Notice that this definition is
independent of r > 0.

The inequality (1.10) is equivalent to

f

(
αx + βy

α + β

)
≤ exp(β)[exp(α)− 1]f(x) + exp(α)[exp(β)− 1]f(y)

exp(α + β)− 1
(1.11)

for any α, β ≥ 0 with α + β > 0 and x, y ∈ C.
Motivated by the large interest on Jensen and Hermite-Hadamard inequalities

that has been materialized in the last two decades by the publication of hundreds
of papers, we establish here some inequalities of these types for λ-convex functions
defined on real intervals.
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2. Unweighted Jensen integral inequalities

The following discrete inequality of Jensen type has been obtained in [6]:

Theorem 2. Let λ: [0,∞) → [0,∞) be a function with the property that
λ(t) > 0 for all t > 0 and a mapping f :C → R defined on convex subset C of a
linear space X. The following statements are equivalent:

(i) f is λ-convex on C;

(ii) For all xi ∈ C and pi ≥ 0 with i ∈ {1, . . . , n}, n ≥ 2 so that Pn > 0, we
have the inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

λ(Pn)

n∑
i=1

λ(pi)f(xi). (2.1)

The proof can be done by induction over n ≥ 2.

Corollary 2. Let f : C → R be a λ-convex function on C and αi ∈ [0, 1],
i ∈ {1, . . . , n} with

∑n
i=1 αi = 1. Then for any xi ∈ C with i ∈ {1, . . . , n} we have

the inequality

f

(
n∑

i=1

αixi

)
≤ 1

λ(1)

n∑
i=1

λ(αi)f(xi). (2.2)

In particular, we have

f

(
x1 + · · ·+ xn

n

)
≤ c(n)

f(x1) + · · ·+ f(xn)
n

, (2.3)

where

c(n) :=
nλ( 1

n )
λ(1)

.

We have the following version of Jensen’s inequality as well:

Corollary 3. Let f :C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, . . . , n}, n ≥ 2 so that Pn > 0. Then we have the inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

λ(1)

n∑
i=1

λ

(
pi

Pn

)
f(xi). (2.4)

The proof follows by (2.2) for αi = pi

Pn
, i ∈ {1, . . . , n}.

We are able now to state and prove the following unweighted Jensen inequality
for Riemann integral:

Theorem 3. Let u: [a, b] → [m,M ] be a Riemann integrable function on [a, b].
Let λ: [0,∞) → [0,∞) be a function with the property that λ(t) > 0 for all t > 0
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and the function f : [m,M ] → [0,∞) is λ -convex and Riemann integrable on the
interval [m,M ]. If the following limit exists

lim
t→0+

λ(t)
t

= k ∈ (0,∞) (2.5)

then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ k

λ(b− a)

∫ b

a

f(u(t)) dt. (2.6)

Proof. Consider the sequence of divisions

dn : x
(n)
i = a +

i

n
(b− a), i ∈ {0, . . . , n}

and the intermediate points

ξ
(n)
i = a +

i

n
(b− a), i ∈ {0, . . . , n}.

We observe that the norm of the division ∆n := maxi∈{0,...,n−1}(x
(n)
i+1 − x

(n)
i ) =

b−a
n → 0 as n →∞ and since u is Riemann integrable on [a, b], then
∫ b

a

u(t) dt = lim
n→∞

n−1∑
i=0

u(ξ(n)
i )[x(n)

i+1 − x
(n)
i ] = lim

n→∞
b− a

n

n−1∑
i=0

u

(
a +

i

n
(b− a)

)
.

Also, since f : [m,M ] → [0,∞) is Riemann integrable, then f ◦ u is Riemann inte-
grable and

∫ b

a

f(u(t)) dt = lim
n→∞

b− a

n

n−1∑
i=0

f

[
u(a +

i

n
(b− a))

]
.

Utilising the inequality (2.1) for pi := b−a
n and xi := u(a + i

n (b− a)) we have

f

(
1

b− a

b− a

n

n−1∑
i=0

u

(
a +

i

n
(b− a)

))

≤ n

λ(b− a)(b− a)
λ

(
b− a

n

)
b− a

n

n−1∑
i=0

f

(
u

(
a +

i

n
(b− a)

))

(2.7)

for any n ≥ 1.
Observe that

lim
n→∞

λ( b−a
n )

b−a
n

= lim
t→0+

λ(t)
t

= k ∈ (0,∞),

and by taking the limit over n →∞ in the inequality (2.7), we deduce the desired
result (2.6).

Corollary 4. Let u: [a, b] → [m,M ] be a Riemann integrable function on
[a, b] and h(z) =

∑∞
n=0 anzn be a power series with nonnegative coefficients an ≥ 0
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for all n ∈ N and convergent on the open disk D(0, R) with R > 0 or R = ∞ and
r ∈ (0, R). Let λr: [0,∞) → [0,∞) be given by

λr(t) := ln
[

h(r)
h(r exp(−t))

]

and the function f : [m,M ] → [0,∞) be λr-convex and Riemann integrable on the
interval [m,M ]. Then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ rh′(r)

h(r) ln
[

h(r)
h(r exp(−(b−a)))

]
∫ b

a

f(u(t)) dt. (2.8)

Proof. We observe that λr is differentiable on (0,∞) and

λ′r(t) :=
r exp(−t)h′(r exp(−t))

h(r exp(−t))

for t ∈ (0,∞), where h′(z) =
∑∞

n=1 nanzn−1. Since λr(0) = 0, therefore

k = lim
s→0+

λ(s)
s

= λ′+(0) =
rh′(r)
h(r)

> 0 for r ∈ (0, R).

Utilising (2.6) we get the desired result (2.8).
The following Hermite-Hadamard type inequality holds:

Corollary 5. With the assumptions of Theorem 3 for f and λ and if [a, b] =
[m,M ], we have the Hermite-Hadamard type inequality

f

(
a + b

2

)
≤ k

λ(b− a)

∫ b

a

f(t) dt. (2.9)

Remark 1. Assume that the function f : [m,M ] → [0,∞) is λ-convex and
Riemann integrable on the interval [m,M ] with

λ(t) = 1− exp(−t), t ≥ 0.

If u: [a, b] → [m,M ] is a Riemann integrable function on [a, b], then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ 1

1− exp(−(b− a))

∫ b

a

f(u(t)) dt.

In particular, for [a, b] = [m,M ] and u(t) = t we have the Hermite-Hadamard type
inequality

f

(
a + b

2

)
≤ 1

1− exp(−(b− a))

∫ b

a

f(t) dt.

The proof follows from (2.6) observing that

k = lim
t→0+

λ(t)
t

= λ′+(0) = 1.
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Utilising a similar argument and the inequality (2.4) we can state the following
result as well:

Theorem 4. Let u: [a, b] → [m,M ] be a Riemann integrable function on [a, b].
Let λ: [0,∞) → [0,∞) be a function with the property that λ(t) > 0 for all t > 0
and the function f : [m,M ] → [0,∞) is λ -convex and Riemann integrable on the
interval [m,M ]. If the limit (2.5) exists, then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ k

λ(1)(b− a)

∫ b

a

f(u(t)) dt. (2.10)

Examples of such inequalities are incorporated below:

Corollary 6. Let u: [a, b] → [m,M ] be a Riemann integrable function on
[a, b] and h(z) =

∑∞
n=0 anzn be a power series with nonnegative coefficients an ≥ 0

for all n ∈ N and convergent on the open disk D(0, R) with R > 0 or R = ∞ and
r ∈ (0, R). Let λr: [0,∞) → [0,∞) be given by

λr(t) := ln
[

h(r)
h(r exp(−t))

]

and the function f : [m,M ] → [0,∞) be λr-convex and Riemann integrable on the
interval [m,M ]. Then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ rh′(r)

(b− a)h(r) ln
[

h(r)
h(re−1)

]
∫ b

a

f(u(t)) dt. (2.11)

We also have the Hermite-Hadamard type inequality:

Corollary 7. With the assumptions of Theorem 4 for f and λ and if [a, b] =
[m,M ], we have the Hermite-Hadamard type inequality

f

(
a + b

2

)
≤ k

λ(1)(b− a)

∫ b

a

f(t) dt. (2.12)

Remark 2. Assume that the function f : [m,M ] → [0,∞) is λ-convex and
Riemann integrable on the interval [m,M ] with λ(t) = 1 − exp(−t), t ≥ 0. If
u: [a, b] → [m,M ] is a Riemann integrable function on [a, b], then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ e

e− 1
· 1
b− a

∫ b

a

f(u(t)) dt.

In particular, for [a, b] = [m,M ] and u(t) = t we have the Hermite-Hadamard type
inequality

f

(
a + b

2

)
≤ e

e− 1
· 1
b− a

∫ b

a

f(t) dt.
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3. Weighted Jensen integral inequalities

We can prove now a weighted version of Jensen inequality.

Theorem 5. Let u,w: [a, b] → [m,M ] be Riemann integrable functions on
[a, b] and w(t) ≥ 0 for any t ∈ [a, b] with

∫ b

a
w(t) dt > 0. Let λ: [0,∞) → [0,∞) be a

function with the property that λ(t) > 0 for all t > 0 and the function f : [m,M ] →
[0,∞) is λ-convex and Riemann integrable on the interval [m, M ]. If the following
limit exists, is finite and

lim
t→∞

t

λ(t)
= ` > 0, (3.1)

then

f

(
1∫ b

a
w(t) dt

∫ b

a

w(t)u(t) dt

)
≤ `

1∫ b

a
w(t) dt

∫ b

a

λ(w(t))f(u(t)) dt. (3.2)

Proof. Consider the sequence of divisions

dn : x
(n)
i = a +

i

n
(b− a), i ∈ {0, . . . , n}

and the intermediate points

ξ
(n)
i = a +

i

n
(b− a), i ∈ {0, . . . , n}.

We observe that the norm of the division ∆n := maxi∈{0,...,n−1}(x
(n)
i+1 − x

(n)
i ) =

b−a
n → 0 as n →∞.

If we write the inequality (2.1) for the sequences

pi = w

(
a +

i

n
(b− a)

)
and xi = u

(
a +

i

n
(b− a)

)
, i ∈ {0, . . . , n}

we get

f

(
1∑n−1

i=0 w(a + i
n (b− a))

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
u

(
a +

i

n
(b− a)

))

≤ 1
λ(

∑n−1
i=0 w(a + i

n (b− a)))

×
n−1∑
i=0

λ

(
w

(
a +

i

n
(b− a)

))
f

(
u

(
a +

i

n
(b− a)

))
, (3.3)

for n ≥ 1.
Observe that

f

(
1∑n−1

i=0 w(a + i
n (b− a))

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
u

(
a +

i

n
(b− a)

))

= f

(
b−a
n

b−a
n

∑n−1
i=0 w(a + i

n (b− a))

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
u

(
a +

i

n
(b− a)

))
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and
1

λ(
∑n−1

i=0 w(a + i
n (b− a)))

×
n−1∑
i=0

λ

(
w

(
a +

i

n
(b− a)

))
f

(
u

(
a +

i

n
(b− a)

))

=
∑n−1

i=0 w(a + i
n (b− a))

λ(
∑n−1

i=0 w(a + i
n (b− a)))

× 1
b−a
n

∑n−1
i=0 w(a + i

n (b− a))

× b− a

n

n−1∑
i=0

λ

(
w

(
a +

i

n
(b− a)

))
f

(
u

(
a +

i

n
(b− a)

))
.

Then from (3.3) we get

f

(
b−a
n

b−a
n

∑n−1
i=0 w(a + i

n (b− a))

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
u

(
a +

i

n
(b− a)

))

≤
∑n−1

i=0 w(a + i
n (b− a))

λ(
∑n−1

i=0 w(a + i
n (b− a)))

× 1
b−a
n

∑n−1
i=0 w(a + i

n (b− a))

× b− a

n

n−1∑
i=0

λ

(
w

(
a +

i

n
(b− a)

))
f

(
u

(
a +

i

n
(b− a)

))
(3.4)

for all n ≥ 1. Since

lim
n→∞

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
= lim

n→∞
b− a

n

n−1∑
i=0

w

(
a +

i

n
(b− a)

)
× lim

n→∞
n

b− a

=
∫ b

a

w(t) dt×∞ = ∞,

then

lim
n→∞

∑n−1
i=0 w(a + i

n (b− a))

λ(
∑n−1

i=0 w(a + i
n (b− a)))

= lim
n→∞

t

λ(t)
= `

and by letting n →∞ in (3.4) we get the desired result (3.2).
The following unweighted version of Jensen inequality holds:

Corollary 8. Let u: [a, b] → [m,M ] be a Riemann integrable function on
[a, b]. Let λ: [0,∞) → [0,∞) be a function with the property that λ(t) > 0 for all
t > 0 and the function f : [m,M ] → [0,∞) be λ -convex and Riemann integrable on
the interval [m,M ]. If the limit (3.1) exists, then

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ `λ(1)

1
b− a

∫ b

a

f(u(t)) dt. (3.5)

Moreover, if [a, b] = [m,M ], then by taking u(t) = t, t ∈ [a, b], we have the Hermite-
Hadamard inequality

f

(
a + b

2

)
≤ `λ(1)

1
b− a

∫ b

a

f(t) dt. (3.6)
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Remark 3. In order to give examples of subadditive functions λ: [0,∞) →
[0,∞) with the property that λ(t) > 0 for all t > 0 and for which the following
limit exists, is finite and

lim
t→∞

t

λ(t)
= ` > 0, (3.7)

we consider the power series h(z) =
∑∞

n=1 anzn with nonnegative coefficients an ≥ 0
for all n ≥ 1, a1 > 0 and convergent on the open disk D(0, R) with R > 0 or R = ∞.

Let λr: [0,∞) → [0,∞) be given by

λr(t) := ln
[

h(r)
h(r exp(−t))

]
.

We know that λr is differentiable on (0,∞) and

λ′r(t) =
r exp(−t)h′(r exp(−t))

h(r exp(−t))

for t ∈ (0,∞), where h′(z) =
∑∞

n=1 nanzn−1. By l’Hospital’s rule we have

lim
t→∞

t

λr(t)
= lim

t→∞
1

λ′r(t)
.

Since for the power series h(z) = a1z + a2z
2 + a3z

3 + · · · we have h′(z) = a1 +
2a2z + 3a3z

2 + · · · , then

λ′r(t) =
r exp(−t)(a1 + 2a2r exp(−t) + 3a3(r exp(−t))2 + · · · )
r exp(−t)(a1 + a2r exp(−t) + a3(r exp(−t))2 + · · · )

=
a1 + 2a2r exp(−t) + 3a3(r exp(−t))2 + · · ·
a1 + a2r exp(−t) + a3(r exp(−t))2 + · · · , t ∈ (0,∞).

Therefore limt→∞ λ′r(t) = 1 and limt→∞ t
λr(t) = 1.

Corollary 9. Let u,w: [a, b] → [m,M ] be Riemann integrable functions on
[a, b] and w(t) ≥ 0 for any t ∈ [a, b] with

∫ b

a
w(t) dt > 0. Consider the power series

h(z) =
∑∞

n=1 anzn with nonnegative coefficients an ≥ 0 for all n ≥ 1, a1 > 0 and
convergent on the open disk D(0, R) with R > 0 or R = ∞. Let r ∈ (0, R) and
assume that the function f : [m,M ] → [0,∞) is λr-convex and Riemann integrable
on the interval [m,M ] with

λr(t) := ln
[

h(r)
h(r exp(−t))

]
.

Then we have the inequality

f

(
1∫ b

a
w(t) dt

∫ b

a

w(t)u(t) dt

)
≤ 1∫ b

a
w(t) dt

∫ b

a

ln
[

h(r)
h(r exp(−w(t)))

]
f(u(t)) dt.

(3.8)
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The proof follows by Theorem 5 observing that ` = 1.
Remark 4. With the assumptions of Corollary 9 for u, h and f we have

f

(
1

b− a

∫ b

a

u(t) dt

)
≤ ln

[
h(r)

h(re−1)

]
1

b− a

∫ b

a

f(u(t)) dt. (3.9)

In particular, for [a, b] = [m,M ] we have the Hermite-Hadamard inequality

f

(
a + b

2

)
≤ ln

[
h(r)

h(re−1)

]
1

b− a

∫ b

a

f(t) dt. (3.10)

4. Interval dependency

Let u: [a, b] → [m,M ] be a Riemann integrable function on [a, b]. Let
λ: [0,∞) → [0,∞) be a function with the property that λ(t) > 0 for all t > 0
and the function f : [m,M ] → [0,∞) be λ-convex and Riemann integrable on the
interval [m,M ]. Assume also that the following limit exists

lim
t→0+

λ(t)
t

= k ∈ (0,∞).

By Theorem 3 we have that

∆(f, u, λ; [a, b]) :=
∫ b

a

f(u(t)) dt− 1
k

λ(b− a)f
(

1
b− a

∫ b

a

u(t) dt

)
≥ 0. (4.1)

Theorem 6. With the above assumptions for u, λ, f and k we have:
(i) For any c ∈ (a, b) we have

∆(f, u, λ; [a, b]) ≥ ∆(f, u, λ; [a, c]) + ∆(f, u, λ; [c, b]) ≥ 0, (4.2)

i.e., ∆(f, u, λ; ·) is a superadditive function of intervals.
(ii) For any c, d ∈ (a, b) with c < d we have

∆(f, u, λ; [a, b]) ≥ ∆(f, u, λ; [c, d]) ≥ 0, (4.3)

i.e., ∆(f, u, λ; ·) is a monotonic nondecreasing function of intervals.

Proof. (i) By the λ-convexity of f we have for c ∈ (a, b) that

f

(
1

b− a

∫ b

a

u(t) dt

)

= f

(
c− a

b− a

(
1

c− a

∫ c

a

u(t) dt

)
+

b− c

b− a

(
1

b− c

∫ b

c

u(t) dt

))

≤ λ(c− a)f( 1
c−a

∫ c

a
u(t) dt) + λ(b− c)f( 1

b−c

∫ b

c
u(t) dt)

λ(b− a)
.
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Therefore

∆(f, u, λ; [a, b])

=
∫ c

a

f(u(t)) dt +
∫ b

c

f(u(t)) dt− 1
k

λ(b− a)f
(

1
b− a

∫ b

a

u(t) dt

)

≥
∫ c

a

f(u(t)) dt +
∫ b

c

f(u(t)) dt− 1
k

λ(b− a)

×
[

λ(c− a)f( 1
c−a

∫ c

a
u(t) dt) + λ(b− c)f( 1

b−c

∫ b

c
u(t) dt)

λ(b− a)

]

= ∆(f, u, λ; [a, c]) + ∆(f, u, λ; [c, b])

and the inequality (4.2) is proved.
(ii) Obvious by the property (4.2).
Remark 5. If [a, b] = [m,M ] and u(t) = t, t ∈ [a, b] then the functional

δ(f, λ; [a, b]) :=
∫ b

a

f(t) dt− 1
k

λ(b− a)f
(

a + b

2

)
≥ 0

is a superadditive and monotonic nondecreasing function of intervals.

REFERENCES

[1] M. Alomari and M. Darus, The Hadamard’s inequality for s-convex function, Int. J. Math.
Anal. (Ruse) 2, 13–16, (2008), 639–646.

[2] M. Alomari and M. Darus, Hadamard-type inequalities for s-convex functions, Int. Math.
Forum 3, 37–40 (2008), 1965–1975.
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in topologischen linearen Räumen, Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.

[5] S. S. Dragomir, Inequalities of Hermite-Hadamard type for λ-convex functions on linear
spaces, Preprint RGMIA Res. Rep. Coll. 17 (2014).

[6] S. S. Dragomir, Discrete inequalities of Jensen type for λ-convex functions on linear spaces,
Preprint RGMIA Res. Rep. Coll. 17 (2014).

[7] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the
second sense, Demonstratio Math. 32, 4 (1999), 687–696.

[8] S.S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in
linear spaces, Demonstratio Math. 33, 1 (2000), 43–49.

[9] S. S. Dragomir and B. Mond, On Hadamard’s inequality for a class of functions of Godunova
and Levin, Indian J. Math. 39, 1 (1997), 1–9.

[10] S. S. Dragomir and C. E. M. Pearce, On Jensen’s inequality for a class of functions of
Godunova and Levin, Period. Math. Hungar. 33, 2 (1996), 93–100.

[11] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality,
Bull. Austral. Math. Soc. 57 (1998), 377-385.

[12] H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48,
1 (1994), 100–111.

[13] M. A. Latif, On some inequalities for h-convex functions, Int. J. Math. Anal. (Ruse) 4, 29–32
(2010), 1473–1482.



Integral inequalities of Jensen type 57
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