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ON STARRABLE LATTICES

Hossain Khass, Ali Reza Ashrafi and Behnam Bazigaran

Abstract. A starrable lattice is one with a cancellative semigroup structure satisfying
(x ∨ y)(x ∧ y) = xy. If the cancellative semigroup is a group, then we say that the lattice is fully
starrable. In this paper, it is proved that distributivity is a strict generalization of starrability.
We also show that a lattice (X,≤) is distributive if and only if there is an abelian group (G, +)
and an injection f : X → G such that f(x) + f(y) = f(x ∨ y) + f(x ∧ y) for all x, y ∈ X, while it
is fully starrable if and only if there is an abelian group (G, +) and a bijection f : X → G such
that f(x) + f(y) = f(x ∨ y) + f(x ∧ y), for all x, y ∈ X.

1. Introduction

We first introduce some terminologies and notations that will be used along
the paper. Let (X,≤) be a poset. The set of all down-sets of (X,≤) is
{A ⊆ X | A = ↓A} and will be denoted by O(X); where ↓A = {x ∈ X | (∃ ∈ A)
(x ≤ a)}. (O(X),⊆) is a sublattice of (P(X),⊆); where P(X) is the set of all
subsets of X.

Let (X,≤) be a lattice. The set of all ∨-irreducible elements of X will be
denoted by J(X) and we assume a bottom element of X is ∨-irreducible. The
spectrum of a ∈ X in the lattice (X,≤) is defined by spec(a) = {x ∈ J(X) | x ≤ a}.
If (R,≤) is a Boolean lattice and a ∈ R, the complement of a will be denoted ac.
By a linear lattice we mean a chain. For any n ∈ N, Dn denotes the set of all
positive divisors of n. For sets A and B, BA is the set of all functions f : A → B.

Definition 1. (S,≤, ?) is said to be a starred lattice if (S,≤) is a lattice,
(S, ?) is a cancellative semigroup, and for every x, y ∈ S,

(x ∨ y) ? (x ∧ y) = x ? y.

A lattice (X,≤) is said to be starrable if there is a binary operation ∗ on X such
that (X,≤, ∗) is a starred lattice. A semigroup structure on a lattice (X,≤), with
binary operation ∗, is said to be compatible with (X,≤) if (X,≤, ∗) is a starred
lattice.
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We know that the class of all cancellative semigroups is not a variety of alge-
bras, because it is not closed under homomorphic images. So if we think of a starred
lattice (X,≤, ∗) as an algebraic structure (X,∧,∨, ∗), where ∧ and ∨ represent the
meet and join operations in the lattice (X,≤), then the class of all starred lattices
is not a variety of algebras. Note that any semigroup is a starred lattice with any
linear order.

If (S,≤, ∗) is a starred lattice, (S, ∗) is clearly commutative; and if (X,≤) is
a starrable lattice then it is easy to see that (X,≤−1) is also starrable. In fact,
if (X,≤, ∗) is a starred lattice then (X,≤−1, ∗) is also a starred lattice. One of
the simplest starrable lattice is the lattice (N, |). In fact, for every m,n ∈ N,
(m,n)[m,n] = mn.

The proofs of the following two lemmas are straightforward and omitted for
brevity.

Lemma 1. Let (X,≤) be a lattice and 1 ∈ X be the greatest element in it. If
(X \ {1},≤) is a lattice then it is a sublattice of (X,≤).

Lemma 2. Let (S, ·) be a (cancellative) semigroup, 1 be an element with 1 /∈ S
and ∗ be a binary operation on S ∪ {1} defined by

a ∗ b = ab, a ∗ 1 = 1 ∗ a = a, 1 ∗ 1 = 1
for every a, b ∈ S. Then (S ∪ {1}, ∗) is a (cancellative) semigroup.

2. Main properties of starrable lattices

In this section, the main properties of starrable lattices are investigated.

Theorem 3. Let (X,≤) be a lattice and 1 ∈ X be a greatest element. If
(X \ {1},≤) is a starrable lattice, then (X,≤) is starrable.

Proof. Let (X \ {1},≤, ·) be a starred lattice. For every a, b ∈ X \ {1}, define
a ∗ b = ab, a ∗ 1 = 1 ∗ a = a, 1 ∗ 1 = 1.

By Lemma 2, (X, ∗) is a cancellative semigroup. Let a, b ∈ X \ {1}. By Lemma 1,
infimum and supremum of a and b are the same in (X,≤) and (X \ {1},≤). Now
it can be verified easily that (X,≤, ∗) is a starred lattice.

Let (X,≤) be a lattice and 0 ∈ X be the smallest element. By duality, if
(X \ {0},≤) is a starrable lattice, then (X,≤) is starrable. On the other hand,
by the previous theorem, the lattice (N ∪ {0}, |) is starrable, because (N, |) is a
starrable lattice.

Theorem 4. Every starrable lattice is distributive.

Proof. Let (X,≤, ·) be a starred lattice. Let a, b, t ∈ X and suppose a∨t = b∨t
and a ∧ t = b ∧ t. It suffices to show a = b (see [1, Theorem 5.1]). We have
at = (a ∧ t)(a ∨ t) = (b∧ t)(b ∨ t) = bt. Thus a = b. Therefore for every a, b, t ∈ X,

a ∨ t = b ∨ t, a ∧ t = b ∧ t → a = b.

Now it is clear that (X,≤) cannot have a sublattice order-isomorphic to N5 or M3.
This shows that (X,≤) is distributive.
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Let ((Xi,≤))i∈I be a collection of posets. The product poset (
∏

i∈I Xi,≤) is
defined so that for every f, g ∈ ∏

i∈I Xi,

f ≤ g ↔ (∀i ∈ I) (f(i) ≤ g(i)) .

Let the posets (Xi,≤) be lattices, then (
∏

i∈I Xi,≤) is lattice with

(∀i ∈ I) ((f ∨ g)(i) = f(i) ∨ g(i))

and
(∀i ∈ I) ((f ∧ g)(i) = f(i) ∧ g(i)) .

Let ((Xi, .))i∈I be a collection of semigroups. The product semigroup (
∏

i∈I Xi, ·)
is defined by (fg)(i) = f(i)g(i). Suppose the (Xi, ·) are cancellative. Then
(
∏

i∈I Xi, ·) is cancellative.

Definition 2. (G,≤, ?) is said to be a fully starred lattice if (G,≤) is a
lattice, (G, ?) is a group, and for every x, y ∈ G,

(x ∨ y) ? (x ∧ y) = x ? y.

A lattice (X,≤) is said to be fully starrable if there is a binary operation ∗ on X
such that (X,≤, ∗) is a fully starred lattice. A group structure on a lattice (X,≤),
with binary operation ∗, is said to be compatible with (X,≤) if (X,≤, ∗) is a fully
starred lattice.

Since every finite cancellative semigroup is a group, every finite starrable lattice
is fully starrable.

Theorem 5. The product of a collection of (fully) starrable lattices is (fully)
starrable.

Proof. Let ((X,≤, ·))i∈I be a collection of (fully) starred lattices. (
∏

i∈I Xi,≤
, ·) is a (fully) starred lattice. Actually, if f, g ∈ ∏

i∈I Xi, then for every i ∈ I,

((f ∨ g)(f ∧ g)) (i) = (f ∨ g)(i)(f ∧ g)(i)

= (f(i) ∨ g(i))(f(i) ∧ g(i))

= f(i)g(i) = (fg)(i),

and so (f ∨ g)(f ∧ g) = fg.
As for starred lattices, we can assume that a fully starred lattice is an algebraic

structure. It is clear that a subalgebra of this algebra is also a starred lattice. It
can be seen easily, as in the theorem above, that a direct product of fully starred
lattices is again a fully starred lattice. Also a homomorphic image of a fully starred
lattice, as an algebraic structure, is also a fully starred lattice. This means that,
unlike the class of all starred lattices, the class of all fully starred lattices is a variety
of algebras.

It is known that the axiom of choice is equivalent to this proposition: Every
nonempty set allows a group structure [3]. The following simple lemma uses the
axiom of choice to prove a more general result:
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Lemma 6. Every set containing an element a, allows an abelian group structure
with identity element a.

It can be proved easily. One can also see [3] for a proof.

Theorem 7. Every nonempty linear lattice is fully starrable. More generally,
if (X,≤) is a linear lattice and a ∈ X, then there is a compatible group structure
on X with identity element a.

Proof. By Lemma 6, there is an abelian group structure on X with identity
element a. For every x, y ∈ X, one of the following is satisfied:
• x ≤ y. Then (x ∨ y)(x ∧ y) = yx = xy.
• y ≤ x. Then (x ∨ y)(x ∧ y) = xy.

Therefore (X,≤, ·) is a fully starred lattice.

Theorem 8. Let A be a set. Then (P(A),⊆) is a fully starrable lattice.

One can prove this theorem by proving that the function ψ : {0, 1}A → P(A) by
ψ(f) = {a ∈ A | f(a) = 1} is an order-isomorphism. More generally, every Boolean
lattice is fully starrable. In fact, if (R,≤) is a Boolean lattice, for every a, b ∈ R
we can define a+ b = (a∨ b)∧ (a∧ b)c and we can know that (R, +,∧) is a Boolean
ring. (R, +) is an abelian group and always (a ∨ b) + (a ∧ b) = a + b.

Next we try to define direct sums for lattices. Let ((Xi,≤))i∈I be a collection
of lattices and for each i ∈ I, let ai ∈ Xi. The sublattice (

⊕
i∈I(Xi, ai),≤) of

(
∏

i∈I Xi,≤) is defined by:
⊕

i∈I

(Xi, ai) =
{

f ∈
∏

i∈I

Xi

∣∣∣∣ there is a finite set J ⊆ I such that

(∀i ∈ I \ J)(f(i) = ai)
}

and is called a direct sum of the (Xi,≤).
Let ((Gi,≤, .))i∈I be a collection of fully starred lattices and suppose for

each i ∈ I, 1i is the identity element of the group (Gi, .). Then the lattice
(
⊕

i∈I(Gi, 1i),≤) is fully starrable, since
⊕

i∈I(Gi, 1i) is a subgroup and a sub-
lattice of

∏
i∈I Gi.

Example 1. Let p1, p2, p3, . . . be the sequence of all prime numbers. For each
n ∈ N, let Mpn =

{
pk

n | k ∈ N ∪ {0}
}
. (Mpk

, |) is a linear lattice and so it is fully
starrable. So we can assume that (Mpk

, |) is a fully starred lattice with identity
element 1 (note that this does not need axiom of choice, because Mpk

is finite).
Define:

ψ :
⊕

n∈N
(Mn, 1) → N, ψ(f) =

∏

n∈N
f(n).

Clearly ψ is well-defined and onto. Suppose ψ(f) | ψ(g). Then
∏

n∈N
f(n) |

∏

n∈N
g(n).
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For each n ∈ N, there are α, β ∈ N ∪ {0} with f(n) = pα
n and g(n) = pβ

n. Clearly
α ≤ β and so f(n) | g(n). Therefore f | g. This shows that ψ is one-to-one and
ψ−1 is increasing. Let f, g ∈ ⊕

n∈N(Mn, 1) and suppose f | g. For each n ∈ N,
f(n) | g(n). Thus ψ(f) | ψ(g). This shows that ψ is increasing. We have proved
that (N, |) is order-isomorphic to a direct sum of linear lattices and so (N, |) is fully
starrable.

We will need the theorem below in the following section.

Theorem 9. A lattice is distributive if and only if it can be lattice-embedded
in a (fully) starrable lattice.

Proof. Let (X,≤) be a lattice. If (X,≤) is distributive lattice, then by [2,
Theorem 119], there is a set A such that (X,≤) can be lattice-embedded in P(A)
which is a fully starrable lattice by Theorem 8. If (X,≤) can be lattice-embedded
in a (fully) starrable lattice, then by Theorem 4, it is distributive.

3. A non-starrable distributive lattice

By Theorem 4, every starrable lattice is distributive. In this section we show
that the converse is not true and there is some distributive lattice which is not
starrable.

Theorem 10. A lattice (X,≤) is
1) distributive if and only if there is an abelian group (G, +) and an injection

f : X → G such that for any x, y ∈ X:

f(x) + f(y) = f(x ∨ y) + f(x ∧ y).

2) fully starrable if and only if there is an abelian group (G, +) and a bijection
f : X → G such that for any x, y ∈ X:

f(x) + f(y) = f(x ∨ y) + f(x ∧ y).

Proof. 1) Let (X,≤) be distributive. By Theorem 9, there is a fully starred
lattice (G,≤, +) and a lattice-embedding f : X → G. For every x, y ∈ X we have:

f(x ∨ y) + f(x ∧ y) = (f(x) ∨ f(y)) + (f(x) ∧ f(y)) = f(x) + f(y).

Conversely, suppose there is some abelian (G,+) and an injection f : X → G
satisfying

f(x) + f(y) = f(x ∨ y) + f(x ∧ y),

for all x, y ∈ X. Suppose a, b, t ∈ X, a∨ t = b∨ t and a∧ t = b∧ t. By [1, Theorem
5.1], it suffices to show that a = b. We have:

f(a) + f(t) = f(a ∨ t) + f(a ∧ t) = f(b ∨ t) + f(b ∧ t) = f(b) + f(t).

Thus f(a) = f(b), which implies that a = b.
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2) Let (X,≤) be fully starrable. There is a group operation + on X such that
(X,≤,+) is a starred lattice. Let f : X → X be the identity function. For every
x, y ∈ X, we have:

f(x) + f(y) = x + y = (x ∨ y) + (x ∧ y) = f(x ∨ y) + f(x ∧ y).

Conversely, suppose there is an abelian group (G, +) and a bijection f : X → G
satisfying

f(x) + f(y) = f(x ∨ y) + f(x ∧ y).

Define the operator ? on X by

x ? y = f−1(f(x) + f(y)).

Clearly, (X, ?) is a group and f : X → G is a group isomorphism. For every
x, y ∈ X,

(x ∨ y) ? (x ∧ y) = f−1(f(x ∨ y) + f(x ∧ y)) = f−1(f(x) + f(y)) = x ? y.

Therefore, (X,≤, ?) is a fully starred lattice.

Definition 3. Let (X,≤) be a finite lattice. A distributer on (X,≤) is a
function f : X → (G, +), where (G, +) is an abelian group, such that for every
x, y ∈ X,

f(x) + f(y) = f(x ∨ y) + f(x ∧ y).

By the previous theorem, a lattice is distributive if and only if there is an
injective distributer on it and is fully starrable if and only if there is a bijective
distributer on it. If f : (X,≤) → (G, +) is a (bijective)(injective) distributer, then
clearly for any a ∈ G, f + a is also a (bijective)(injective) distributer.

Let (X,≤) be a finite distributive lattice. Let 0 = minX and for any A ⊆ X
let A∗ = A \ {0}. For any a ∈ X, unlike [gratzer], we assume 0 ∈ spec a. Let
x, y ∈ X, then by [2, Theorem 107], we have spec(x ∨ y)∗ = spec(x)∗ ∪ spec(y)∗

and so
spec(x ∨ y) = spec(x) ∪ spec(y). (1)

Also because spec(x ∧ y)∗ = spec(x)∗ ∩ spec(y)∗, we have

spec(x ∧ y) = spec(x) ∩ spec(y). (2)

Lemma 11. Let (X,≤) be a finite distributive lattice and θ : J(X) → (G, +)
be a function, where (G, +) is an abelian group. Then the function f : X → G
defined by

f(x) =
∑

t∈spec(x)

θ(t)

is a distributer on (X,≤).
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Proof. For every x, y ∈ X,

∗f(x ∨ y) + f(x ∧ y) =
∑

t∈spec(x∨y)

θ(t) +
∑

t∈spec(x∧y)

θ(t)

=
∑

t∈spec(x)∪spec(y)

θ(t) +
∑

t∈spec(x)∩spec(y)

θ(t)

=
∑

t∈spec(x)

θ(t) +
∑

t∈spec(y)

θ(t) = f(x) + f(y),

in which we used (1) and (2).

Lemma 12. Let (X,≤) be a finite distributive lattice and f : X → (G, +) be
a distributer on it. There is a unique function θ : J(X) → G such that for every
x ∈ X,

f(x) =
∑

t∈spec(x)

θ(t)

Proof. For every x ∈ J(X), by induction we define:

θ(x) = f(x)−
∑

t∈J(X)
t<x

θ(t).

Note that we assume 0 ∈ J(X) and so by definition, θ(0) = f(0). Define the
function g : X → G by:

g(x) =
∑

t∈spec(x)

θ(t).

By the previous lemma, g is a distributer on (X,≤). We need to show that f = g.
For every x ∈ J(X),

f(x) = θ(x) +
∑

t∈J(X)
t<x

θ(t) =
∑

t∈J(X)
t≤x

θ(t) =
∑

t∈spec(x)

θ(t) = g(x). (3)

Using well-founded induction, we show that for every x ∈ X, f(x) = g(x). Suppose
x ∈ X and f(y) = g(y) hold for all y ∈ X with y < x. If x ∈ J(X) then by (3),
f(x) = g(x). Otherwise, there are a, b ∈ X with x = a ∨ b, a < x, b < x and we
have:

f(x) = f(a ∨ b)

= f(a ∨ b) + f(a ∧ b)− f(a ∧ b)

= f(a) + f(b)− f(a ∧ b))

= g(a) + g(b)− g(a ∧ b)

= g(a ∨ b) + g(a ∧ b)− g(a ∧ b)

= g(a ∨ b) = g(x).
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Let δ : J(X) → G be another function such that for every x ∈ X,

f(x) =
∑

t∈spec(x)

δ(t).

For every x ∈ J(X), we have:

f(x) = δ(x) +
∑

t∈J(X)
t<x

δ(t)

and so
δ(x) = f(x)−

∑

t∈J(X)
t<x

δ(t).

By well-founded induction, we prove that δ = θ. Let x ∈ J(X) and suppose for
every t ∈ J(X) with t < x, we have δ(t) = θ(t). Then

δ(x) = f(x)−
∑

t∈J(X)
t<x

δ(t) = f(x)−
∑

t∈J(X)
t<x

θ(t) = θ(x).

This completes the proof.

Definition 4. The unique function θ in the previous theorem will be called
the foundation function of f and will be denoted by θf .

The following theorem is an immediate consequence of the previous lemmas:

Theorem 13. Let (X,≤) be a lattice and (G, +) be an abelian group. There
is a one-to-one correspondence between the set of all distributers of the form
f : X → G and the set of all functions of the form θ : J(X) → G.

Example 2. Let X = {1, 2, 3, 4, 5, 6} and let < be the relation {(1, 4), (1, 5),
(2, 4), (2, 6), (3, 5), (3, 6)}. Then (X,≤) is a poset with Hasse diagram depicted in
Figure 1.

Fig. 1. The Hasse diagram of (X,≤)
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Fig. 2. The Hasse diagram of O(X)

The set of all downsets of this poset is the lattice:

O(X) = {∅,{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},
{1, 2, 3}, {1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6},
{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, X}

which is a free lattice on three generators.
We have:

J(O(X)) = {∅, {1}, {2}, {3}, {1, 2, 4}, {1, 3, 5}, {2, 3, 6}}.
(O(X),⊆) is a distributive lattice, but it is not starrable. To prove this, we need to
show that there is not any injective distributer f : O(X) → (G, +), where (G, +) is
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an abelian group with |G| = 18. Thus, we need to show that there are no injective
distributers of the form f : O(X) → Z18 and there is no injective distributer of
the form f : O(X) → Z3 × Z6. To see this, we need to write a computer program
which generates all possible distributers f : O(X) → Z18 and f : O(X) → Z3 × Z6

by generating their foundation functions. Such a computer program can check that
none of these distributers is injective. An algorithm for such a program is as follows:

• Find the set Ξ of all functions θ : J(O(X)) → Z18.

• For each θ ∈ Ξ, if the quantities
∑

T∈J(O(X))
T⊆A

θ(T ) are distinct for distinct

values of A ∈ O(X), then print “An injective distributer found. The lattice
(O(X),⊆) is starrable” and then exit.

• Find the set Λ of all functions θ : J(O(X)) → Z6 × Z3.

• For each θ ∈ Ξ, if the quantities
∑

T∈J(O(X))
T⊆A

θ(T ) are distinct, for distinct

values of A ∈ O(X), then print “An injective distributer found. The lattice
(O(X),⊆) is starrable” and then exit.

• Print “No injective distributer found. The lattice (O(X),⊆) is not starrable”.

When run, this algorithm will print “No injective distributer found. The lattice
(O(X),⊆) is not starrable” which proves that (O(X),⊆) is not starrable.

We have prepared a C# console computer program based on the above algo-
rithm for our calculations which was presented in Computational Algebra, Com-
putational Number Theory and Applications Conference in Unversity of Kashan
2014. This program is accessible from http://rextester.com/BQHR88905 or from
the authors upon request. For the algorithm above, clearly we lose nothing if we
assume always θ(∅) = 0. This simplification was implemented in our computer
program.

Also, the algorithm can be simplified if the orbits of the action of Aut(G) on
G6 = G × G × G × G × G × G are known; where G is Z18 or Z6 × Z3. Then
the function θ in the algorithm may assume only one representative of each orbit.
This can reduce the volume of calculations. However, we did not try to use this
simplification in our algorithm because it is fast enough to run in a few seconds in
rextester.com compiler.

4. Conclusion

We have introduced starrability and proceeded just a few steps. There are still
a lot of unanswered questions and unsolved problems. For example:

• Construct an infinite class of finite non starrable distributive lattices.

• Is there an inifinite distributive lattice which is not starrable?

• Find a not starrable sublattice of a starrable lattice, if any.

• Is there a starrable lattice, which is not fully starrable?

• Is there a criterion for starrability similar to Birkhoff’s distributivity criterion?
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and many other similar questions. We have tried to answer some and ignored
others. Also, we have tried to circumvent the computer program given above. But
we have not succeeded.
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