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PROXIMITY STRUCTURES AND IDEALS

A. Kandil, S. A. El-Sheikh, M. M. Yakout and Shawqi A. Hazza

Abstract. In this paper, we present a new approach to proximity structures based on the
recognition of many of the entities important in the theory of ideals. So, we give a characterization
of the basic proximity using ideals. Also, we introduce the concept of g-proximities and we show
that for different choice of “g” one can obtain many of the known types of generalized proximities.
Also, characterizations of some types of these proximities – (g0, h0) – are obtained.

1. Introduction

Ideals in topological spaces were introduced by Kuratowski [6], Vaidyanatha-
swamy [12] and Janković and Hamlett [5]. Various classes of generalized proximities
have been extensively studied by many authors including Lodato [8,9]. In [4], the
authors introduced a new approach to construct generalized proximity structures
based on the concept of ideal and an EF-Proximity structure. Thron [11] introduced
grills to investigate proximity structures. In this paper, we present an equivalent
formulation of the notion of basic proximity using ideals and study some of its
properties. The concept of a basic proximity on a set and a basic proximal neigh-
borhood of a set with respect to a basic proximity are obtained. Also we introduce
the concept of g-proximity and we show that for different choice of “g” one can
obtain many types of proximities.

2. Preliminaries

The purpose of this section is merely to recall known results concerning ideals
and proximity spaces. For more information see [1,4–6,10–12].

Definition 2.1. [5] A nonempty collection I of subsets of a nonempty set X
is said to be an ideal on X if it satisfies the following two conditions:

1. A ∈ I and B ⊆ A =⇒ B ∈ I (hereditarity),
2. A ∈ I and B ∈ I =⇒ A ∪B ∈ I (finite additivity),
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i.e., I is closed under finite union and subsets. T(X) will denote the set of all ideals
on X.

In order to exclude the trivial case where the ideal coincides with the set of all
subsets of the set X, it is generally assumed that X /∈ I. In this case I is called a
proper ideal on X.

One of the important ideals is IA (= {B : B ∈ P (X), B ⊆ A}) (where P (X)
stands for the power set of X).

Definition 2.2. [10] Let δ be a binary relation on the power set P (X) of a
nonempty set X. For any A,B, C ∈ P (X), consider the following axioms:
P1: AδB ⇒ BδA,
P2: (A ∪B)δC ⇔ AδC or BδC,
P ′2: (A ∪B)δC ⇔ AδC or BδC and Aδ(B ∪ C) ⇔ AδB or AδC,
P3: AδB ⇒ A 6= φ, B 6= φ,
P4: A ∩B 6= φ ⇒ AδB,
P5: Aδ̄B ⇒ ∃E ∈ P (X) such that Aδ̄E and Ecδ̄B (here, and henceforth also, δ̄

means non-δ and Ec = X − E),
P6: {x}δ{y} ⇒ x = y,
P7: AδB and {b}δC ∀ b ∈ B ⇒ AδC,
P ′7: {x}δB and {b}δC ∀ b ∈ B ⇒ {x}δC.

Then δ is said to be :
(a) a basic proximity on X if it satisfies P1, P2, P3 and P4;
(b) an Efremovich proximity (EF-proximity) on X if it is a basic proximity and

satisfies P5;
(c) a separated proximity on X if it is an EF-proximity on X and it satisfies P6;
(d) a Leader proximity (LE-proximity)on X if it satisfies P ′2, P3, P4 and P7;
(e) a Lodato proximity (LO-proximity) on X if it is an LE-proximity on X and

satisfies P1;
(f) an S-proximity on X if it is a basic proximity on X and satisfies P6 and P ′7.

If δ is a basic proximity (resp. EF-proximity, separated proximity, LE-pro-
ximity, LO-proximity, S-proximity) on X, then the pair (X, δ) is called a basic
proximity (resp. EF-proximity, separated proximity, LE-proximity, LO-proximity,
S-proximity) space.

We denote by m(X) the set of all basic proximities on X and we write xδA
for {x}δA.

Definition 2.3. [1] A binary relation δ on the power set P (X) of a nonempty
set X is said to be RH-proximity on X if it satisfies the following conditions:
R1: AδB ⇒ BδA,
R2: (A ∪B)δC ⇔ AδC or BδC,
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R3: φδ̄X,
R4: A 6= φ ⇒ AδA, and
R5: {x}δ̄A ⇒ ∃E ∈ P (X) such that {x}δ̄E and Ecδ̄A.

Lemma 2.1. [4] For all subsets A and B of a basic proximity space (X, δ), if
AδB, A ⊆ C and B ⊆ D, then CδD.

Lemma 2.2. [3] For all subsets A and B of a basic proximity space (X, δ),
(i) if AδB, A ⊆ C, then BδC;
(ii) if AδB, B ⊆ C, then AδC.

Definition 2.4. [11] A subset B of a basic proximity space (X, δ) is said to be
a proximal neighborhood of a set A with respect δ if Bcδ̄A. The set of all proximal
neighborhoods of a set A with respect to δ is denoted by N(δ,A), i.e.,

N(δ,A) = {B : B ∈ P (X), Bcδ̄A}.
When there is no ambiguity we will write Nδ(A) for N(δ,A).

Lemma 2.3. [4] For all subsets A and B of a basic proximity space (X, δ),
(i) A ∈ Nδ(B) ⇔ Bc ∈ Nδ(Ac);
(ii) Nδ(A ∪B) = Nδ(A) ∩Nδ(B).

Lemma 2.4. [11] For all subsets A and B of a basic proximity space (X, δ), if
A ⊆ B, then Nδ(B) ⊆ Nδ(A). Also, Nδ(φ) = P (X).

Theorem 2.1. [11] For all subsets A, B of a basic proximity space (X, δ), if
H ∈ Nδ(A) and M ∈ Nδ(B), then H ∪M ∈ Nδ(A ∪B).

Definition 2.5. [10] A subset A of a basic proximity space (X, δ) is said to
be δ-closed if xδA implies x ∈ A.

Definition 2.6. [10] Let δ1, δ2 be two basic proximities on a nonempty set
X. We define

δ1 < δ2 if Aδ2B ⇒ Aδ1B.

The above expression refers to that δ2 is finer than δ1, or δ1 is coarser than δ2.

Definition 2.7. [11] Let δ1, δ2 be two basic proximities on a nonempty set
X. We define

δ1 ⊆ δ2 if Aδ1B ⇒ Aδ2B.

Definition 2.8. [6] A mapping c : P (X) → P (X) is said to be a Čech closure
operator if it satisfies the following axioms:

1. c(φ) = φ,
2. A ⊆ c(A) ∀ A ∈ P (X),
3. c(A ∪B) = c(A) ∪ c(B) ∀ A, B ∈ P (X).
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If in addition c satisfies the following condition
4. c(c(A)) = c(A) ∀ A ∈ P (X) (“idempotent condition”),

then c is called a Kuratowski’s closure operator (or closure operator, for short).

Definition 2.9. [7] Let (X, δ1) and (Y, δ2) be two basic proximity spaces
and f : X → Y be a map. Then f is called a basic-proximally continuous (BP-
continuous, for short) map if Aδ1B implies f(A)δ2f(B).

Theorem 2.2. [11] Let (X, δ) be a basic proximity space. Then the operator
cδ : P (X) → P (X) given by

cδ(A) = {x ∈ X : xδA}, for all A ∈ P (X)

is a Čech closure operator.

Theorem 2.3. [11] Let (X, δ) be a basic proximity space. Then

cδ(A) = ∩{B : B ∈ Nδ(A)}.
Proposition 2.1. [4] Let (X, δ) be an EF-proximity space. Then the operator

cδ is a closure operator and the collection

τδ = {A ⊆ X : cδ(Ac) = Ac}
is a topology on X and (X, τδ) is a completely regular topological space.

3. Some properties of basic proximities and ideals

Definition 3.1. Let δ be a binary relation on the power set P (X) of a
nonempty set X. For all A ∈ P (X), we define

δ[A] = {B : B ∈ P (X), Bδ̄A}.

Definition 3.2. A binary relation δ on the power set P (X) of a nonempty
set X is said to be a basic proximity on X if it satisfies the following conditions for
any A,B,C ∈ P (X):
PI1 : A ∈ δ[B] ⇒ B ∈ δ[A],
PI2 : A ∈ δ[C] and B ∈ δ[C] ⇔ A ∪B ∈ δ[C],
PI3 : φ ∈ δ[A], for all A ∈ P (X), and
PI4 : A ∈ δ[B] ⇒ A ∩B = φ. δ is said to be an EF-proximity on X if it is a basic

proximity on X and it satisfies the following condition:
PI5 : A ∈ δ[B] ⇒ ∃H ∈ P (X) such that A ∈ δ[H] and Hc ∈ δ[B].
δ is said to be a separated proximity on X if it is an EF-proximity on X and it
satisfies the following condition:
PI6 : x 6= y ⇒ {x} ∈ δ[{y})].
For all x ∈ X, x ∈ δ[A] stands for {x} ∈ δ[A] and δ[x] stands for δ[{x}].
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Lemma 3.1. For all subsets A and B of a basic proximity space (X, δ), if
A ∈ δ[B] and E ⊆ B, then A ∈ δ[E].

Proof. Let A ∈ δ[B] and E ⊆ B. Assume that A /∈ δ[E]. Then EδA, but
E ⊆ B, then (by Lemma 2.2(i)) AδB, i.e., A /∈ δ[B], a contradiction.

Lemma 3.2. Let (X, δ) be a basic proximity space. Then
(i) A ⊆ B ⇒ δ[B] ⊆ δ[A],
(ii) A ∈ δ[B] ⇒ a ∈ δ[B] ∀ a ∈ A.

Proof. (i) it is obvious by Lemma 3.1.
(ii) Let A ∈ δ[B] and assume that ∃ a ∈ A such that a /∈ δ[B]. Then aδB, but

{a} ⊆ A, hence AδB (by Lemma 2.2(i)), which contradicts with A ∈ δ[B].

Proposition 3.1. Let (X, δ) be a basic proximity space. Then

δ[A] is an ideal on X, ∀ A ∈ P (X).

Proof. Since φ ∈ δ[A] (by PI3), then δ[A] is nonempty. Let H ∈ δ[A] and
M ⊆ H. Then A ∈ δ[H] and M ⊆ H ⇒ M ∈ δ[A] (by Lemma 3.1, PI1). Now, let
H ∈ δ[A] and M ∈ δ[A]. Then H ∪M ∈ δ[A] (by PI2). Hence δ[A] is an ideal on
X.

Lemma 3.3. Let (X, δ) be a basic proximity space. Then the two simplest
ideals on X generated by δ are δ[φ] = P (X) and δ[X] = {φ}.

Proof. Straightforward.
Example 3.1. Let X = {a, b, c} and let δ be a basic proximity defined as

AδB ⇔ A ∩B 6= φ.

Then: δ[φ] = P (X), δ[{a}] = {φ, {b}, {c}, {b, c}}, δ[{b}] = {φ, {a}, {c}, {a, c}},
δ[{c}] = {φ, {a}, {b}, {a, b}}, δ[{a, b}] = {φ, {c}}, δ[{a, c}] = {φ, {b}}, δ[{b, c}] =
{φ, {c}}, δ[X] = {φ}, which are ideals on X.

Example 3.2. Let X = {a, b, c} and let δ be a basic proximity defined as

AδB ⇔ A 6= φ, B 6= φ.

Then: δ[φ] = P (X), δ[A] = {φ} ∀A ∈ P (X), A 6= φ, which are ideals on X.
The above example shows that A 6= B ; δ[A] 6= δ[B].

Theorem 3.1. A binary relation δ on the power set P (X) of a nonempty set
X is a basic proximity on X if and only if it satisfies the following conditions:
I1 : A ∈ δ[B] ⇒ B ∈ δ[A],
I2 : δ[A] is an ideal on X ∀ A ∈ P (X), and
I3 : δ[A] ⊆ IAc , where IAc = {B : B ∈ P (X), B ⊆ Ac}.
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Proof. Suppose that δ is a basic proximity on X. Then PI1 is equivalent to
I1, and I2 holds (by Proposition 3.1). For I3, let B ∈ δ[A]. Then A ∩ B = φ (by
PI4) implies B ⊆ Ac, so B ∈ IAc . Hence δ[A] ⊆ IAc .

Conversely, suppose that I1, I2 and I3 hold. Then I1 is equivalent to PI1.
Since δ[A] is an ideal for all A ∈ P (X), then PI2 and PI3 hold. Now, let B ∈ δ[A].
Then B ⊆ Ac (by I3 ), and so A ∩ B = φ. Hence PI4 holds. Consequently, δ is a
basic proximity on X. .

Theorem 3.2. Let (X, δ) be a basic proximity space and A, B ∈ P (X). Then
(i) δ[A ∪B] = δ[A] ∩ δ[B] ⊆ δ[A ∩B],
(ii) H1 ∈ δ[A] and H2 ∈ δ[B] ⇒ H1 ∩H2 ∈ δ[A ∪B].

Proof. (i) Since A, B ⊆ A ∪ B, then δ[A ∪ B] ⊆ δ[A], δ[B] (by Lemma
3.2(i)), and consequently, δ[A ∪ B] ⊆ δ[A] ∩ δ[B]. Let H /∈ δ[A ∪ B]. Then
A ∪ B /∈ δ[H] implies A /∈ δ[H] or B /∈ δ[H] (byPI2). So H /∈ δ[A] or H /∈ δ[B]
implies H /∈ δ[A]∩δ[B]. Therefore, δ[A∪B] = δ[A]∩δ[B]. Now, let H ∈ δ[A]∩δ[B].
Then A, B ∈ δ[H]. Since A ∩ B ⊆ A,B, then A ∩ B ∈ δ[H] (by I2), and so
H ∈ δ[A ∩B]. Therefore, δ[A] ∩ δ[B] ⊆ δ[A ∩B].

(ii) Let H1 ∈ δ[A] and H2 ∈ δ[B]. Since H1∩H2 ⊆ H1, H2, then H1∩H2 ∈ δ[A]
and H1 ∩H2 ∈ δ[B] ⇒ H1 ∩H2 ∈ δ[A] ∩ δ[B] = δ[A ∪B].

Proposition 3.2. Let δ1, δ2 ∈ m(X). Then

δ1 < δ if and only if δ1[A] ⊆ δ2[A], ∀ A ∈ P (X).

Proof. Straightforward.

Corollary 3.1. Let δ1, δ2 ∈ m(X). If δ1 < δ2, then
(i) Nδ1(A) ⊆ Nδ2(A), ∀ A ∈ P (X),
(ii) cδ2(A) ⊆ cδ1(A), ∀ A ∈ P (X).

Theorem 3.3. Let δ1, δ2 ∈ m(X). Then the following statements are equiva-
lent:
(1) δ1[x] = δ2[x], ∀ x ∈ X,
(2) cδ1(A) = cδ2(A), ∀ A ∈ P (X),
(3) Nδ1({x}) = Nδ2({x}), ∀ x ∈ X.

Proof. Straightforward.

Definition 3.3. Let δ ∈ m(X) and A ∈ P (X). We define

CNδ(A) = {B : B ∈ P (X), B /∈ Nδ(A)}.
Lemma 3.4. Let δ ∈ m(X), A ∈ P (X) and I ∈ T(X). Then

Nδ(A) ∩ I = φ ⇔ I ⊆ CNδ(A).

Proof. Straightforward.
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Theorem 3.4. Let δ ∈ m(X), A ∈ P (X) and I1, I2 ∈ T(X). Then

I1 ∩ I2 ⊆ CNδ(A) ⇒ I1 ⊆ CNδ(A) or I2 ⊆ CNδ(A).

Proof. If possible, suppose that I1 * CNδ(A) and I2 * CNδ(A). Then
there exists H1 ∈ I1 \ CNδ(A) and H2 ∈ I2 \ CNδ(A). So, H1 ∩H2 ∈ I1 ∩ I2 ⊆
CNδ(A) ⇒ H1∩H2 ∈ CNδ(A) which implies that H1∩H2 /∈ Nδ(A) ⇒ (Hc

1∪Hc
2) /∈

δ[A] ⇒ Hc
1 /∈ δ[A] or Hc

2 /∈ δ[A] (by I2). Hence H1 ∈ CNδ(A) or H2 ∈ CNδ(A), a
contradiction.

Theorem 3.5. Let I1, I2 and J are ideals on a nonempty set X. Then
J ⊆ I1 ∪ I2 ⇒ J ⊆ I1 or J ⊆ I2.

Proof. If possible, suppose that J * I1 and J * I2. Then there exists
A ∈ J \ I1 and B ∈ J \ I2, so A ∪ B ∈ J ⊆ I1 ∪ I2. Therefore, A ∪ B ∈ I1 or
A ∪B ∈ I2 implies A ∈ I1 or B ∈ I2, a contradiction.

Definition 3.4. A mapping g : m(X)× T(X) → T(X) is said to be an ideal
operator on X if ∀ δ ∈ m(X) and ∀ I1, I2 ∈ T(X), we have

g(δ, I1) ⊆ g(δ, I2) whenever I1 ⊆ I2.

Definition 3.5. Let g be an ideal operator on X. Then a basic proximity δ
on X is said to be a g-proximity if δ[A] ⊆ g(δ, δ[A]), ∀ A ∈ P (X).

The family of all g-proximities is denoted by Pg.

Definition 3.6. An ideal operator g is said to be:
in class G1 if g(δ, I1∩I2) = g(δ, I1)∩g(δ, I2) ∀ δ ∈ m(X) and ∀ I1, I2 ∈ T(X);
in class G2 if g(δ,

⋂
α∈Λ Iα) =

⋂
α∈Λ g(δ, Iα) ∀ δ ∈ m(X) and ∀ Iα ∈ T(X);

in class T if g(δ1, I) = g(δ2, I) with cδ1 = cδ2 ∀ δ1, δ2 ∈ m(X) and ∀ I ∈ T(X);
in class U if g(δ1, I) ⊆ g(δ2, I) whenever δ1 < δ2 ∀ I ∈ T(X);
in class E if g(δ, I) ⊆ g(δ, g(δ, I)), ∀ δ ∈ Pg, ∀ I ∈ T(X).

Definition 3.7. For a set X, for all δ ∈ m(X) and for all I ∈ T(X) we define:
i(δ, I) = I,
g0(δ, I) = {A : A ∈ P (X), Nδ(A) ∩ I 6= φ},
g1(δ, I) = {A : A ∈ P (X), cδ(A) ∈ I},
g2(δ, I) = {A : A ∈ P (X), {x} ∈ δ[A] ∪ I, ∀ x ∈ X},
h0(δ, I) = {A : A ∈ P (X), Nδ({a}) ∩ I 6= φ ∀ a ∈ A},
h1(δ, I) = {A : A ∈ P (X), cδ(A) ∈ δ[x] with I ⊆ δ[x]}.

When there is no ambiguity we will write gi for gi(δ, I) and hi for hj(δ, I), where
i = 0, 1, 2, j = 0, 1.

Theorem 3.6. For all δ ∈ m(X) and for all I ∈ T(X) and for g ∈
{i, g0, g1, g2, h0, h1}, we have that g is an ideal operator on X.
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Proof. We prove the cases g0 and g2, the other cases are similar. Suppose that
δ ∈ m(X) and I ∈ T(X). Now, since Nδ(φ) ∩ I = P (X) ∩ I = I 6= φ ⇒ φ ∈ g0. If
A ∈ g0 and B ⊆ A, then Nδ(A)∩ I 6= φ ⇒ Nδ(B)∩ I 6= φ (by Lemma 2.4). Hence
B ∈ g0. If A, B ∈ g0, then Nδ(A) ∩ I 6= φ and Nδ(B) ∩ I 6= φ. So ∃H, M ∈ I
such that H ∈ Nδ(A) and M ∈ Nδ(B) implies H ∪M ∈ Nδ(A ∪ B) (by Theorem
2.1), and so H ∪M ∈ Nδ(A ∪ B) ∩ I. Consequently, Nδ(A ∪ B) ∩ I 6= φ. Hence
A ∪ B ∈ g0. Therefore, g0 is an ideal on X. Now, let I1 ⊆ I2 and H ∈ g0(δ, I1).
Then Nδ(H) ∩ I1 6= φ ⇒ Nδ(H) ∩ I2 6= φ. So, H ∈ g0(δ, I2). Hence g0 is an ideal
operator on X.

Next, since δ[φ] = P (X), then {x} ∈ δ[φ] ∪ I, ∀ x ∈ X ⇒ φ ∈ g2. If A ∈ g2

and B ⊆ A, then {x} ∈ δ[A] ∪ I, ∀ x ∈ X ⇒ {x} ∈ δ[B] ∪ I, ∀ x ∈ X(by Lemma
3.2(i)), and so B ∈ g2. If A, B ∈ g2, then {x} ∈ (δ[A]∪I)∩ (δ[B]∪I), ∀ x ∈ X ⇒
{x} ∈ (δ[A] ∩ δ[B]) ∪ I, ∀ x ∈ X ⇒ {x} ∈ δ[(A ∪ B)] ∪ I, ∀ x ∈ X (by Theorem
3.2(i)), and so A ∪ B ∈ g2. Hence g2 is an ideal on X. Clearly, if I1 ⊆ I2, then
g2(δ, I1) ⊆ g2(δ, I2). Consequently, g2 is an ideal operator on X.

Theorem 3.7. For all δ ∈ m(X) and for all I ∈ T(X), we have i, g1, g2 ∈
G2 ⊆ G1 and g0, h0 ∈ G1.

Proof. It is clear that G2 ⊆ G1. Also, trivially i, g1, g2 ∈ G2. Now, let
A ∈ g0(δ, I1∩I2). Then, Nδ(A)∩(I1∩I2) 6= φ ⇒ Nδ(A)∩I1 6= φ and Nδ(A)∩I2 6=
φ ⇒ A ∈ g0(δ, I1) ∩ g0(δ, I2). Hence g0(δ, I1 ∩ I2) ⊆ g0(δ, I1) ∩ g0(δ, I2). On the
other hand, let A ∈ g0(δ, I1)∩ g0(δ, I2). Then Nδ(A)∩ I1 6= φ and Nδ(A)∩ I2 6= φ
imply Nδ(A) ∩ (I1 ∩ I2) 6= φ(by Lemma 3.4, Theorem 3.4). So A ∈ g0(δ, I1 ∩ I2).
Hence g0(δ, I1) ∩ g0(δ, I2) ⊆ g0(δ, I1 ∩ I2). Therefore, g0 ∈ G1.

Similarly, we can prove that h0 ∈ G1.

Theorem 3.8. For all δ ∈ m(X) and for all I ∈ T(X), we have g ∈ T, ∀ g ∈
{i, g1, g2, h0, h1}.

Proof. It follows from Lemma 2.4 and Theorem 3.3.

Theorem 3.9. For all δ ∈ m(X) and for all I ∈ T(X), we have g ∈ U, ∀ g ∈
{i, g0, g1, g2, h0, h1}.

Proof. It follows from Proposition 3.2 and Corollary 3.1.

Theorem 3.10. Let δ ∈ m(X). Then the following statements are equivalent:
(1) δ is an EF-proximity on X,
(2) A ∈ δ[B] ⇒ Nδ(A) ∩ δ[B] 6= φ,
(3) Nδ(A) ∩ δ[B] = φ ⇒ A /∈ δ[B],
(4) δ is a g0-proximity, and
(5) A ∈ Nδ(B) ⇒ ∃H ∈ Nδ(B) such that A ∈ Nδ(H).

Proof. (1) ⇒ (2): let A ∈ δ[B]. Then, ∃H ∈ P (X) such that A ∈ δ[H] and
Hc ∈ δ[B]. It follows that H ∈ δ[A] and Hc ∈ δ[B]. Hence Hc ∈ Nδ(A) ∩ δ[B],
and so Nδ(A) ∩ δ[B] 6= φ.
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(2) ⇔ (3): it is obvious.

(2) ⇒ (4): let H ∈ δ[A]. Then, Nδ(H) ∩ δ[A] 6= φ ⇒ H ∈ g0(δ, δ[A]). So,
δ[A] ⊆ g0(δ, δ[A]) and δ is a g0-proximity.

(4) ⇒ (2): let A ∈ δ[B]. Then A ∈ g0(δ, δ[B]) ⇒ Nδ(A) ∩ δ[B] 6= φ.

(2) ⇒ (5): let A ∈ Nδ(B). Then Ac ∈ δ[B] ⇒ Nδ(Ac) ∩ δ[B] 6= φ ⇒ ∃M ∈
P (X) such that M ∈ δ[B] and M ∈ Nδ(Ac). Hence, by Lemma 2.3, M c ∈ Nδ(B)
and A ∈ Nδ(M c), putting H = M c. So (5) holds.

(5) ⇒ (1): let A ∈ δ[B]. Then Ac ∈ Nδ(B) ⇒ ∃H ∈ P (X) such that
H ∈ Nδ(B) and Ac ∈ Nδ(H) ⇒ Hc ∈ δ[B] and A ∈ δ[H]. Hence δ is an EF -
Proximity on X.

Corollary 3.2. Let δ ∈ m(X). Then δ is an EF-proximity iff it is a g0-
proximity.

Theorem 3.11. Let δ ∈ m(X). If δ ∈ Pg1 , then cδ is a closure operator.

Proof. From Theorem 2.2, it is enough to prove the idempotent property,
i.e., cδ(cδ(A)) = cδ(A). Clearly, cδ(A) ⊆ cδ(cδ(A)). Let x ∈ cδ(cδ(A)). Then,
xδcδ(A) ⇒ cδ(A) /∈ δ[x] ⇒ A /∈ g1(δ, δ[x]). Therefore, A /∈ δ[x]. So, x ∈ cδ(A).
Consequently, cδ(cδ(A)) ⊆ cδ(A). So, cδ(cδ(A)) = cδ(A). Hence cδ is a closure
operator.

Theorem 3.12. Let δ ∈ m(X). Then δ is a g1-proximity if and only if
∀ B ∈ δ[A] ⇒ cδ(B) ∈ δ[A].

Proof. Suppose that δ is a g1-proximity and B ∈ δ[A]. Then, B ∈ g1(δ, δ[A]) ⇒
cδ(B) ∈ δ[A].

Conversely, let B ∈ δ[A]. Then cδ(B) ∈ δ[A] ⇒ B ∈ g1(δ, δ[A]). So, δ[A] ⊆
g1(δ, δ[A]), ∀ A ∈ P (X). Hence δ is a g1-proximity.

Theorem 3.13. Let δ ∈ m(X). Then δ is an LO-proximity iff it is a g1-
proximity.

Proof. Suppose that δ is an LO-proximity, A ∈ P (X) and H /∈ g1(δ, δ[A]).
Then cδ(H) /∈ δ[A] ⇒ Aδcδ(H). But, cδ(H) = {x : xδH}, then Aδcδ(H) and
xδH ∀ x ∈ cδ(H) ⇒ AδH, i.e., H /∈ δ[A]. Hence δ is a g1-proximity.

Conversely, let AδB and bδH ∀ b ∈ B. Then B ⊆ cδ(H) = {x ∈ X : xδH} ⇒
Aδcδ(H) (by Lemma 2.2) ⇒ cδ(H) /∈ δ[A] ⇒ H /∈ δ[A] (by Theorem 3.12),so AδH.
Hence δ is an LO-proximity.

Theorem 3.14. Let δ ∈ m(X) and I ∈ T(X). Then g(δ, I) ⊆ I ∀ g ∈
{i, g0, g1}.

Proof. Trivially, i(δ, I) ⊆ I. Let A ∈ g0(δ, I). Then, Nδ(A) ∩ I 6= φ. So,
∃B ∈ P (X) such that B ∈ Nδ(A) and B ∈ I. Since B ∈ Nδ(A), then A ⊆ B ∈
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I ⇒ A ∈ I. Hence g0(δ, I) ⊆ I. Next, let A ∈ g1(δ, I). Then cδ(A) ∈ I ⇒ A ∈ I.
Hence, g1(δ, I) ⊆ I.

Theorem 3.15. Let δ ∈ m(X). Then

δ ∈ Pg2 ⇔ (A ∈ δ[B] ⇒ (A ∈ δ[x] or B ∈ δ[x])), ∀ x ∈ X.

Proof. Suppose that δ is a g2-proximity and let A ∈ δ[B]. Then, A ∈
g2(δ, δ[B]) ⇒ {x} ∈ δ[A] ∪ δ[B], ∀ x ∈ X. It follows that A ∈ δ[x] or B ∈
δ[x], ∀ x ∈ X.

Conversely, let H ∈ δ[A]. Then, H ∈ δ[x] or A ∈ δ[x] (∀ x ∈ X) ⇒ {x} ∈
δ[H] ∪ δ[A] ∀ x ∈ X, it follows that H ∈ g2(δ, δ[A]), ∀ A ∈ P (X)). Hence
δ[A] ⊆ g2(δ, δ[A]). Consequently, δ is a g2-proximity.

The following definition is a reformulation of Definition 2.3.

Definition 3.8. A binary relation δ on the power set P (X) of a nonempty
set X is said to be an RH-proximity on X if it satisfies the following conditions:
RI1 : A ∈ δ[B] ⇒ B ∈ δ[A],
RI2 : A ∈ δ[C] and B ∈ δ[C] ⇔ A ∪B ∈ δ[C],
RI3 : φ ∈ δ[X],
RI4 : A ∈ δ[A] ⇒ A = φ, and
RI5 : x ∈ δ[A] ⇒ ∃H ∈ P (X) such that x ∈ δ[H] and Hc ∈ δ[A].

Theorem 3.16. Let δ ∈ m(X). Then the following statements are equivalent:
(1) x ∈ δ[A] ⇒ ∃H ∈ P (X) such that x ∈ δ[H] and Hc ∈ δ[A],
(2) x ∈ δ[A] ⇒ Nδ({x}) ∩ δ[A] 6= φ,
(3) Nδ({x}) ∩ δ[A] = φ ⇒ x /∈ δ[A],
(4) δ is an h0-proximity, and
(5) A ∈ Nδ({x}) ⇒ ∃B ∈ Nδ({x}) such that A ∈ Nδ(B).

Proof. (1) ⇒ (2): let x ∈ δ[A]. Then, by (1), ∃H ∈ P (X) such that x ∈ δ[H]
and Hc ∈ δ[A]. It follows that Hc ∈ δ[A] and Hc ∈ Nδ({x}). Hence Nδ({x}) ∩
δ[A] 6= φ.

(2) ⇔ (3) it is obvious.
(2) ⇒ (4): let B ∈ δ[A]. Implies, by Lemma 3.2 (ii), b ∈ δ[A] (∀ b ∈ B).

Hence, by (2), Nδ({b}) ∩ δ[A] 6= φ, (∀ b ∈ B) ⇒ B ∈ h0(δ, δ[A]). Hence δ[A] ⊆
h0(δ, δ[A]). Consequently, δ is an h0-proximity.

(4) ⇒ (2): it is obvious.
(2) ⇒ (5): let A ∈ Nδ({x}). Then, x ∈ δ[Ac] ⇒ Nδ({x}) ∩ δ[Ac] 6= φ. It

follows that ∃B ∈ P (X) such that B ∈ Nδ({x}) and B ∈ δ[Ac]. So, Ac ∈ δ[B] ⇒
A ∈ Nδ(B).

(5) ⇒ (1): let x ∈ δ[A]. Then, Ac ∈ Nδ({x}). By (5), ∃H ∈ Nδ({x}) such
that Ac ∈ Nδ(H). It follows that A ∈ δ[H] and Hc ∈ δ[x], i.e. ∃H ∈ P (X) such
that x ∈ δ[Hc] and H ∈ δ[A]. Hence (1) holds.
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Corollary 3.3. Let δ ∈ m(X). Then δ is an RH-proximity iff it is an
h0-proximity.

Proof. It follows from Definition 3.8 and Theorem 3.16.

Theorem 3.17. Let δ be an h1-proximity. Then

(1) x ∈ δ[A] ⇒ x ∈ δ[cδ(A)].

(2) cδ is a closure operator.

Proof. (1) Suppose that δ is an h1-proximity and let x ∈ δ[A]. Then, A ∈ δ[x] ⊆
h1(δ, δ[x]) ⇒ A ∈ h1(δ, δ[x]) ⇒ cδ(A) ∈ δ[y] with δ[x] ⊆ δ[y]. But δ[x] ⊆ δ[x], then
cδ(A) ∈ δ[x] ⇒ x ∈ δ[cδ(A)].

(2) From Theorem 3.2, it is enough to prove the idempotent property i.e.
cδ(cδ(A)) = cδ(A) ∀ A ∈ P (X). Clearly, cδ(A) ⊆ cδ(cδ(A)). Let x ∈ cδ(cδ(A)).
Then, xδcδ(A) ⇒ x /∈ δ[cδ(A)]. By (1), x /∈ δ[A]. Hence x ∈ cδ(A). Consequent-
ly, cδ(cδ(A)) ⊆ cδ(A). It follows that cδ(A) = cδ(cδ(A)). Hence cδ is a closure
operator.

Lemma 3.5. Let δ be an S-proximity. If A ∈ δ[x], then cδ(A) ∈ δ[x].

Proof. Suppose that δ is an S-proximity and let A ∈ δ[x]. Assume that
cδ(A) /∈ δ[x]. Then, xδcδ(A). But yδA ∀ y ∈ cδ(A), then xδA(by Ṕ7), i.e.
A /∈ δ[x], a contradiction.

Theorem 3.18. Let δ ∈ m(X). Then δ is an S-proximity iff it is an h1-
proximity.

Proof. Suppose that δ is an S-proximity and let H ∈ δ[A] with δ[A] ⊆ δ[x].
Then, H ∈ δ[x] ⇒ cδ(H) ∈ δ[x] (by Lemma 3.5) with δ[A] ⊆ δ[x] ⇒ H ∈
h1(δ, δ[A]). Hence δ is an h1-proximity.

Conversely, suppose that δ is an h1-proximity and let x /∈ δ[B] and bδH ∀ b ∈
B. Also, assume that x ∈ δ[H]. Then, by Theorem 3.17(1), x ∈ δ[cδ(H)]. Since
B ⊆ cδ(H) ⇒ x ∈ δ[B] (by Lemma 3.1), a contradiction with x /∈ δ[B].

Theorem 3.19. For all δ ∈ m(X) and for all I ∈ T(X), we have g ∈
E, ∀ g ∈ {i, g0, g1, g2, h0}.

Proof. Let δ ∈ Pg0 and A ∈ g0(δ, I). Then Nδ(A) ∩ I 6= φ ⇒ ∃M ∈ P (X)
such that M ∈ Nδ(A) and M ∈ I. Since δ ∈ Pg0 , then, by Theorem 3.10, there
exists H ∈ Nδ(A) such that M ∈ Nδ(H) ⇒ Nδ(H) ∩ I 6= φ. So, H ∈ g0(δ, I). But
H ∈ Nδ(A), thus Nδ(A) ∩ g0(δ, I) 6= φ. Hence A ∈ g0(δ, g0(δ, I)). Consequently,
g0(δ, I) ⊆ g0(δ, g0(δ, I)). It follows that g0 ∈ E.

Next, let δ ∈ Pg1 and let A ∈ g1(δ, I). Then cδ(A) ∈ I ⇒ cδ(A) = cδ(cδ(A) ∈ I
(by Theorem 3.11). So, cδ(A) ∈ g1(δ, I). Hence A ∈ g1(δ, g1(δ, I)). Consequently,
g1(δ, I) ⊆ g1(δ, g1(δ, I)). It follows that g1 ∈ E.
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Now, we shall prove that g2 ∈ E. Let δ ∈ Pg2 and let A /∈ g2(δ, g2(δ, I)).
Then there exists x ∈ X such that {x} /∈ δ[A] ∪ g2(δ, I). So, {x} /∈ δ[A] and
{x} /∈ g2(δ, I). Hence, there exists y ∈ X such that {y} /∈ δ[{x}] ∪ I ⇒ {y} /∈ I,
A /∈ δ[{x}] and {y} /∈ δ[{x}]. Hence, by Theorem 3.15, {y} /∈ δ[A] ∪ I. It follows
that A /∈ g2(δ, I). Hence g2(δ, I) ⊆ g2(δ, g2(δ, I)). Consequently, g2 ∈ E.

Finally, Let δ ∈ Ph0 and let A ∈ h0(δ, I). Then Nδ(a)∩I 6= φ ∀a ∈ A ⇒ ∃H ∈
P (X) such that H ∈ Nδ(a) and H ∈ I. Therefore, by Theorem 3.16.(5), there
exists B ∈ Nδ(a) such that H ∈ Nδ(B) ⇒ Nδ(B) ∩ I 6= φ ⇒ Nδ(b) ∩ I 6= φ, ∀b ∈
B ⇒ B ∈ h0(δ, I). But, B ∈ Nδ(a), then Nδ(a) ∩ h0(δ, I) 6= φ ∀a ∈ A. It follows
that A ∈ h0(δ, h0(δ, I)). Hence h0(δ, I) ⊆ h0(δ, h0(δ, I)). Consequently, h0 ∈ E.

Theorem 3.20. For all δ ∈ m(X) and for all I ∈ T(X), g0(δ, I) =⋃
A∈I δ[Ac].

Proof. Straightforward.

Theorem 3.21. For all δ ∈ m(X) and for all I ∈ T(X), we have
(1) Pg1 ⊆ Pg2 ,
(2) Pg1 ⊆ Ph1 ,
(3) Pg0 ⊆ Ph0 , and
(4) Pg0 ⊆ Pg1 .

Proof. (1) Let δ ∈ Pg1 and let H ∈ δ[A]. Then, by Theorem 3.12, cδ(H) ∈ δ[A].
We claim that H ∈ g2(δ, δ[A]). In fact, if H /∈ g2(δ, δ[A]), then there exists x ∈ X
such that {x} /∈ δ[H] and {x} /∈ δ[A] ⇒ x ∈ cδ(H), {x} /∈ δ[A]. But, {x} ⊆ cδ(H)
and δ[A] is an ideal, so cδ(H) /∈ δ[A], a contradiction. Hence H ∈ g2(δ, δ[A]). It
follows that δ[A] ⊆ g2(δ, δ[A]). Consequently, δ ∈ Pg2 . Hence, Pg1 ⊆ Pg2 .

(2) Let δ ∈ Pg1 and let H ∈ δ[A]. Then, by Theorem 3.12, cδ(H) ∈ δ[A] ⇒
cδ(H) ∈ δ[x] with δ[A] ⊆ δ[x] ⇒ H ∈ h1(δ, δ[A]). Hence δ[A] ⊆ h1(δ, δ[A]).
Consequently, δ ∈ Ph1 . Hence, Pg1 ⊆ Ph1 .

(3) Let δ ∈ Pg0 and let H ∈ δ[A]. Then, Nδ(H) ∩ δ[A] 6= φ ⇒ Nδ(h) ∩ δ[A] 6=
φ, ∀h ∈ H ⇒ H ∈ h0(δ, δ[A]). Hence δ[A] ⊆ h0(δ, δ[A]). Consequently, δ ∈ Ph0 .
Hence, Pg0 ⊆ Ph0 .

(4) Let δ ∈ Pg0 and let H ∈ δ[A]. Then, Nδ(H) ∩ δ[A] 6= φ ⇒ ∃M ∈ P (X)
such that M ∈ Nδ(H) and M ∈ δ[A]. Since cδ(H) = ∩{B : B ∈ Nδ(H)}, then
cδ(H) ⊆ M ∈ δ[A] ⇒ cδ(H) ∈ δ[A] ( for δ[A] is an ideal). Hence, H ∈ g1(δ, δ[A]).
Consequently, δ ∈ Pg1 . Hence, Pg0 ⊆ Pg1 .
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