PROXIMITY STRUCTURES AND IDEALS

A. Kandil, S. A. El-Sheikh, M. M. Yakout and Shawqi A. Hazza

Abstract

In this paper, we present a new approach to proximity structures based on the recognition of many of the entities important in the theory of ideals. So, we give a characterization of the basic proximity using ideals. Also, we introduce the concept of g-proximities and we show that for different choice of " g " one can obtain many of the known types of generalized proximities. Also, characterizations of some types of these proximities - $\left(g_{0}, h_{0}\right)$ - are obtained.

1. Introduction

Ideals in topological spaces were introduced by Kuratowski [6], Vaidyanathaswamy [12] and Janković and Hamlett [5]. Various classes of generalized proximities have been extensively studied by many authors including Lodato [8,9]. In [4], the authors introduced a new approach to construct generalized proximity structures based on the concept of ideal and an EF-Proximity structure. Thron [11] introduced grills to investigate proximity structures. In this paper, we present an equivalent formulation of the notion of basic proximity using ideals and study some of its properties. The concept of a basic proximity on a set and a basic proximal neighborhood of a set with respect to a basic proximity are obtained. Also we introduce the concept of g-proximity and we show that for different choice of "g" one can obtain many types of proximities.

2. Preliminaries

The purpose of this section is merely to recall known results concerning ideals and proximity spaces. For more information see $[1,4-6,10-12]$.

Definition 2.1. [5] A nonempty collection \mathcal{I} of subsets of a nonempty set X is said to be an ideal on X if it satisfies the following two conditions:

1. $A \in \mathcal{I}$ and $B \subseteq A \Longrightarrow B \in \mathcal{I}$ (hereditarity),
2. $A \in \mathcal{I}$ and $B \in \mathcal{I} \Longrightarrow A \cup B \in \mathcal{I}$ (finite additivity),

[^0]i.e., \mathcal{I} is closed under finite union and subsets. $\mathfrak{T}(X)$ will denote the set of all ideals on X.

In order to exclude the trivial case where the ideal coincides with the set of all subsets of the set X, it is generally assumed that $X \notin \mathcal{I}$. In this case \mathcal{I} is called a proper ideal on X.

One of the important ideals is $\mathcal{I}_{A}(=\{B: B \in P(X), B \subseteq A\}$) (where $P(X)$ stands for the power set of X).

Definition 2.2. [10] Let δ be a binary relation on the power set $P(X)$ of a nonempty set X. For any $A, B, C \in P(X)$, consider the following axioms:
$P_{1}: A \delta B \Rightarrow B \delta A$,
$P_{2}:(A \cup B) \delta C \Leftrightarrow A \delta C$ or $B \delta C$,
$P_{2}^{\prime}:(A \cup B) \delta C \Leftrightarrow A \delta C$ or $B \delta C$ and $A \delta(B \cup C) \Leftrightarrow A \delta B$ or $A \delta C$,
$P_{3}: A \delta B \Rightarrow A \neq \phi, B \neq \phi$,
$P_{4}: A \cap B \neq \phi \Rightarrow A \delta B$,
$P_{5}: A \bar{\delta} B \Rightarrow \exists E \in P(X)$ such that $A \bar{\delta} E$ and $E^{c} \bar{\delta} B$ (here, and henceforth also, $\bar{\delta}$ means non- δ and $\left.E^{c}=X-E\right)$,
$P_{6}:\{x\} \delta\{y\} \Rightarrow x=y$,
$P_{7}: A \delta B$ and $\{b\} \delta C \forall b \in B \Rightarrow A \delta C$,
$P_{7}^{\prime}:\{x\} \delta B$ and $\{b\} \delta C \forall b \in B \Rightarrow\{x\} \delta C$.
Then δ is said to be :
(a) a basic proximity on X if it satisfies P_{1}, P_{2}, P_{3} and P_{4};
(b) an Efremovich proximity (EF-proximity) on X if it is a basic proximity and satisfies P_{5};
(c) a separated proximity on X if it is an EF-proximity on X and it satisfies P_{6};
(d) a Leader proximity (LE-proximity)on X if it satisfies $P_{2}^{\prime}, P_{3}, P_{4}$ and P_{7};
(e) a Lodato proximity (LO-proximity) on X if it is an LE-proximity on X and satisfies P_{1};
(f) an S-proximity on X if it is a basic proximity on X and satisfies P_{6} and P_{7}^{\prime}.

If δ is a basic proximity (resp. EF-proximity, separated proximity, LE-proximity, LO-proximity, S-proximity) on X, then the pair (X, δ) is called a basic proximity (resp. EF-proximity, separated proximity, LE-proximity, LO-proximity, S-proximity) space.

We denote by $m(X)$ the set of all basic proximities on X and we write $x \delta A$ for $\{x\} \delta A$.

Definition 2.3. [1] A binary relation δ on the power set $P(X)$ of a nonempty set X is said to be $R H$-proximity on X if it satisfies the following conditions:
$R_{1}: A \delta B \Rightarrow B \delta A$,
$R_{2}:(A \cup B) \delta C \Leftrightarrow A \delta C$ or $B \delta C$,
$R_{3}: \phi \bar{\delta} X$,
$R_{4}: A \neq \phi \Rightarrow A \delta A$, and
$R_{5}:\{x\} \bar{\delta} A \Rightarrow \exists E \in P(X)$ such that $\{x\} \bar{\delta} E$ and $E^{c} \bar{\delta} A$.
Lemma 2.1. [4] For all subsets A and B of a basic proximity space (X, δ), if $A \delta B, A \subseteq C$ and $B \subseteq D$, then $C \delta D$.

Lemma 2.2. [3] For all subsets A and B of a basic proximity space (X, δ),
(i) if $A \delta B, A \subseteq C$, then $B \delta C$;
(ii) if $A \delta B, B \subseteq C$, then $A \delta C$.

Definition 2.4. [11] A subset B of a basic proximity space (X, δ) is said to be a proximal neighborhood of a set A with respect δ if $B^{c} \bar{\delta} A$. The set of all proximal neighborhoods of a set A with respect to δ is denoted by $N(\delta, A)$, i.e.,

$$
N(\delta, A)=\left\{B: B \in P(X), B^{c} \bar{\delta} A\right\} .
$$

When there is no ambiguity we will write $N_{\delta}(A)$ for $N(\delta, A)$.
Lemma 2.3. [4] For all subsets A and B of a basic proximity space (X, δ),
(i) $A \in N_{\delta}(B) \Leftrightarrow B^{c} \in N_{\delta}\left(A^{c}\right)$;
(ii) $N_{\delta}(A \cup B)=N_{\delta}(A) \cap N_{\delta}(B)$.

Lemma 2.4. [11] For all subsets A and B of a basic proximity space (X, δ), if $A \subseteq B$, then $N_{\delta}(B) \subseteq N_{\delta}(A)$. Also, $N_{\delta}(\phi)=P(X)$.

Theorem 2.1. [11] For all subsets A, B of a basic proximity space (X, δ), if $H \in N_{\delta}(A)$ and $M \in N_{\delta}(B)$, then $H \cup M \in N_{\delta}(A \cup B)$.

Definition 2.5. [10] A subset A of a basic proximity space (X, δ) is said to be δ-closed if $x \delta A$ implies $x \in A$.

Definition 2.6. [10] Let δ_{1}, δ_{2} be two basic proximities on a nonempty set X. We define

$$
\delta_{1}<\delta_{2} \text { if } A \delta_{2} B \Rightarrow A \delta_{1} B .
$$

The above expression refers to that δ_{2} is finer than δ_{1}, or δ_{1} is coarser than δ_{2}.
Definition 2.7. [11] Let δ_{1}, δ_{2} be two basic proximities on a nonempty set X. We define

$$
\delta_{1} \subseteq \delta_{2} \text { if } A \delta_{1} B \Rightarrow A \delta_{2} B .
$$

Definition 2.8. [6] A mapping $c: P(X) \rightarrow P(X)$ is said to be a Čech closure operator if it satisfies the following axioms:

1. $c(\phi)=\phi$,
2. $A \subseteq c(A) \forall A \in P(X)$,
3. $c(A \cup B)=c(A) \cup c(B) \forall A, B \in P(X)$.

If in addition c satisfies the following condition
4. $c(c(A))=c(A) \forall A \in P(X)$ ("idempotent condition"),
then c is called a Kuratowski's closure operator (or closure operator, for short).
Definition 2.9. [7] Let $\left(X, \delta_{1}\right)$ and $\left(Y, \delta_{2}\right)$ be two basic proximity spaces and $f: X \rightarrow Y$ be a map. Then f is called a basic-proximally continuous (BPcontinuous, for short) map if $A \delta_{1} B$ implies $f(A) \delta_{2} f(B)$.

Theorem 2.2. [11] Let (X, δ) be a basic proximity space. Then the operator $c_{\delta}: P(X) \rightarrow P(X)$ given by

$$
c_{\delta}(A)=\{x \in X: x \delta A\}, \text { for all } A \in P(X)
$$

is a Čech closure operator.
Theorem 2.3. [11] Let (X, δ) be a basic proximity space. Then

$$
c_{\delta}(A)=\cap\left\{B: B \in N_{\delta}(A)\right\} .
$$

Proposition 2.1. [4] Let (X, δ) be an EF-proximity space. Then the operator c_{δ} is a closure operator and the collection

$$
\tau_{\delta}=\left\{A \subseteq X: c_{\delta}\left(A^{c}\right)=A^{c}\right\}
$$

is a topology on X and $\left(X, \tau_{\delta}\right)$ is a completely regular topological space.

3. Some properties of basic proximities and ideals

Definition 3.1. Let δ be a binary relation on the power set $P(X)$ of a nonempty set X. For all $A \in P(X)$, we define

$$
\delta[A]=\{B: B \in P(X), B \bar{\delta} A\}
$$

Definition 3.2. A binary relation δ on the power set $P(X)$ of a nonempty set X is said to be a basic proximity on X if it satisfies the following conditions for any $A, B, C \in P(X)$:
$P I_{1}: A \in \delta[B] \Rightarrow B \in \delta[A]$,
$P I_{2}: A \in \delta[C]$ and $B \in \delta[C] \Leftrightarrow A \cup B \in \delta[C]$,
$P I_{3}: \phi \in \delta[A]$, for all $A \in P(X)$, and
$P I_{4}: A \in \delta[B] \Rightarrow A \cap B=\phi . \delta$ is said to be an EF-proximity on X if it is a basic proximity on X and it satisfies the following condition:
$P I_{5}: A \in \delta[B] \Rightarrow \exists H \in P(X)$ such that $A \in \delta[H]$ and $H^{c} \in \delta[B]$.
δ is said to be a separated proximity on X if it is an EF-proximity on X and it satisfies the following condition:
$\left.P I_{6}: x \neq y \Rightarrow\{x\} \in \delta[\{y\})\right]$.
For all $x \in X, x \in \delta[A]$ stands for $\{x\} \in \delta[A]$ and $\delta[x]$ stands for $\delta[\{x\}]$.

Lemma 3.1. For all subsets A and B of a basic proximity space (X, δ), if $A \in \delta[B]$ and $E \subseteq B$, then $A \in \delta[E]$.

Proof. Let $A \in \delta[B]$ and $E \subseteq B$. Assume that $A \notin \delta[E]$. Then $E \delta A$, but $E \subseteq B$, then (by Lemma 2.2(i)) $A \delta B$, i.e., $A \notin \delta[B]$, a contradiction.

Lemma 3.2. Let (X, δ) be a basic proximity space. Then
(i) $A \subseteq B \Rightarrow \delta[B] \subseteq \delta[A]$,
(ii) $A \in \delta[B] \Rightarrow a \in \delta[B] \forall a \in A$.

Proof. (i) it is obvious by Lemma 3.1.
(ii) Let $A \in \delta[B]$ and assume that $\exists a \in A$ such that $a \notin \delta[B]$. Then $a \delta B$, but $\{a\} \subseteq A$, hence $A \delta B$ (by Lemma 2.2(i)), which contradicts with $A \in \delta[B]$.

Proposition 3.1. Let (X, δ) be a basic proximity space. Then

$$
\delta[A] \text { is an ideal on } X, \forall A \in P(X)
$$

Proof. Since $\phi \in \delta[A]$ (by $P I_{3}$), then $\delta[A]$ is nonempty. Let $H \in \delta[A]$ and $M \subseteq H$. Then $A \in \delta[H]$ and $M \subseteq H \Rightarrow M \in \delta[A]$ (by Lemma 3.1, $P I_{1}$). Now, let $H \in \delta[A]$ and $M \in \delta[A]$. Then $H \cup M \in \delta[A]$ (by $P I_{2}$). Hence $\delta[A]$ is an ideal on X.■

Lemma 3.3. Let (X, δ) be a basic proximity space. Then the two simplest ideals on X generated by δ are $\delta[\phi]=P(X)$ and $\delta[X]=\{\phi\}$.

Proof. Straightforward.
Example 3.1. Let $X=\{a, b, c\}$ and let δ be a basic proximity defined as

$$
A \delta B \Leftrightarrow A \cap B \neq \phi
$$

Then: $\delta[\phi]=P(X), \delta[\{a\}]=\{\phi,\{b\},\{c\},\{b, c\}\}, \delta[\{b\}]=\{\phi,\{a\},\{c\},\{a, c\}\}$, $\delta[\{c\}]=\{\phi,\{a\},\{b\},\{a, b\}\}, \delta[\{a, b\}]=\{\phi,\{c\}\}, \delta[\{a, c\}]=\{\phi,\{b\}\}, \delta[\{b, c\}]=$ $\{\phi,\{c\}\}, \delta[X]=\{\phi\}$, which are ideals on X.

Example 3.2. Let $X=\{a, b, c\}$ and let δ be a basic proximity defined as

$$
A \delta B \Leftrightarrow A \neq \phi, B \neq \phi
$$

Then: $\delta[\phi]=P(X), \delta[A]=\{\phi\} \forall A \in P(X), A \neq \phi$, which are ideals on X.
The above example shows that $A \neq B \nRightarrow \delta[A] \neq \delta[B]$.
Theorem 3.1. A binary relation δ on the power set $P(X)$ of a nonempty set X is a basic proximity on X if and only if it satisfies the following conditions:
$I_{1}: A \in \delta[B] \Rightarrow B \in \delta[A]$,
$I_{2}: \delta[A]$ is an ideal on $X \forall A \in P(X)$, and
$I_{3}: \delta[A] \subseteq \mathcal{I}_{A^{c}}$, where $\mathcal{I}_{A^{c}}=\left\{B: B \in P(X), B \subseteq A^{c}\right\}$.

Proof. Suppose that δ is a basic proximity on X. Then $P I_{1}$ is equivalent to I_{1}, and I_{2} holds (by Proposition 3.1). For I_{3}, let $B \in \delta[A]$. Then $A \cap B=\phi$ (by $P I_{4}$) implies $B \subseteq A^{c}$, so $B \in \mathcal{I}_{A^{c}}$. Hence $\delta[A] \subseteq \mathcal{I}_{A^{c}}$.

Conversely, suppose that I_{1}, I_{2} and I_{3} hold. Then I_{1} is equivalent to $P I_{1}$. Since $\delta[A]$ is an ideal for all $A \in P(X)$, then $P I_{2}$ and $P I_{3}$ hold. Now, let $B \in \delta[A]$. Then $B \subseteq A^{c}$ (by I_{3}), and so $A \cap B=\phi$. Hence $P I_{4}$ holds. Consequently, δ is a basic proximity on X.

Theorem 3.2. Let (X, δ) be a basic proximity space and $A, B \in P(X)$. Then
(i) $\delta[A \cup B]=\delta[A] \cap \delta[B] \subseteq \delta[A \cap B]$,
(ii) $H_{1} \in \delta[A]$ and $H_{2} \in \delta[B] \Rightarrow H_{1} \cap H_{2} \in \delta[A \cup B]$.

Proof. (i) Since $A, B \subseteq A \cup B$, then $\delta[A \cup B] \subseteq \delta[A], \delta[B]$ (by Lemma 3.2(i)), and consequently, $\delta[A \cup B] \subseteq \delta[A] \cap \delta[B]$. Let $H \notin \delta[A \cup B]$. Then $A \cup B \notin \delta[H]$ implies $A \notin \delta[H]$ or $B \notin \delta[H]($ byPI $)$. So $H \notin \delta[A]$ or $H \notin \delta[B]$ implies $H \notin \delta[A] \cap \delta[B]$. Therefore, $\delta[A \cup B]=\delta[A] \cap \delta[B]$. Now, let $H \in \delta[A] \cap \delta[B]$. Then $A, B \in \delta[H]$. Since $A \cap B \subseteq A, B$, then $A \cap B \in \delta[H]$ (by I_{2}), and so $H \in \delta[A \cap B]$. Therefore, $\delta[A] \cap \delta[B] \subseteq \delta[A \cap B]$.
(ii) Let $H_{1} \in \delta[A]$ and $H_{2} \in \delta[B]$. Since $H_{1} \cap H_{2} \subseteq H_{1}, H_{2}$, then $H_{1} \cap H_{2} \in \delta[A]$ and $H_{1} \cap H_{2} \in \delta[B] \Rightarrow H_{1} \cap H_{2} \in \delta[A] \cap \delta[B]=\delta[A \cup B]$.

Proposition 3.2. Let $\delta_{1}, \delta_{2} \in m(X)$. Then

$$
\delta_{1}<\delta \text { if and only if } \delta_{1}[A] \subseteq \delta_{2}[A], \quad \forall A \in P(X)
$$

Proof. Straightforward.
Corollary 3.1. Let $\delta_{1}, \delta_{2} \in m(X)$. If $\delta_{1}<\delta_{2}$, then
(i) $N_{\delta_{1}}(A) \subseteq N_{\delta_{2}}(A), \quad \forall A \in P(X)$,
(ii) $c_{\delta_{2}}(A) \subseteq c_{\delta_{1}}(A), \forall A \in P(X)$.

Theorem 3.3. Let $\delta_{1}, \delta_{2} \in m(X)$. Then the following statements are equivalent:
(1) $\delta_{1}[x]=\delta_{2}[x], \forall x \in X$,
(2) $c_{\delta_{1}}(A)=c_{\delta_{2}}(A), \forall A \in P(X)$,
(3) $N_{\delta_{1}}(\{x\})=N_{\delta_{2}}(\{x\}), \forall x \in X$.

Proof. Straightforward.
Definition 3.3. Let $\delta \in m(X)$ and $A \in P(X)$. We define

$$
C N_{\delta}(A)=\left\{B: B \in P(X), \quad B \notin N_{\delta}(A)\right\}
$$

Lemma 3.4. Let $\delta \in m(X), A \in P(X)$ and $\mathcal{I} \in \mathfrak{T}(X)$. Then

$$
N_{\delta}(A) \cap \mathcal{I}=\phi \Leftrightarrow \mathcal{I} \subseteq C N_{\delta}(A)
$$

Proof. Straightforward.

Theorem 3.4. Let $\delta \in m(X), A \in P(X)$ and $\mathcal{I}_{1}, \mathcal{I}_{2} \in \mathfrak{T}(X)$. Then

$$
\mathcal{I}_{1} \cap \mathcal{I}_{2} \subseteq C N_{\delta}(A) \Rightarrow \mathcal{I}_{1} \subseteq C N_{\delta}(A) \text { or } \mathcal{I}_{2} \subseteq C N_{\delta}(A)
$$

Proof. If possible, suppose that $\mathcal{I}_{1} \nsubseteq C N_{\delta}(A)$ and $\mathcal{I}_{2} \nsubseteq C N_{\delta}(A)$. Then there exists $H_{1} \in \mathcal{I}_{1} \backslash C N_{\delta}(A)$ and $H_{2} \in \mathcal{I}_{2} \backslash C N_{\delta}(A)$. So, $H_{1} \cap H_{2} \in \mathcal{I}_{1} \cap \mathcal{I}_{2} \subseteq$ $C N_{\delta}(A) \Rightarrow H_{1} \cap H_{2} \in C N_{\delta}(A)$ which implies that $H_{1} \cap H_{2} \notin N_{\delta}(A) \Rightarrow\left(H_{1}^{c} \cup H_{2}^{c}\right) \notin$ $\delta[A] \Rightarrow H_{1}^{c} \notin \delta[A]$ or $H_{2}^{c} \notin \delta[A]$ (by I_{2}). Hence $H_{1} \in C N_{\delta}(A)$ or $H_{2} \in C N_{\delta}(A)$, a contradiction.

Theorem 3.5. Let $\mathcal{I}_{1}, \mathcal{I}_{2}$ and \mathcal{J} are ideals on a nonempty set X. Then $\mathcal{J} \subseteq \mathcal{I}_{1} \cup \mathcal{I}_{2} \Rightarrow \mathcal{J} \subseteq \mathcal{I}_{1}$ or $\mathcal{J} \subseteq \mathcal{I}_{2}$.

Proof. If possible, suppose that $\mathcal{J} \nsubseteq \mathcal{I}_{1}$ and $\mathcal{J} \nsubseteq \mathcal{I}_{2}$. Then there exists $A \in \mathcal{J} \backslash \mathcal{I}_{1}$ and $B \in \mathcal{J} \backslash \mathcal{I}_{2}$, so $A \cup B \in \mathcal{J} \subseteq \mathcal{I}_{1} \cup \mathcal{I}_{2}$. Therefore, $A \cup B \in \mathcal{I}_{1}$ or $A \cup B \in \mathcal{I}_{2}$ implies $A \in \mathcal{I}_{1}$ or $B \in \mathcal{I}_{2}$, a contradiction.

Definition 3.4. A mapping $g: m(X) \times \mathfrak{T}(X) \rightarrow \mathfrak{T}(X)$ is said to be an ideal operator on X if $\forall \delta \in m(X)$ and $\forall \mathcal{I}_{1}, \mathcal{I}_{2} \in \mathfrak{T}(X)$, we have

$$
g\left(\delta, \mathcal{I}_{1}\right) \subseteq g\left(\delta, \mathcal{I}_{2}\right) \text { whenever } \mathcal{I}_{1} \subseteq \mathcal{I}_{2}
$$

Definition 3.5. Let g be an ideal operator on X. Then a basic proximity δ on X is said to be a g-proximity if $\delta[A] \subseteq g(\delta, \delta[A]), \forall A \in P(X)$.

The family of all g-proximities is denoted by P_{g}.
Definition 3.6. An ideal operator g is said to be:
in class G_{1} if $g\left(\delta, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)=g\left(\delta, \mathcal{I}_{1}\right) \cap g\left(\delta, \mathcal{I}_{2}\right) \forall \delta \in m(X)$ and $\forall \mathcal{I}_{1}, \mathcal{I}_{2} \in \mathfrak{T}(X)$;
in class G_{2} if $g\left(\delta, \bigcap_{\alpha \in \Lambda} \mathcal{I}_{\alpha}\right)=\bigcap_{\alpha \in \Lambda} g\left(\delta, \mathcal{I}_{\alpha}\right) \forall \delta \in m(X)$ and $\forall \mathcal{I}_{\alpha} \in \mathfrak{T}(X)$;
in class T if $g\left(\delta_{1}, \mathcal{I}\right)=g\left(\delta_{2}, \mathcal{I}\right)$ with $c_{\delta_{1}}=c_{\delta_{2}} \forall \delta_{1}, \delta_{2} \in m(X)$ and $\forall \mathcal{I} \in \mathfrak{T}(X)$;
in class U if $g\left(\delta_{1}, \mathcal{I}\right) \subseteq g\left(\delta_{2}, \mathcal{I}\right)$ whenever $\delta_{1}<\delta_{2} \forall \mathcal{I} \in \mathfrak{T}(X)$;
in class E if $g(\delta, \mathcal{I}) \subseteq g(\delta, g(\delta, \mathcal{I})), \forall \delta \in P_{g}, \forall \mathcal{I} \in \mathfrak{T}(X)$.
Definition 3.7. For a set X, for all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$ we define:

$$
i(\delta, \mathcal{I})=\mathcal{I}
$$

$$
g_{0}(\delta, \mathcal{I})=\left\{A: A \in P(X), N_{\delta}(A) \cap \mathcal{I} \neq \phi\right\}
$$

$$
g_{1}(\delta, \mathcal{I})=\left\{A: A \in P(X), c_{\delta}(A) \in \mathcal{I}\right\}
$$

$$
g_{2}(\delta, \mathcal{I})=\{A: A \in P(X),\{x\} \in \delta[A] \cup \mathcal{I}, \forall x \in X\}
$$

$$
h_{0}(\delta, \mathcal{I})=\left\{A: A \in P(X), N_{\delta}(\{a\}) \cap \mathcal{I} \neq \phi \forall a \in A\right\}
$$

$$
h_{1}(\delta, \mathcal{I})=\left\{A: A \in P(X), c_{\delta}(A) \in \delta[x] \text { with } \mathcal{I} \subseteq \delta[x]\right\}
$$

When there is no ambiguity we will write g_{i} for $g_{i}(\delta, \mathcal{I})$ and h_{i} for $h_{j}(\delta, \mathcal{I})$, where $i=0,1,2, j=0,1$.

Theorem 3.6. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$ and for $g \in$ $\left\{i, g_{0}, g_{1}, g_{2}, h_{0}, h_{1}\right\}$, we have that g is an ideal operator on X.

Proof. We prove the cases g_{0} and g_{2}, the other cases are similar. Suppose that $\delta \in m(X)$ and $\mathcal{I} \in \mathfrak{T}(X)$. Now, since $N_{\delta}(\phi) \cap \mathcal{I}=P(X) \cap \mathcal{I}=\mathcal{I} \neq \phi \Rightarrow \phi \in g_{0}$. If $A \in g_{0}$ and $B \subseteq A$, then $N_{\delta}(A) \cap \mathcal{I} \neq \phi \Rightarrow N_{\delta}(B) \cap \mathcal{I} \neq \phi$ (by Lemma 2.4). Hence $B \in g_{0}$. If $A, B \in g_{0}$, then $N_{\delta}(A) \cap \mathcal{I} \neq \phi$ and $N_{\delta}(B) \cap \mathcal{I} \neq \phi$. So $\exists H, M \in \mathcal{I}$ such that $H \in N_{\delta}(A)$ and $M \in N_{\delta}(B)$ implies $H \cup M \in N_{\delta}(A \cup B)$ (by Theorem 2.1), and so $H \cup M \in N_{\delta}(A \cup B) \cap \mathcal{I}$. Consequently, $N_{\delta}(A \cup B) \cap \mathcal{I} \neq \phi$. Hence $A \cup B \in g_{0}$. Therefore, g_{0} is an ideal on X. Now, let $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$ and $H \in g_{0}\left(\delta, \mathcal{I}_{1}\right)$. Then $N_{\delta}(H) \cap \mathcal{I}_{1} \neq \phi \Rightarrow N_{\delta}(H) \cap \mathcal{I}_{2} \neq \phi$. So, $H \in g_{0}\left(\delta, \mathcal{I}_{2}\right)$. Hence g_{0} is an ideal operator on X.

Next, since $\delta[\phi]=P(X)$, then $\{x\} \in \delta[\phi] \cup \mathcal{I}, \forall x \in X \Rightarrow \phi \in g_{2}$. If $A \in g_{2}$ and $B \subseteq A$, then $\{x\} \in \delta[A] \cup \mathcal{I}, \forall x \in X \Rightarrow\{x\} \in \delta[B] \cup \mathcal{I}, \forall x \in X$ (by Lemma 3.2(i)), and so $B \in g_{2}$. If $A, B \in g_{2}$, then $\{x\} \in(\delta[A] \cup \mathcal{I}) \cap(\delta[B] \cup \mathcal{I}), \forall x \in X \Rightarrow$ $\{x\} \in(\delta[A] \cap \delta[B]) \cup \mathcal{I}, \forall x \in X \Rightarrow\{x\} \in \delta[(A \cup B)] \cup \mathcal{I}, \forall x \in X$ (by Theorem 3.2(i)), and so $A \cup B \in g_{2}$. Hence g_{2} is an ideal on X. Clearly, if $\mathcal{I}_{1} \subseteq \mathcal{I}_{2}$, then $g_{2}\left(\delta, \mathcal{I}_{1}\right) \subseteq g_{2}\left(\delta, \mathcal{I}_{2}\right)$. Consequently, g_{2} is an ideal operator on X.

Theorem 3.7. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$, we have $i, g_{1}, g_{2} \in$ $G_{2} \subseteq G_{1}$ and $g_{0}, h_{0} \in G_{1}$.

Proof. It is clear that $G_{2} \subseteq G_{1}$. Also, trivially $i, g_{1}, g_{2} \in G_{2}$. Now, let $A \in g_{0}\left(\delta, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$. Then, $N_{\delta}(A) \cap\left(\mathcal{I}_{1} \cap \mathcal{I}_{2}\right) \neq \phi \Rightarrow N_{\delta}(A) \cap \mathcal{I}_{1} \neq \phi$ and $N_{\delta}(A) \cap \mathcal{I}_{2} \neq$ $\phi \Rightarrow A \in g_{0}\left(\delta, \mathcal{I}_{1}\right) \cap g_{0}\left(\delta, \mathcal{I}_{2}\right)$. Hence $g_{0}\left(\delta, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right) \subseteq g_{0}\left(\delta, \mathcal{I}_{1}\right) \cap g_{0}\left(\delta, \mathcal{I}_{2}\right)$. On the other hand, let $A \in g_{0}\left(\delta, \mathcal{I}_{1}\right) \cap g_{0}\left(\delta, \mathcal{I}_{2}\right)$. Then $N_{\delta}(A) \cap \mathcal{I}_{1} \neq \phi$ and $N_{\delta}(A) \cap \mathcal{I}_{2} \neq \phi$ imply $N_{\delta}(A) \cap\left(\mathcal{I}_{1} \cap \mathcal{I}_{2}\right) \neq \phi\left(\right.$ by Lemma 3.4, Theorem 3.4). So $A \in g_{0}\left(\delta, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$. Hence $g_{0}\left(\delta, \mathcal{I}_{1}\right) \cap g_{0}\left(\delta, \mathcal{I}_{2}\right) \subseteq g_{0}\left(\delta, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$. Therefore, $g_{0} \in G_{1}$.

Similarly, we can prove that $h_{0} \in G_{1}$.
Theorem 3.8. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$, we have $g \in T, \quad \forall g \in$ $\left\{i, g_{1}, g_{2}, h_{0}, h_{1}\right\}$.

Proof. It follows from Lemma 2.4 and Theorem 3.3.
Theorem 3.9. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$, we have $g \in U, \forall g \in$ $\left\{i, g_{0}, g_{1}, g_{2}, h_{0}, h_{1}\right\}$.

Proof. It follows from Proposition 3.2 and Corollary 3.1.
Theorem 3.10. Let $\delta \in m(X)$. Then the following statements are equivalent: (1) δ is an EF-proximity on X,
(2) $A \in \delta[B] \Rightarrow N_{\delta}(A) \cap \delta[B] \neq \phi$,
(3) $N_{\delta}(A) \cap \delta[B]=\phi \Rightarrow A \notin \delta[B]$,
(4) δ is a g_{0}-proximity, and
(5) $A \in N_{\delta}(B) \Rightarrow \exists H \in N_{\delta}(B)$ such that $A \in N_{\delta}(H)$.

Proof. (1) $\Rightarrow(2):$ let $A \in \delta[B]$. Then, $\exists H \in P(X)$ such that $A \in \delta[H]$ and $H^{c} \in \delta[B]$. It follows that $H \in \delta[A]$ and $H^{c} \in \delta[B]$. Hence $H^{c} \in N_{\delta}(A) \cap \delta[B]$, and so $N_{\delta}(A) \cap \delta[B] \neq \phi$.
$(2) \Leftrightarrow(3):$ it is obvious.
$(2) \Rightarrow(4)$: let $H \in \delta[A]$. Then, $N_{\delta}(H) \cap \delta[A] \neq \phi \Rightarrow H \in g_{0}(\delta, \delta[A])$. So, $\delta[A] \subseteq g_{0}(\delta, \delta[A])$ and δ is a g_{0}-proximity.
$(4) \Rightarrow(2)$: let $A \in \delta[B]$. Then $A \in g_{0}(\delta, \delta[B]) \Rightarrow N_{\delta}(A) \cap \delta[B] \neq \phi$.
$(2) \Rightarrow(5)$: let $A \in N_{\delta}(B)$. Then $A^{c} \in \delta[B] \Rightarrow N_{\delta}\left(A^{c}\right) \cap \delta[B] \neq \phi \Rightarrow \exists M \in$ $P(X)$ such that $M \in \delta[B]$ and $M \in N_{\delta}\left(A^{c}\right)$. Hence, by Lemma $2.3, M^{c} \in N_{\delta}(B)$ and $A \in N_{\delta}\left(M^{c}\right)$, putting $H=M^{c}$. So (5) holds.
$(5) \Rightarrow(1)$: let $A \in \delta[B]$. Then $A^{c} \in N_{\delta}(B) \Rightarrow \exists H \in P(X)$ such that $H \in N_{\delta}(B)$ and $A^{c} \in N_{\delta}(H) \Rightarrow H^{c} \in \delta[B]$ and $A \in \delta[H]$. Hence δ is an EF Proximity on X.

Corollary 3.2. Let $\delta \in m(X)$. Then δ is an EF-proximity iff it is a $g_{0}-$ proximity.

Theorem 3.11. Let $\delta \in m(X)$. If $\delta \in P_{g_{1}}$, then c_{δ} is a closure operator.
Proof. From Theorem 2.2, it is enough to prove the idempotent property, i.e., $c_{\delta}\left(c_{\delta}(A)\right)=c_{\delta}(A)$. Clearly, $c_{\delta}(A) \subseteq c_{\delta}\left(c_{\delta}(A)\right)$. Let $x \in c_{\delta}\left(c_{\delta}(A)\right)$. Then, $x \delta c_{\delta}(A) \Rightarrow c_{\delta}(A) \notin \delta[x] \Rightarrow A \notin g_{1}(\delta, \delta[x])$. Therefore, $A \notin \delta[x]$. So, $x \in c_{\delta}(A)$. Consequently, $c_{\delta}\left(c_{\delta}(A)\right) \subseteq c_{\delta}(A)$. So, $c_{\delta}\left(c_{\delta}(A)\right)=c_{\delta}(A)$. Hence c_{δ} is a closure operator.

THEOREM 3.12. Let $\delta \in m(X)$. Then δ is a g_{1}-proximity if and only if $\forall B \in \delta[A] \Rightarrow c_{\delta}(B) \in \delta[A]$.

Proof. Suppose that δ is a g_{1}-proximity and $B \in \delta[A]$. Then, $B \in g_{1}(\delta, \delta[A]) \Rightarrow$ $c_{\delta}(B) \in \delta[A]$.

Conversely, let $B \in \delta[A]$. Then $c_{\delta}(B) \in \delta[A] \Rightarrow B \in g_{1}(\delta, \delta[A])$. So, $\delta[A] \subseteq$ $g_{1}(\delta, \delta[A]), \forall A \in P(X)$. Hence δ is a g_{1}-proximity.

Theorem 3.13. Let $\delta \in m(X)$. Then δ is an LO-proximity iff it is a g_{1-} proximity.

Proof. Suppose that δ is an LO-proximity, $A \in P(X)$ and $H \notin g_{1}(\delta, \delta[A])$. Then $c_{\delta}(H) \notin \delta[A] \Rightarrow A \delta c_{\delta}(H)$. But, $c_{\delta}(H)=\{x: x \delta H\}$, then $A \delta c_{\delta}(H)$ and $x \delta H \forall x \in c_{\delta}(H) \Rightarrow A \delta H$, i.e., $H \notin \delta[A]$. Hence δ is a g_{1}-proximity.

Conversely, let $A \delta B$ and $b \delta H \quad \forall b \in B$. Then $B \subseteq c_{\delta}(H)=\{x \in X: x \delta H\} \Rightarrow$ $A \delta c_{\delta}(H)$ (by Lemma 2.2) $\Rightarrow c_{\delta}(H) \notin \delta[A] \Rightarrow H \notin \delta[A]$ (by Theorem 3.12),so $A \delta H$. Hence δ is an LO-proximity.

Theorem 3.14. Let $\delta \in m(X)$ and $\mathcal{I} \in \mathfrak{T}(X)$. Then $g(\delta, \mathcal{I}) \subseteq \mathcal{I} \quad \forall g \in$ $\left\{i, g_{0}, g_{1}\right\}$.

Proof. Trivially, $i(\delta, \mathcal{I}) \subseteq \mathcal{I}$. Let $A \in g_{0}(\delta, \mathcal{I})$. Then, $N_{\delta}(A) \cap \mathcal{I} \neq \phi$. So, $\exists B \in P(X)$ such that $B \in N_{\delta}(A)$ and $B \in \mathcal{I}$. Since $B \in N_{\delta}(A)$, then $A \subseteq B \in$
$\mathcal{I} \Rightarrow A \in \mathcal{I}$. Hence $g_{0}(\delta, \mathcal{I}) \subseteq \mathcal{I}$. Next, let $A \in g_{1}(\delta, \mathcal{I})$. Then $c_{\delta}(A) \in \mathcal{I} \Rightarrow A \in \mathcal{I}$. Hence, $g_{1}(\delta, \mathcal{I}) \subseteq \mathcal{I}$.

Theorem 3.15. Let $\delta \in m(X)$. Then

$$
\delta \in P_{g_{2}} \Leftrightarrow(A \in \delta[B] \Rightarrow(A \in \delta[x] \text { or } B \in \delta[x])), \quad \forall x \in X
$$

Proof. Suppose that δ is a g_{2}-proximity and let $A \in \delta[B]$. Then, $A \in$ $g_{2}(\delta, \delta[B]) \Rightarrow\{x\} \in \delta[A] \cup \delta[B], \forall x \in X$. It follows that $A \in \delta[x]$ or $B \in$ $\delta[x], \quad \forall x \in X$.

Conversely, let $H \in \delta[A]$. Then, $H \in \delta[x]$ or $A \in \delta[x] \quad(\forall x \in X) \Rightarrow\{x\} \in$ $\delta[H] \cup \delta[A] \forall x \in X$, it follows that $\left.H \in g_{2}(\delta, \delta[A]), \forall A \in P(X)\right)$. Hence $\delta[A] \subseteq g_{2}(\delta, \delta[A])$. Consequently, δ is a g_{2}-proximity.

The following definition is a reformulation of Definition 2.3.
Definition 3.8. A binary relation δ on the power set $P(X)$ of a nonempty set X is said to be an $R H$-proximity on X if it satisfies the following conditions:
$R I_{1}: A \in \delta[B] \Rightarrow B \in \delta[A]$,
$R I_{2}: A \in \delta[C]$ and $B \in \delta[C] \Leftrightarrow A \cup B \in \delta[C]$,
$R I_{3}: \phi \in \delta[X]$,
$R I_{4}: A \in \delta[A] \Rightarrow A=\phi$, and
$R I_{5}: x \in \delta[A] \Rightarrow \exists H \in P(X)$ such that $x \in \delta[H]$ and $H^{c} \in \delta[A]$.
Theorem 3.16. Let $\delta \in m(X)$. Then the following statements are equivalent:
(1) $x \in \delta[A] \Rightarrow \exists H \in P(X)$ such that $x \in \delta[H]$ and $H^{c} \in \delta[A]$,
(2) $x \in \delta[A] \Rightarrow N_{\delta}(\{x\}) \cap \delta[A] \neq \phi$,
(3) $N_{\delta}(\{x\}) \cap \delta[A]=\phi \Rightarrow x \notin \delta[A]$,
(4) δ is an h_{0}-proximity, and
(5) $A \in N_{\delta}(\{x\}) \Rightarrow \exists B \in N_{\delta}(\{x\})$ such that $A \in N_{\delta}(B)$.

Proof. (1) $\Rightarrow(2)$: let $x \in \delta[A]$. Then, by (1), $\exists H \in P(X)$ such that $x \in \delta[H]$ and $H^{c} \in \delta[A]$. It follows that $H^{c} \in \delta[A]$ and $H^{c} \in N_{\delta}(\{x\})$. Hence $N_{\delta}(\{x\}) \cap$ $\delta[A] \neq \phi$.
$(2) \Leftrightarrow(3)$ it is obvious.
$(2) \Rightarrow(4)$: let $B \in \delta[A]$. Implies, by Lemma $3.2(i i), b \in \delta[A] \quad(\forall b \in B)$. Hence, by $(2), N_{\delta}(\{b\}) \cap \delta[A] \neq \phi, \quad(\forall b \in B) \Rightarrow B \in h_{0}(\delta, \delta[A])$. Hence $\delta[A] \subseteq$ $h_{0}(\delta, \delta[A])$. Consequently, δ is an h_{0}-proximity.
$(4) \Rightarrow(2):$ it is obvious.
(2) \Rightarrow (5): let $A \in N_{\delta}(\{x\})$. Then, $x \in \delta\left[A^{c}\right] \Rightarrow N_{\delta}(\{x\}) \cap \delta\left[A^{c}\right] \neq \phi$. It follows that $\exists B \in P(X)$ such that $B \in N_{\delta}(\{x\})$ and $B \in \delta\left[A^{c}\right]$. So, $A^{c} \in \delta[B] \Rightarrow$ $A \in N_{\delta}(B)$.
(5) $\Rightarrow(1)$: let $x \in \delta[A]$. Then, $A^{c} \in N_{\delta}(\{x\})$. By (5), $\exists H \in N_{\delta}(\{x\})$ such that $A^{c} \in N_{\delta}(H)$. It follows that $A \in \delta[H]$ and $H^{c} \in \delta[x]$, i.e. $\exists H \in P(X)$ such that $x \in \delta\left[H^{c}\right]$ and $H \in \delta[A]$. Hence (1) holds.

Corollary 3.3. Let $\delta \in m(X)$. Then δ is an RH-proximity iff it is an h_{0}-proximity.

Proof. It follows from Definition 3.8 and Theorem 3.16.
Theorem 3.17. Let δ be an h_{1}-proximity. Then
(1) $x \in \delta[A] \Rightarrow x \in \delta\left[c_{\delta}(A)\right]$.
(2) c_{δ} is a closure operator.

Proof. (1) Suppose that δ is an h_{1}-proximity and let $x \in \delta[A]$. Then, $A \in \delta[x] \subseteq$ $h_{1}(\delta, \delta[x]) \Rightarrow A \in h_{1}(\delta, \delta[x]) \Rightarrow c_{\delta}(A) \in \delta[y]$ with $\delta[x] \subseteq \delta[y]$. But $\delta[x] \subseteq \delta[x]$, then $c_{\delta}(A) \in \delta[x] \Rightarrow x \in \delta\left[c_{\delta}(A)\right]$.
(2) From Theorem 3.2, it is enough to prove the idempotent property i.e. $c_{\delta}\left(c_{\delta}(A)\right)=c_{\delta}(A) \forall A \in P(X)$. Clearly, $c_{\delta}(A) \subseteq c_{\delta}\left(c_{\delta}(A)\right)$. Let $x \in c_{\delta}\left(c_{\delta}(A)\right)$. Then, $x \delta c_{\delta}(A) \Rightarrow x \notin \delta\left[c_{\delta}(A)\right]$. By (1), $x \notin \delta[A]$. Hence $x \in c_{\delta}(A)$. Consequently, $c_{\delta}\left(c_{\delta}(A)\right) \subseteq c_{\delta}(A)$. It follows that $c_{\delta}(A)=c_{\delta}\left(c_{\delta}(A)\right)$. Hence c_{δ} is a closure operator.

Lemma 3.5. Let δ be an S-proximity. If $A \in \delta[x]$, then $c_{\delta}(A) \in \delta[x]$.
Proof. Suppose that δ is an S-proximity and let $A \in \delta[x]$. Assume that $c_{\delta}(A) \notin \delta[x]$. Then, $x \delta c_{\delta}(A)$. But $y \delta A \quad \forall y \in c_{\delta}(A)$, then $x \delta A$ (by \dot{P}_{7}), i.e. $A \notin \delta[x]$, a contradiction.

Theorem 3.18. Let $\delta \in m(X)$. Then δ is an S-proximity iff it is an h_{1-} proximity.

Proof. Suppose that δ is an S-proximity and let $H \in \delta[A]$ with $\delta[A] \subseteq \delta[x]$. Then, $H \in \delta[x] \Rightarrow c_{\delta}(H) \in \delta[x]$ (by Lemma 3.5) with $\delta[A] \subseteq \delta[x] \Rightarrow H \in$ $h_{1}(\delta, \delta[A])$. Hence δ is an h_{1}-proximity.

Conversely, suppose that δ is an h_{1}-proximity and let $x \notin \delta[B]$ and $b \delta H \forall b \in$ B. Also, assume that $x \in \delta[H]$. Then, by Theorem 3.17(1), $x \in \delta\left[c_{\delta}(H)\right]$. Since $B \subseteq c_{\delta}(H) \Rightarrow x \in \delta[B]$ (by Lemma 3.1), a contradiction with $x \notin \delta[B]$.

Theorem 3.19. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$, we have $g \in$ $E, \forall g \in\left\{i, g_{0}, g_{1}, g_{2}, h_{0}\right\}$.

Proof. Let $\delta \in P_{g_{0}}$ and $A \in g_{0}(\delta, \mathcal{I})$. Then $N_{\delta}(A) \cap \mathcal{I} \neq \phi \Rightarrow \exists M \in P(X)$ such that $M \in N_{\delta}(A)$ and $M \in \mathcal{I}$. Since $\delta \in P_{g_{0}}$, then, by Theorem 3.10, there exists $H \in N_{\delta}(A)$ such that $M \in N_{\delta}(H) \Rightarrow N_{\delta}(H) \cap \mathcal{I} \neq \phi$. So, $H \in g_{0}(\delta, \mathcal{I})$. But $H \in N_{\delta}(A)$, thus $N_{\delta}(A) \cap g_{0}(\delta, \mathcal{I}) \neq \phi$. Hence $A \in g_{0}\left(\delta, g_{0}(\delta, \mathcal{I})\right)$. Consequently, $g_{0}(\delta, \mathcal{I}) \subseteq g_{0}\left(\delta, g_{0}(\delta, \mathcal{I})\right)$. It follows that $g_{0} \in E$.

Next, let $\delta \in P_{g_{1}}$ and let $A \in g_{1}(\delta, \mathcal{I})$. Then $c_{\delta}(A) \in \mathcal{I} \Rightarrow c_{\delta}(A)=c_{\delta}\left(c_{\delta}(A) \in \mathcal{I}\right.$ (by Theorem 3.11). So, $c_{\delta}(A) \in g_{1}(\delta, \mathcal{I})$. Hence $A \in g_{1}\left(\delta, g_{1}(\delta, \mathcal{I})\right.$). Consequently, $g_{1}(\delta, \mathcal{I}) \subseteq g_{1}\left(\delta, g_{1}(\delta, \mathcal{I})\right)$. It follows that $g_{1} \in E$.

Now, we shall prove that $g_{2} \in E$. Let $\delta \in P_{g_{2}}$ and let $A \notin g_{2}\left(\delta, g_{2}(\delta, \mathcal{I})\right)$. Then there exists $x \in X$ such that $\{x\} \notin \delta[A] \cup g_{2}(\delta, \mathcal{I})$. So, $\{x\} \notin \delta[A]$ and $\{x\} \notin g_{2}(\delta, \mathcal{I})$. Hence, there exists $y \in X$ such that $\{y\} \notin \delta[\{x\}] \cup \mathcal{I} \Rightarrow\{y\} \notin \mathcal{I}$, $A \notin \delta[\{x\}]$ and $\{y\} \notin \delta[\{x\}]$. Hence, by Theorem 3.15, $\{y\} \notin \delta[A] \cup \mathcal{I}$. It follows that $A \notin g_{2}(\delta, \mathcal{I})$. Hence $g_{2}(\delta, \mathcal{I}) \subseteq g_{2}\left(\delta, g_{2}(\delta, \mathcal{I})\right)$. Consequently, $g_{2} \in E$.

Finally, Let $\delta \in P_{h_{0}}$ and let $A \in h_{0}(\delta, \mathcal{I})$. Then $N_{\delta}(a) \cap \mathcal{I} \neq \phi \forall a \in A \Rightarrow \exists H \in$ $P(X)$ such that $H \in N_{\delta}(a)$ and $H \in \mathcal{I}$. Therefore, by Theorem 3.16.(5), there exists $B \in N_{\delta}(a)$ such that $H \in N_{\delta}(B) \Rightarrow N_{\delta}(B) \cap \mathcal{I} \neq \phi \Rightarrow N_{\delta}(b) \cap \mathcal{I} \neq \phi, \forall b \in$ $B \Rightarrow B \in h_{0}(\delta, \mathcal{I})$. But, $B \in N_{\delta}(a)$, then $N_{\delta}(a) \cap h_{0}(\delta, \mathcal{I}) \neq \phi \forall a \in A$. It follows that $A \in h_{0}\left(\delta, h_{0}(\delta, \mathcal{I})\right)$. Hence $h_{0}(\delta, \mathcal{I}) \subseteq h_{0}\left(\delta, h_{0}(\delta, \mathcal{I})\right)$. Consequently, $h_{0} \in E$.

Theorem 3.20. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X), g_{0}(\delta, \mathcal{I})=$ $\bigcup_{A \in \mathcal{I}} \delta\left[A^{c}\right]$.

Proof. Straightforward.
Theorem 3.21. For all $\delta \in m(X)$ and for all $\mathcal{I} \in \mathfrak{T}(X)$, we have
(1) $P_{g_{1}} \subseteq P_{g_{2}}$,
(2) $P_{g_{1}} \subseteq P_{h_{1}}$,
(3) $P_{g_{0}} \subseteq P_{h_{0}}$, and
(4) $P_{g_{0}} \subseteq P_{g_{1}}$.

Proof. (1) Let $\delta \in P_{g_{1}}$ and let $H \in \delta[A]$. Then, by Theorem 3.12, $c_{\delta}(H) \in \delta[A]$. We claim that $H \in g_{2}(\delta, \delta[A])$. In fact, if $H \notin g_{2}(\delta, \delta[A])$, then there exists $x \in X$ such that $\{x\} \notin \delta[H]$ and $\{x\} \notin \delta[A] \Rightarrow x \in c_{\delta}(H),\{x\} \notin \delta[A]$. But, $\{x\} \subseteq c_{\delta}(H)$ and $\delta[A]$ is an ideal, so $c_{\delta}(H) \notin \delta[A]$, a contradiction. Hence $H \in g_{2}(\delta, \delta[A])$. It follows that $\delta[A] \subseteq g_{2}(\delta, \delta[A])$. Consequently, $\delta \in P_{g_{2}}$. Hence, $P_{g_{1}} \subseteq P_{g_{2}}$.
(2) Let $\delta \in P_{g_{1}}$ and let $H \in \delta[A]$. Then, by Theorem 3.12, $c_{\delta}(H) \in \delta[A] \Rightarrow$ $c_{\delta}(H) \in \delta[x]$ with $\delta[A] \subseteq \delta[x] \Rightarrow H \in h_{1}(\delta, \delta[A])$. Hence $\delta[A] \subseteq h_{1}(\delta, \delta[A])$. Consequently, $\delta \in P_{h_{1}}$. Hence, $P_{g_{1}} \subseteq P_{h_{1}}$.
(3) Let $\delta \in P_{g_{0}}$ and let $H \in \delta[A]$. Then, $N_{\delta}(H) \cap \delta[A] \neq \phi \Rightarrow N_{\delta}(h) \cap \delta[A] \neq$ $\phi, \forall h \in H \Rightarrow H \in h_{0}(\delta, \delta[A])$. Hence $\delta[A] \subseteq h_{0}(\delta, \delta[A])$. Consequently, $\delta \in P_{h_{0}}$. Hence, $P_{g_{0}} \subseteq P_{h_{0}}$.
(4) Let $\delta \in P_{g_{0}}$ and let $H \in \delta[A]$. Then, $N_{\delta}(H) \cap \delta[A] \neq \phi \Rightarrow \exists M \in P(X)$ such that $M \in N_{\delta}(H)$ and $M \in \delta[A]$. Since $c_{\delta}(H)=\cap\left\{B: B \in N_{\delta}(H)\right\}$, then $c_{\delta}(H) \subseteq M \in \delta[A] \Rightarrow c_{\delta}(H) \in \delta[A]$ (for $\delta[A]$ is an ideal). Hence, $H \in g_{1}(\delta, \delta[A])$. Consequently, $\delta \in P_{g_{1}}$. Hence, $P_{g_{0}} \subseteq P_{g_{1}}$.

REFERENCES
[1] A. Csaszar, RE-proximity, Acta Math. Hung. 47 (1-2) (1986), 201-221.
[2] D. Haris, Regular closed spaces and proximities, Pacific J. Math. 34 (1970), 675-685.
[3] E. Hayashi, Steiner's quasi-proximities and bitopological spaces, Bull. Nagoya Instit. Techn. 35 (1983), 80-83.
[4] R. A. Hosny, O. A. E. Tantawy, New proximities from old via ideals, Acta Math. Hungar. 110 (1-2) (2006), 37-50.
[5] D. S. Janković, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295-310.
[6] K. Kuratowski, Topology, New York: Academic Press, vol. I, 1966.
[7] L. Latecki, F. Prokop, Semi-proximity continuous functions in digital images, Pattern Recognition Letters 16 (1995), 1175-1178.
[8] M. W. Lodato, On topologically induced general proximity relations, I, Proc. Amer. Math. Soc. 15 (1964), 417-433.
[9] M. W. Lodato, On topologically induced general proximity relations, II, Pacific J. Math. 17 (1966), 133-135.
[10] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge Tract., 1970.
[11] W. J. Thron, Proximity structures and grills, Math. Ann. 206 (1973), 35-62.
[12] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51-61.
(received 30.10.2013; in revised form 12.09.2014; available online 05.11.2014)
A. Kandil, Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt
S. A. El-Sheikh, M. M. Yakout, Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt
Sh. A. Hazza, Department of Mathematics, Faculty of Education, Taiz University, Taiz, Yemen
E-mail: shawqialalimi@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 54E05
 Keywords and phrases: ideals; basic proximity; proximity space; g-proximities; nearness; topological space.

