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PROXIMITY STRUCTURES AND IDEALS
A. Kandil, S. A. El-Sheikh, M. M. Yakout and Shawqi A. Hazza

Abstract. In this paper, we present a new approach to proximity structures based on the
recognition of many of the entities important in the theory of ideals. So, we give a characterization
of the basic proximity using ideals. Also, we introduce the concept of g-proximities and we show
that for different choice of “g” one can obtain many of the known types of generalized proximities.
Also, characterizations of some types of these proximities — (go, ho) — are obtained.

1. Introduction

Ideals in topological spaces were introduced by Kuratowski [6], Vaidyanatha-
swamy [12] and Jankovié and Hamlett [5]. Various classes of generalized proximities
have been extensively studied by many authors including Lodato [8,9]. In [4], the
authors introduced a new approach to construct generalized proximity structures
based on the concept of ideal and an EF-Proximity structure. Thron [11] introduced
grills to investigate proximity structures. In this paper, we present an equivalent
formulation of the notion of basic proximity using ideals and study some of its
properties. The concept of a basic proximity on a set and a basic proximal neigh-
borhood of a set with respect to a basic proximity are obtained. Also we introduce
the concept of g-proximity and we show that for different choice of “g” one can
obtain many types of proximities.

2. Preliminaries

The purpose of this section is merely to recall known results concerning ideals
and proximity spaces. For more information see [1,4-6,10-12].

DEFINITION 2.1. [5] A nonempty collection Z of subsets of a nonempty set X
is said to be an ideal on X if it satisfies the following two conditions:

1. AecZ and BC A = B € T (hereditarity),
2. AeTand B€eZ = AU B € T (finite additivity),
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i.e., T is closed under finite union and subsets. T(X) will denote the set of all ideals
on X.

In order to exclude the trivial case where the ideal coincides with the set of all
subsets of the set X, it is generally assumed that X ¢ Z. In this case Z is called a
proper ideal on X.

One of the important ideals is Z4 (= {B : B € P(X),B C A}) (where P(X)
stands for the power set of X).

DEFINITION 2.2. [10] Let ¢ be a binary relation on the power set P(X) of a
nonempty set X. For any A, B,C € P(X), consider the following axioms:

Pi: ASB = BSA,

Py: (AUB)0C < ASC or BIC,

Pj: (AUB)6C & ASC or B6C and A6(BUC) < AdB or AdC,

P3: A6B = A +# ¢, B # ¢,

Py: ANB # ¢ = AdB,

Ps: A6B = 3E € P(X) such that AG6E and E°0B (here, and henceforth also, §
means non-0 and E° =X — F),

Ps: {z}é{y} =z =1y,

P;: A0B and {b}0C Vb e B = AdC,

Pl: {z}é6B and {b}0C Vb e B = {z}dC.
Then § is said to be :

(a) a basic proximity on X if it satisfies P;, Py, P3 and Py;

(b) an Efremovich proximity (EF-proximity) on X if it is a basic proximity and
satisfies Ps;

(¢) a separated proximity on X if it is an EF-proximity on X and it satisfies Pg;

(d) a Leader proximity (LE-proximity)on X if it satisfies Py, P3, Py and Pr;

(e) a Lodato proximity (LO-proximity) on X if it is an LE-proximity on X and
satisfies Pi;

(f) an S-proximity on X if it is a basic proximity on X and satisfies Ps and Pj.
If 0 is a basic proximity (resp. EF-proximity, separated proximity, LE-pro-

ximity, LO-proximity, S-proximity) on X, then the pair (X,0) is called a basic

proximity (resp. EF-proximity, separated proximity, LE-proximity, LO-proximity,

S-proximity) space.

We denote by m(X) the set of all basic proximities on X and we write 204
for {x}A.

DEFINITION 2.3. [1] A binary relation § on the power set P(X) of a nonempty
set X is said to be RH-proximity on X if it satisfies the following conditions:

Ry ASB = BJA,
Ryt (AUB)SC & ASC or BSC,
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R32 (ng,
Ry: A# ¢ = AJA, and
Rs: {r}6A = 3E € P(X) such that {z}0E and E°A.

LEMMA 2.1. [4] For all subsets A and B of a basic prozimity space (X,96), if
AdSB, ACC and B C D, then CéD.

LEMMA 2.2. [3] For all subsets A and B of a basic proxzimity space (X, 0),
(i) if AdB, A C C, then BoC;
(ii) if A6B, B C C, then ASC.
DEFINITION 2.4. [11] A subset B of a basic proximity space (X, d) is said to be

a proximal neighborhood of a set A with respect § if B°6A. The set of all proximal
neighborhoods of a set A with respect to ¢ is denoted by N (4, A), i.e.,

N(6,A)={B: B € P(X),BA}.
When there is no ambiguity we will write N5(A) for N(4, A).

LEMMA 2.3. [4] For all subsets A and B of a basic prozimity space (X, 0),
(i) A€ N5(B) < B¢ € Ns(A°);
(ii) N5(AU B) = N(;(A) N Ng(B).

LEMMA 2.4. [11] For all subsets A and B of a basic prozimity space (X,0), if
A C B, then N§(B) C Ns(A). Also, Ns(¢) = P(X).

THEOREM 2.1. [11] For all subsets A, B of a basic proxzimity space (X,0), if
H € Ns(A) and M € Ns(B), then HUM € Ns(AU B).

DEFINITION 2.5. [10] A subset A of a basic proximity space (X, ) is said to
be d-closed if 6 A implies = € A.

DEFINITION 2.6. [10] Let 41, d2 be two basic proximities on a nonempty set
X. We define
601 < 09 if AdsB = AdB.

The above expression refers to that dy is finer than d;, or d; is coarser than ds.

DEFINITION 2.7. [11] Let 41, d2 be two basic proximities on a nonempty set
X. We define
51 - (52 if A(SlB = AégB

DEFINITION 2.8. [6] A mapping c: P(X) — P(X) is said to be a Cech closure
operator if it satisfies the following axioms:

1. C(¢) = ¢7
2. ACc(A) VAe P(X),
3. c(AUB) =c(A)Uc(B) VY A,B e P(X).
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If in addition c satisfies the following condition
4. ¢(c(A)) =c(A) V A € P(X) (“idempotent condition”),

then c is called a Kuratowski’s closure operator (or closure operator, for short).

DEFINITION 2.9. [7] Let (X,01) and (Y, d2) be two basic proximity spaces
and f: X — Y be a map. Then f is called a basic-proximally continuous (BP-
continuous, for short) map if Ad; B implies f(A)dsf(B).

THEOREM 2.2. [11] Let (X,0) be a basic proximity space. Then the operator
¢s : P(X) — P(X) given by

cs(A) ={x € X : 20A}, for all A€ P(X)
is a Cech closure operator.
THEOREM 2.3. [11] Let (X,0) be a basic prozimity space. Then
cs(A) =n{B: B e Ns(A)}.

PROPOSITION 2.1. [4] Let (X, 6) be an EF-prozimity space. Then the operator
cs 18 a closure operator and the collection

s ={A C X :¢5(A°) = A%}
is a topology on X and (X, 7s) is a completely reqular topological space.

3. Some properties of basic proximities and ideals

DEFINITION 3.1. Let § be a binary relation on the power set P(X) of a
nonempty set X. For all A € P(X), we define

5[A] = {B: B € P(X), B3A}.

DEFINITION 3.2. A binary relation 6 on the power set P(X) of a nonempty
set X is said to be a basic proximity on X if it satisfies the following conditions for
any A, B,C € P(X):

PI, : A€ d[B] = B € §[4],

PI, : A€ [C] and B € §[C] & AU B € §[C],

PI3 : ¢ € §[4], for all A € P(X), and

PI, : A€é[B]= AN B = ¢. J is said to be an EF-proximity on X if it is a basic
proximity on X and it satisfies the following condition:

PI5 : A€ $[B]= 3H € P(X) such that A € §[H]| and H® € §[B].

0 is said to be a separated proximity on X if it is an EF-proximity on X and it

satisfies the following condition:

Plg : x #y={x} € {y})].
For all x € X, z € 0[A] stands for {x} € §[A] and §[z] stands for §[{x}].
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LEMMA 3.1. For all subsets A and B of a basic proximity space (X,96), if
A €4[B] and E C B, then A € §[E].

Proof. Let A € §[B] and E C B. Assume that A ¢ §[E]. Then EJA, but
E C B, then (by Lemma 2.2(i)) AdB, i.e., A ¢ §[B], a contradiction. m

LEMMA 3.2. Let (X,9) be a basic proximity space. Then
() AC B = o[B]CdlA]
(ii) A€dBl=a€dB]VacA.

Proof. (i) it is obvious by Lemma 3.1.

(ii) Let A € 6[B] and assume that 3 a € A such that a ¢ 6[B]. Then adB, but
{a} C A, hence A§B (by Lemma 2.2(i)), which contradicts with A € §[B]. m

PROPOSITION 3.1. Let (X,4) be a basic proximity space. Then
0[A] is an ideal on X, ¥ A € P(X).

Proof. Since ¢ € 6[A] (by PlI3), then 0[A] is nonempty. Let H € 6[A] and
M C H. Then A € §[H] and M C H = M € §[A] (by Lemma 3.1, PI;). Now, let
H € §[A] and M € 6[A]. Then HU M € 6[A] (by PI,). Hence 6[A] is an ideal on
X. m

LEMMA 3.3. Let (X,0d) be a basic prozimity space. Then the two simplest
ideals on X generated by 6 are §[¢p] = P(X) and §[X]| = {¢}.

Proof. Straightforward. m
ExaMPLE 3.1. Let X = {a,b,c} and let ¢ be a basic proximity defined as

ASB = ANB % ¢.

Then: 4[¢] = P(X), 6{a}] = {¢,{b}, {c},{b,c}}, O[{b}] = {&,{a},{c},{a,c}},
ol{c}] = {9, {a}, {0}, {a,b}}, 6[{a,0}] = {¢,{c}}, ol{a,c}] = {4, {b}}, O[{b,c}] =
{o,{c}}, 0[X] = {4}, which are ideals on X.

ExAMPLE 3.2. Let X = {a,b,c} and let ¢ be a basic proximity defined as
AdB & A # ¢, B # ¢.

Then: §[¢] = P(X), 6[A] = {¢} VA € P(X), A # ¢, which are ideals on X.
The above example shows that A # B # §[A] # d[B].

THEOREM 3.1. A binary relation § on the power set P(X) of a nonempty set
X is a basic proximity on X if and only if it satisfies the following conditions:

I, : A€ d[B]= B e [A],
Iy : d[A] is an ideal on X V¥V A € P(X), and
I3 : 6[A] C Ty, where Tope ={B: B € P(X),B C A°}.
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Proof. Suppose that ¢ is a basic proximity on X. Then PI; is equivalent to
I, and I holds (by Proposition 3.1). For I3, let B € §[A]. Then AN B = ¢ (by
PI,) implies B C A€, so B € Tac. Hence 0[A] C Z4e.

Conversely, suppose that Iy, Iy and I3 hold. Then I; is equivalent to PI;.
Since §[A] is an ideal for all A € P(X), then PI; and PI3 hold. Now, let B € §[A].
Then B C A€ (by I3 ), and so AN B = ¢. Hence PI4 holds. Consequently, J is a
basic proximity on X. m.

THEOREM 3.2. Let (X, 9) be a basic prozimity space and A, B € P(X). Then
(i) 0[AU B] = 6[A] N 8[B] C 6]AN B),
(ii) H, € (5[14] and Hy € (5[3] = H NH; e 5[AUB]

Proof. (i) Since A, B C AU B, then §[A U B] C 4[A],d[B] (by Lemma
3.2(1)), and consequently, 6[A U B] C §[A] N §[B]. Let H ¢ 6[AU B]. Then
AUB ¢ 6[H] implies A ¢ §[H| or B ¢ §[H] (byPI2). So H ¢ §[A] or H ¢ 0[B]
implies H ¢ §[A]N§[B]. Therefore, 6[AUB] = 6[A]NJ[B]. Now, let H € 6[A]NJ[B].
Then A, B € §[H]. Since ANB C A, B, then AN B € ¢§[H] (by I2), and so
H € 6[AN BJ. Therefore, 6[A] Nd6[B] C §[AN B].

(11) Let H, € 5[14} and Hy € (S[B] Since H{NHy C Hy, Hy, then H{NH5 € 5[14]
and Hy N Hy € (5[B] = H{NHy € (S[A] 06[3} = 5[AUB] | ]

PROPOSITION 3.2. Let 01, 92 € m(X). Then

91 < 0 if and only if 51[A] C 02[4], V A € P(X).

Proof. Straightforward. m

COROLLARY 3.1. Let 51, 0o € m(X) [f 0 < 52, then
(i) N5, (A) € N5, (A), VAe P(X),
(ii) e, (A) C cs,(A), ¥ A € P(X).

THEOREM 3.3. Let 01, 09 € m(X). Then the following statements are equiva-
lent:

(1) é1]x] = d2[z], Vx € X,
(2) ¢5,(A) =cs5,(A), VA€ P(X),
(3) Ns,({z}) = No,({z}), V= € X.
Proof. Straightforward. m
DEFINITION 3.3. Let 6 € m(X) and A € P(X). We define
CNs(A)={B:Be€ P(X), B¢ Ns(A)}.
LEMMA 3.4. Let 6 €e m(X), A€ P(X) and T € T(X). Then
Ns(A)NT = ¢ < T C CNs(A).
Proof. Straightforward. m
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THEOREM 3.4. Let 6 € m(X), A€ P(X) and Iy, Iy € T(X). Then
Z1NZy CCNs(A) = Z1 CCNs(A) or Iy C CNs(A).

Proof. 1f possible, suppose that Z; ¢ CNs(A) and Zo ¢ CNs(A). Then
there exists H; € 7y \ CNs(A) and Hy € Zy \ CNs(A). So, HHNHy € Ty NIy C
CN;s(A) = HiNHy € CNs(A) which implies that HyNHy ¢ Ns(A) = (H{UHS) ¢
S[A] = H{ ¢ §[A] or HS ¢ §[A] (by I). Hence Hy € CNs(A) or Hy € CNs(A), a
contradiction. m

THEOREM 3.5. Let Z1, Iy and J are ideals on a nonempty set X. Then
JCLhiUly,=JCI orJ CI.

Proof. If possible, suppose that J ¢ Z; and J ¢ Z,. Then there exists
Ae J\Zyand Be€ J\Zy,s0 AUB € J C 7y UZy. Therefore, AUB € Z; or
AUB €7, implies A € 77 or B € I, a contradiction. m

DEFINITION 3.4. A mapping g: m(X) x T(X) — T(X) is said to be an ideal
operator on X if Vd € m(X) and VI, Z € T(X), we have

9(6,71) C g(0,Z3) whenever I; C T,.
DEFINITION 3.5. Let g be an ideal operator on X. Then a basic proximity §
on X is said to be a g-proximity if §[A4] C g(d,d[A]), V A € P(X).
The family of all g-proximities is denoted by F;.

DEFINITION 3.6. An ideal operator g is said to be:

in class Gy if g(0,Z1NZs) = g(0,Z1)Ng(0,Z2) V6 € m(X) and VI, Tp € T(X);
in class Go if 9(6,Npen Za) = Naca 9(0,Za) V6 € m(X) and V Z,, € T(X);

in class T if g(61,Z) = g(62,7) with ¢5, = ¢5, V 61,02 € m(X) and V7 € T(X);
in class U if g(61,Z) C g(d2,Z) whenever §; < d; VI € T(X);

in class B if g(6,Z) C ¢g(6,9(4,7)),Vé € P, VI € T(X).

DEFINITION 3.7. For a set X, for all § € m(X) and for all Z € T(X) we define:
i(0,7)=1T
go(6,7) = {A: A€ P(X),Ny(4) T # 6},
91(6,7) ={A: Ae P(X),cs(A) € I},
9200,7) ={A: Ae P(X),{z} €[AJUTZ, Vz € X},
ho(0, ) ={A: A€ P(X),Ns({a}) NZT #pVac A},
hi(8,7) ={A: A€ P(X),cs(A) € §[z] with Z C §[x]}.
When there is no ambiguity we will write g; for ¢;(§,Z) and h; for h;(6,7), where
1=0,1,2,7=0,1.

THEOREM 3.6. For all § € m(X) and for all T € T(X) and for g €
{%, 90,91, g2, ho, h1}, we have that g is an ideal operator on X.
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Proof. We prove the cases gg and g, the other cases are similar. Suppose that
dem(X)and Z € T(X). Now, since Ns(p) NI =P(X)NI =T #p=¢ € go. If
A€ goand B C A, then Ns(A)NZ # ¢ = Ns(B)NZ # ¢ (by Lemma 2.4). Hence
B e gy It A, B € go, then N5(A)NZ # ¢ and Ns(B)NZ # ¢. So IH, M € T
such that H € N5(A) and M € Ns(B) implies H U M € Ns(A U B) (by Theorem
2.1), and so HU M € Ns(AU B)NZ. Consequently, Ns(AU B)NZ # ¢. Hence
AU B € gg. Therefore, go is an ideal on X. Now, let 73 C 7o and H € go(0,Z1).
Then Ns(H)NZI; # ¢ = Ns(H) NIy # ¢. So, H € go(6,Z2). Hence g is an ideal
operator on X.

Next, since d[¢] = P(X), then {z} € §[p]UZ, Ve e X = p € go. If A € go
and B C A, then {z} € 0[A|]UZ, V2 € X = {z} € §[BJUZ, Vz € X(by Lemma
3.2(1)), and so B € go. If A, B € go, then {z} € (J[AJUT)N(J[BJUZ),Vz € X =
{z} € (J[A]NJH[B])UI, Vo € X = {2} € 6[(AUB)]UZ, Vz € X (by Theorem
3.2(1)), and so AU B € go. Hence g is an ideal on X. Clearly, if Z; C Z, then
92(0,Z1) C g2(8,Z2). Consequently, go is an ideal operator on X. m

THEOREM 3.7. For all 6 € m(X) and for all T € T(X), we have i,g1,g2 €
Gy C Gy and go,ho e G.

Proof. 1t is clear that Go C Gi. Also, trivially i,¢91,90 € G2. Now, let
Ae 90(5,11 ﬂIQ) Then, N(;(A)O(Il ﬂIg) 75 d) = Ng(A) ﬂIl 7& qb and Ng(A)mIQ 75
¢ = A€ go(6,71) N go(d,T2). Hence go(0,Z1 N Z2) C go(d,Z1) N go(d,Z2). On the
other hand, let A € go(5,Z1) Ngo(d,Z2). Then N5(A)NZ; # ¢ and Ns(A)NZy # ¢
imply Ns(A4) N (Z1 NZs) # ¢(by Lemma 3.4, Theorem 3.4). So A € go(3,Z1 N ZI3).
Hence 90(5,11) ﬂgo((S,IQ) - 90(57_2-1 ﬂIg) Therefore, go € Gy.

Similarly, we can prove that hg € G1. m

THEOREM 3.8. For all § € m(X) and for allZ € T(X), we have g€ T, Y g€
{i7g13927h07h1}'

Proof. Tt follows from Lemma 2.4 and Theorem 3.3. m

THEOREM 3.9. For all 6 € m(X) and for allT € T(X), we have g € U, V g €
{ivgoaglaQQahOahl}-

Proof. 1t follows from Proposition 3.2 and Corollary 3.1. m

THEOREM 3.10. Let 6 € m(X). Then the following statements are equivalent:
(1) ¢ is an EF-proximity on X,
(2) A€ b[B] = Ny(4) N o[B] # o,
(3) Ns(A)Né[B] =¢ = A¢d[B],
(4) 0 is a go-prozimity, and
(5) A€ Ns(B) = 3H € Ns(B) such that A € Ns(H).

Proof. (1) = (2): let A € 6[B]. Then, 3H € P(X) such that A € §[H] and
H¢ € §[B]. It follows that H € §[A] and H¢ € §[B]. Hence H® € Ns(A) N d[B],
and so N5(A) N4[B] # ¢.
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(2) < (3): it is obvious.

(2) = (4): let H € 6[A]. Then, Ns(H)NJ[A] # ¢ = H € go(6,5[A]). So,
0[A] C go(0,0[A]) and 6 is a go-proximity.

(4) = (2): let A € 4[B]. Then A € go(d,0[B]) = Ns(A) NJ[B] # ¢.

(2) = (5): let A € Ns(B). Then A® € §[B] = Ns(A°)NJ[B] # ¢ = 3IM €
P(X) such that M € 6[B] and M € Ns(A°). Hence, by Lemma 2.3, M° € Ns(B)
and A € Ns(M®), putting H = M. So (5) holds.

(5) = (1): let A € 4[B]. Then A° € Nsj(B) = JH € P(X) such that

H € Ns(B) and A° € Ns(H) = H° € ¢[B] and A € §[H|. Hence § is an EF -
Proximity on X. m

COROLLARY 3.2. Let § € m(X). Then ¢ is an EF-proximity iff it is a go-
proximaty.

THEOREM 3.11. Let 6 € m(X). If § € Py, , then cs is a closure operator.

Proof. From Theorem 2.2, it is enough to prove the idempotent property,
ie, cs(es(A)) = cs(A). Clearly, cs(A) C cs(cs(A)). Let € cs(cs(A)). Then,
xdcs(A) = c5(A) ¢ d[z] = A ¢ g1(9,6[x]). Therefore, A ¢ d[x]. So, x € cs5(A).
Consequently, c¢s(cs(A)) C cs5(A). So, cs(es(A)) = cs(A). Hence cs is a closure
operator. m

THEOREM 3.12. Let 6 € m(X). Then § is a g1-prozimity if and only if
YV B € §[A] = cs(B) € 0[4].

Proof. Suppose that § is a g;-proximity and B € §[A]. Then, B € ¢1(9, §[4]) =
Cg(B) € 5[14]

Conversely, let B € §[A]. Then c5(B) € §[A] = B € g1(6,0[A]). So, 0[A] C
91(9,0[A]), VA € P(X). Hence 0 is a g;-proximity. m

THEOREM 3.13. Let 6 € m(X). Then § is an LO-prozimity iff it is a g1-
proximity.

Proof. Suppose that ¢ is an LO-proximity, A € P(X) and H ¢ g1(9,[A]).
Then c¢s(H) ¢ 6[A] = Adcs(H). But, ¢s(H) = {x : 2dH}, then Adcs(H) and
xdH Yz €cs(H)= ASH, ie., H ¢ §[A]. Hence ¢ is a g;-proximity.

Conversely, let A0B and b0H Vb e B. Then BC ¢s(H) ={zx € X : 26H} =
Adcs(H) (by Lemma 2.2) = ¢5(H) ¢ 0[A] = H ¢ §[A] (by Theorem 3.12),s0 AdH.
Hence ¢ is an LO-proximity. m

THEOREM 3.14. Let § € m(X) and T € ¥(X). Then ¢(6,7) CZI Vg €
{ivg()agl}‘

Proof. Trivially, i(6,Z) C Z. Let A € go(6,Z). Then, Ns(A) NZ # ¢. So,
IB € P(X) such that B € Ns(A) and B € Z. Since B € Ns(A), then A C B €
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T = A €T Hence go(6,7) CZ. Next, let A € ¢1(0,Z). Then ¢5(A) e T = AeT.
Hence, ¢1(6,Z) CZ. m

THEOREM 3.15. Let 6 € m(X). Then
de Py, (Aecd[B]= (Aecifz] or Bedlz]), Ve e X.

Proof. Suppose that 0 is a go-proximity and let A € §[B]. Then, A €
92(0,0[B]) = {z} € 0[A]UJ[B], V = € X. It follows that A € J[z] or B €
dz], Ve X.

Conversely, let H € 6[A]. Then, H € §[z] or A € d[z] (Vz € X) = {a} €
S[HIUJ[A] ¥V =z € X, it follows that H € g¢3(5,0[4]), ¥V A € P(X)). Hence
5[A] C g2(6,8[A]). Consequently, § is a go-proximity. m

The following definition is a reformulation of Definition 2.3.

DEFINITION 3.8. A binary relation ¢ on the power set P(X) of a nonempty
set X is said to be an RH-proximity on X if it satisfies the following conditions:

RI; : A€ d[B] = B € [4],
RI, : A€ d[C] and B € §[C] & AU B € §[C],

RI; : ¢ € 0[X],

RIy : A€d[A]= A= ¢, and

RI; : x € §[A] = 3H € P(X) such that x € §[H| and H* € §[A].

THEOREM 3.16. Let 6 € m(X). Then the following statements are equivalent:
(1) z € 6[A] = 3H € P(X) such that x € §[H] and H* € §[A],
(2) = € 5[A] = No({a}) N 8[A] £ 6,
(3) Ns({z}) Nd[A] = ¢ = = ¢ 6[A],
(4) ¢ is an hg-prozimity, and
(5) A€ Ns({z}) = 3B € Ns({x}) such that A € Ns(B).

Proof. (1) = (2): let « € 6[A]. Then, by (1), 3H € P(X) such that x € 6[H]|
and H¢ € §[A]. It follows that H® € §[A] and H® € Ns({z}). Hence Ns({z}) N
S[A] # ¢
(2) < (3) it is obvious.

(2) = (4): let B € §[A]. Implies, by Lemma 3.2 (ii), b € 6[A] (V b € B).
Hence, by (2), Ns({b}) Nd[A4] # ¢, (Vb€ B) = B € hy(d,d[A]). Hence 6[A4] C
ho(6,0[A]). Consequently, § is an hg-proximity.

(4) = (2): it is obvious.

(2) = (5): let A € Ns({z}). Then, z € §[A°] = Ns({z}) No[A°] # ¢. It
follows that 3B € P(X) such that B € Ns({z}) and B € §[A°]. So, A° € §[B] =
Ae Ng(B)

(5) = (1): let « € 6[A]. Then, A° € Ns({z}). By (5), 3H € N;s({z}) such
that A° € Ns(H). It follows that A € §[H] and H® € §[z], i.e. IH € P(X) such
that x € §[H¢] and H € §[A]. Hence (1) holds. m
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COROLLARY 3.3. Let 6 € m(X). Then 0 is an RH-proximity iff it is an
ho-prozimity.

Proof. Tt follows from Definition 3.8 and Theorem 3.16. m

THEOREM 3.17. Let § be an hy-proximity. Then
(1) z € §[A] = z € d[es(A)].

(2) c¢s is a closure operator.

Proof. (1) Suppose that ¢ is an h;-proximity and let « € 6[A]. Then, A € §[z] C
hi1(8,0[z]) = A € h1(,0[z]) = cs(A) € d[y] with §[z] C d[y]. But d[z] C d[z], then
cs(A) € 0[z] = x € d[es(A)].

(2) From Theorem 3.2, it is enough to prove the idempotent property i.e.
cs(cs(A)) = es(A) ¥V A € P(X). Clearly, cs(A) C cs(cs(A)). Let z € cs(cs(A)).
Then, zdcs(A) = = ¢ d[cs(A)]. By (1), z ¢ 6[A]. Hence x € ¢5(A). Consequent-
ly, es(es(A)) C es(A). Tt follows that c¢5(A) = cs(cs(A)). Hence cs is a closure
operator. m

LEMMA 3.5. Let ¢ be an S-prozimity. If A € §[x], then c5(A) € 6[z].

Proof.  Suppose that § is an S-proximity and let A € 4[z]. Assume that
cs(A) ¢ O0[x]. Then, zdcs(A). But ydA V y € cs(A), then xdA(by Pr), i.e.
A ¢ d[z], a contradiction. m

THEOREM 3.18. Let 6 € m(X). Then § is an S-proximity iff it is an hq-
proximity.

Proof. Suppose that § is an S-proximity and let H € §[A] with §[A] C J[z].
Then, H € d[z] = c¢s(H) € d[z] (by Lemma 3.5) with §[A] C d[z] = H €
h1(8,8[A]). Hence 6 is an hi-proximity.

Conversely, suppose that ¢ is an hq-proximity and let = ¢ 6[B] and b6H V b €
B. Also, assume that © € §[H]. Then, by Theorem 3.17(1), « € d[cs(H)]. Since
B C ¢s(H) = = € §[B] (by Lemma 3.1), a contradiction with x ¢ §[B]. m

THEOREM 3.19. For all 6 € m(X) and for oll T € T(X), we have g €
E, Vge{ig,91,92 ho}

Proof. Let 6 € Py, and A € go(6,Z). Then Ns(A)NZ # ¢ = IM € P(X)
such that M € Ns(A) and M € Z. Since § € P,, then, by Theorem 3.10, there
exists H € Ns(A) such that M € Ns(H) = Ns(H)NZ # ¢. So, H € go(6,Z). But
H € Ns(A), thus N5(A) N go(8,Z) # ¢. Hence A € go(d,90(5,Z)). Consequently,
90(0,Z) C go(6,90(0,7)). Tt follows that gg € E.

Next, let 6 € Py, andlet A € ¢1(6,Z). Thencs(A) € T = c5(A) = cs(cs(A) €L
(by Theorem 3.11). So, ¢s(A) € 91(6,Z). Hence A € g1(0,1(,Z)). Consequently,
91(0,7) € 91(6,91(6,7)). Tt follows that g1 € E.
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Now, we shall prove that go € E. Let § € Py, and let A ¢ ¢2(9,92(9,7)).
Then there exists © € X such that {z} ¢ §[A] U g2(0,Z). So, {z} ¢ J§[A] and
{z} ¢ 92(,7). Hence, there exists y € X such that {y} ¢ §[{z}]UZ = {y} ¢ T,
A ¢ §[{x}] and {y} ¢ 0[{z}]. Hence, by Theorem 3.15, {y} ¢ 0[A] UZ. It follows
that A ¢ ¢g2(6,7). Hence g2(0,Z) C g2(0, g2(9,Z)). Consequently, g, € E.

Finally, Let § € Py, and let A € ho(5,Z). Then Ns(a)NZ # ¢ Va € A= 3H €
P(X) such that H € Ns(a) and H € Z. Therefore, by Theorem 3.16.(5), there
exists B € Nj(a) such that H € Ns(B) = Ns(B)NZ # ¢ = Ns(b) NI # ¢, Vb €
B = B € h¢(6,Z). But, B € Ns(a), then Ns(a) N ho(6,Z) # ¢ Va € A. Tt follows
that A € ho(d, ho(,Z)). Hence ho(8,Z) C ho(d, ho(0,7)). Consequently, hy € E. m

THEOREM 3.20. For all § € m(X) and for all T € F(X), go(6,Z) =
Uaez 6147

Proof. Straightforward. m

THEOREM 3.21. For all § € m(X) and for oll T € T(X), we have
P, CP

g1 = * 927

C Pp,, and

Proof. (1) Let § € Py, and let H € §[A]. Then, by Theorem 3.12, ¢s(H) € 6[A].
We claim that H € g2(9,6[A]). In fact, if H ¢ g2(9, d[A]), then there exists v € X
such that {z} ¢ §[H] and {x} ¢ 0[4] = = € ¢s5(H),{z} ¢ J[A]. But, {z} C cs(H)
and d[A4] is an ideal, so c¢s(H) ¢ §[A], a contradiction. Hence H € g2(6,0[4]). Tt
follows that 6[A] C g2(6,6[A]). Consequently, § € P,,. Hence, P;,, C P,,.

(2) Let 6 € P,, and let H € §[A]. Then, by Theorem 3.12, ¢5(H) € 6[4] =
cs(H) € dlz] with 6[A] C d[z] = H € hi(6,[A]). Hence 6[A] C hq(6,0[A4]).
Consequently, § € Py,. Hence, Py, C Py, .

(3) Let 6 € Py, and let H € §[A]. Then, Ns(H) N [A] # ¢ = Ns(h) N[A] #
¢, YVh € H = H € hy(0,9[A]). Hence 6[A] C ho(d,d[A]). Consequently, 6 € Pp,.
Hence, Py, C Pp,.

(4) Let 6 € Py, and let H € 6[A]. Then, Ns(H) N6[A] # ¢ = IM € P(X)
such that M € Ns(H) and M € §[A]. Since ¢5(H) = N{B : B € N;(H)}, then
cs(H) C M € §[A] = cs(H) € §[A] ( for §[A] is an ideal). Hence, H € ¢1(9,[A4]).
Consequently, 0 € P,,. Hence, P,y C Py,. =
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