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COMMON FIXED POINT THEOREMS FOR EXPANSIVE
MAPPINGS SATISFYING AN IMPLICIT RELATION

Abdelkrim Aliouche and Ahcene Djoudi

Abstract. We prove common fixed point theorems in metric spaces for expansive map-
pings satisfying an implicit relation without non-decreasing assumption and surjectivity using the
concept of weak compatibility which generalize some theorems appearing in the recent literature.

1. Introduction

Let S and T be self-mappings of a metric space (X, d). S and T are commuting
if STx = TSx for all x ∈ X.

Sessa [15] defined S and T to be weakly commuting if for all x ∈ X

d(STx, TSx) ≤ d(Tx, Sx)

Jungck [6] defined S and T to be compatible as a generalization of weakly com-
muting if

lim
n→∞

d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X.

It is easy to show that commutativity implies weak commutativity and this
implies compatibility, and there are examples in the literature verifying that the
inclusions are proper, see [6] and [15].

Jungck et al [7] defined S and T to be compatible mappings of type (A) if

lim
n→∞

d(STxn, T 2xn) = 0 and lim
n→∞

d(TSxn, S2xn) = 0.

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X. Examples are given to show that the two concepts of compatibility
are independent, see [7].
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Recently, Pathak and Khan [11] defined S and T to be compatible mappings
of type (B) as a generalization of compatible mappings of type (A) if

lim
n→∞

d(TSxn, S2xn) ≤ 1
2
[ lim
n→∞

d(TSxn, T t) + lim
n→∞

d(Tt, T 2xn)] and

lim
n→∞

d(STxn, T 2xn) ≤ 1
2
[ lim
n→∞

d(STxn, St) + lim
n→∞

d(St, S2xn)]

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X.

Clearly, compatible mappings of type (A) are compatible mappings of type
(B), but the converse is not true, see [11]. However, compatibility, compatibility of
type (A) and compatibility of type (B) are equivalent if S and T are continuous,
see [11].

Pathak et al. [12] defined S and T to be compatible mappings of type (P) if

lim
n→∞

d(S2xn, T 2xn) = 0

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X.

However, compatibility, compatibility of type (A) and compatibility of type
(P) are equivalent if S and T are continuous, see [12].

Pathak et al. [13] defined S and T to be compatible mappings of type (C) as
a generalization of compatible mappings of type (A) if

lim
n→∞

d(TSxn, S2xn) ≤ 1
3
[ lim
n→∞

d(TSxn, T t) + lim
n→∞

d(Tt, S2xn) + lim
n→∞

d(Tt, T 2xn)]

and

lim
n→∞

d(STxn, T 2xn) ≤ 1
3
[ lim
n→∞

d(STxn, St) + lim
n→∞

d(St, T 2xn) + lim
n→∞

d(St, S2xn)]

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X.

However, compatibility, compatibility of type (A) and compatibility of type
(C) are equivalent if S and T are continuous, see [13].

2. Preliminaries

Definition 2.1. [8] Mappings S, T : X → X are said to be weakly compatible
if they commute at their coincidence points; i.e., if Su = Tu for some u ∈ X implies
STu = TSu.

Lemma 2.2. [6, 7, 11–13]. If S and T are compatible, or compatible of type
(A), or compatible of type (P), or compatible of type (B), or compatible of type (C),
then they are weakly compatible.
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The converses are not true in general, see [2].
Definition 2.3. [9] Mappings S, T : X → X are said to be R-weakly com-

muting if there exists an R > 0 such that

d(STx, TSx) ≤ Rd(Tx, Sx) for all x ∈ X. (2.1)

Definition 2.4. [10] Mappings S, T : X → X are said to be pointwise R-
weakly commuting if for each x ∈ X, there exists an R > 0 such that (2.1) holds.

It is proved in [10] that R-weak commutativity is equivalent to commutativity
at coincidence points; i.e., S and T are pointwise R-weakly commuting if and only
if they are weakly compatible.

Let R+ be the set of all non-negative real numbers and G6 the family of all
continuous mappings G : R6

+ → R satisfying the following conditions:
(G1): G is non-decreasing in the fifth and sixth variables.
(G2): there exists θ > 1 such that for all u, v ≥ 0 with
(Ga): G(u, v, u, v, u + v, 0) ≥ 0 or (Gb): G(u, v, v, u, 0, u + v) ≥ 0

we have u ≥ θv.
(G3): G(u, u, 0, 0, u, u) < 0 for all u > 0.
The following theorem was proved in [5].

Theorem 2.5. Let A,B, S and T be self-mappings of a complete metric space
(X, d) satisfying the following conditions:

i) A and B are surjective.
ii) The pairs (A,S) and (B, T ) are weakly compatible.
iii) G(d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx,By)) ≥ 0 for

all x, y in X and some G ∈ G6.
Then A,B, S and T have a unique common fixed point in X.

Remark 2.6. A similar theorem is proved in [1].
It is our goal in this paper to prove common fixed point theorems in met-

ric spaces for expansive mappings satisfying an implicit relation without non-
decreasing assumption and surjectivity using the concept of weak compatibility
which generalizes theorems of [4], [5] and [14].

3. Implicit relations

Let F6 be the family of all continuous functions F : R6
+ → R satisfying the

following conditions:
(C1): there exists h > 1 such that for all u, v, w ≥ 0 with
(Ca): F (u, v, v, u, 0, w) ≥ 0 or (Cb): F (u, v, u, v, w, 0) ≥ 0
we have u ≥ hv.
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(C2): F (u, u, 0, 0, u, u) < 0 for all u > 0.
Example 3.1.

F (t1, t2, t3, t4, t5, t6) = t1 − a max{t2, t3, t4} − b(t5 + t6), a > 1 and b > 0.
(C1): Let u, v, w ≥ 0. We have F (u, v, v, u, 0, w) = u− amax{v, u} − bw ≥ 0.

If v ≤ u, then u > u which is a contradiction. Therefore, u ≥ av. Similarly, if
F (u, v, u, v, w, 0) ≤ 0, then u ≥ av.

(C2): F (u, u, 0, 0, u, u) = (1− a− 2b)u < 0 for all u > 0.
Example 3.2.

F (t1, t2, t3, t4, t5, t6) = t1 − a max{t2, t3, t4} − bt5t6, a > 1 and b > 0.
(C1) and (C2) as in Example 3.1.
Example 3.3.

F (t1, t2, t3, t4, t5, t6) = (1+ pt2)t1− pt3t4− amax{t2, t3, t4}− b(t5 + t6), a > 1,
b > 0 and p ≥ 0.

(C1) and (C2) as in Example 3.1.
Example 3.4.

F (t1, t2, t3, t4, t5, t6) = t21 − at22 + b
t23 + t24

t5 + t6 + 1
, 0 < a, b and a > 2b + 1.

(C1): Let u, v, w ≥ 0 and 0 ≤ F (u, v, v, u, 0, w) = u2 − av2 + b
(u2 + v2)

w + 1
≤

u2 − av2 + b(u2 + v2). Then, u2 ≥ a− b

1 + b
v2. Hence, u ≥ hv, h =

(
a− b

1 + b

) 1
2

> 1.

Similarly, if F (u, v, u, v, w, 0) ≥ 0, then u ≥ hv.
(C2): For all u > 0, F (u, u, 0, 0, u, u) = (1− a)u2 < 0.
Example 3.5.

F (t1, t2, t3, t4, t5, t6) = t21 − at22 + b
t23 + t24
t5t6 + 1

, 0 < a, b and a > 2b + 1.

(C1) and (C2) as in Example 3.4.
Example 3.6.

F (t1, t2, t3, t4, t5, t6) = t1−at2− bt3 + c
t4t5

t5 + t6 + 1
, a > 1, 0 ≤ b < 1, c > 0 and

a + b− c > 1.
(C1): Let u, v, w ≥ 0 and F (u, v, v, u, 0, w) = u− av − bv ≥ 0. Then u ≥ h1v,

h1 = a + b > 1.

0 ≤ F (u, v, u, v, w, 0) = u−av−bu+c
vw

w + 1
≤ u−av−bu+cv implies u ≥ h2v.

Hence, h2 =
a− c

1− b
> 1. We take h = min{h1, h2}.

(C2): F (u, u, 0, 0, u, u) = (1− a)u < 0 for all u > 0.
Example 3.7.

F (t1, t2, t3, t4, t5, t6) = t1−at2 + b
t3t6

t5 + t6 + 1
− ct4, a > 1, b > 0, 0 ≤ c < 1 and

a + c− b > 1.
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(C1): Let u, v, w ≥ 0 and 0 ≤ F (u, v, v, u, 0, w) = u − av + b
vw

w + 1
− cu ≤

u−av+bv−cu. Then u ≥ h1v, h1 =
a− b

1− c
> 1. F (u, v, u, v, w, 0) = u−av−cv ≥ 0

implies u ≥ h2v. Hence, h2 = a + c > 1. We take h = min{h1, h2}.
(C2): For all u > 0, F (u, u, 0, 0, u, u) = (1− a− c)u < 0.

4. Main results

Theorem 4.1. Let A,B, S and T be self-mappings of a metric space (X, d)
satisfying the following conditions

S(X) ⊂ B(X) and T (X) ⊂ A(X), (4.1)

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx,By)) ≥ 0 (4.2)

for all x, y ∈ X and some F ∈ F6. Suppose that A(X) or B(X) or S(X) or T (X)
is complete and the pairs (A,S) and (B, T ) are weakly compatible. Then, A,B, S
and T have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. By (4.1), we can define inductively
a sequence {yn} in X such that

y2n = Sx2n = Bx2n+1 and y2n+1 = Ax2n+2 = Tx2n+1 (4.3)

for all n = 0, 1, 2, . . . . Using (4.2) and (4.3) we have

0 ≤ F (d(Ax2n, Bx2n+1), d(Sx2n, Tx2n+1), d(Ax2n, Sx2n), d(Bx2n+1, Tx2n+1),

d(Ax2n, Tx2n+1), d(Sx2n, Bx2n+1))

= F (d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n), d(y2n, y2n+1), d(y2n−1, y2n+1), 0).

By (Cb) we get d(y2n−1, y2n) ≥ hd(y2n, y2n+1). Similarly, we obtain by (Ca),
d(y2n+1, y2n) ≥ hd(y2n+2, y2n+1). Therefore

d(yn, yn+1) ≤ 1
h

d(yn−1, yn).

Now, assume that A(X) is complete. Then, {y2n+1} = {Ax2n+2} ⊂ A(X) con-
verges to a point z = Au for some u ∈ X and the subsequences {Sx2n}, {Bx2n+1}
and {Tx2n+1} converge also to z.

If z 6= Su, using (4.2) we have

0 ≤ F (d(Au,Bx2n+1), d(Su, Tx2n+1), d(Au, Su), d(Bx2n+1, Tx2n+1),

d(Au, Tx2n+1), d(Su, Bx2n+1)).

Letting n →∞, we obtain

F (0, d(Su, z), d(Su, z), 0, 0, d(Su, z)) ≥ 0.

By (Ca), we get z = Su = Au. Since S(X) ⊂ B(X) there exists v ∈ X such that
z = Su = Bv.
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If z 6= Tv, using (4.2) we get

0 ≤ F (d(Au,Bv), d(Su, Tv), d(Au, Su), d(Bv, Tv), d(Au, Tv), d(Su,Bv))

= F (0, d(z, Tv), 0, d(z, Tv), d(z, Tv), 0).

By (Cb), we obtain z = Tv = Bv = Au = Su. As the pairs (A,S) and (B, T ) are
weakly compatible, we get Az = Sz and Bz = Tz.

If z 6= Az, using (4.2) we have

0 ≤ F (d(Az, Bv), d(Sz, Tv), d(Az, Sz), d(Bv, Tv), d(Az, Tv), d(Sz, Bv))

= F (d(Az, z), d(Az, z), 0, 0, d(Az, z), d(Az, z)),

which is a contradiction with (C2). Therefore, z = Az = Sz. Similarly, we can
prove that z = Bz = Tz. Hence, z is a common fixed point of A,B, S and T . The
uniqueness of z follows from (4.2) and (C2).

In a similar manner, Theorem 4.1 holds if B(X) or S(X) or T (X) is complete
instead of A(X).

Remark 4.2. As the function F in Theorem 4.1 is non-decreasing in variables
t5 and t6, Theorem 2.5 of [5] and theorems of [4] and [14] are not applicable.

Theorem 4.3. Let {gi}i≥1, S and T be self-mappings of a metric space (X, d)
satisfying the following conditions:

S(X) ⊂ gi+1(X) and T (X) ⊂ gi(X), i ≥ 1 (4.4)

F (d(gix, gi+1y), d(Sx, Ty), d(gix, Sx), d(gi+1y, Ty), d(gix, Ty), d(Sx, gi+1y)) ≥ 0
(4.5)

for all x, y ∈ X and some F ∈ F6. Suppose that gi(X) or gi+1(X) or S(X) or
T (X) is complete and the pairs (gi, S) and (gi, T ) are weakly compatible. Then
{gi}i≥1, S and T have a unique common fixed point in X.

Proof. It follows as in the proof of Theorem 4.3 of [4].
Theorem 4.3 generalizes Theorem 4.3 of [4].

Theorem 4.4. Let A,B, S and T be self-mappings of a complete metric space
(X, d) satisfying (4.1) and (4.2). Suppose that A(X) or B(X) or S(X) or T (X) is
closed and the pairs (A, S) and (B, T ) are weakly compatible. Then, A,B, S and T
have a unique common fixed point in X.

Proof. As in the proof of Theorem 4.1, {yn} is a Cauchy sequence in X. Since
(X, d) is complete, it converges to a point z ∈ X and the sub-sequences {Ax2n+2},
{Sx2n}, {Bx2n+1} and {Tx2n+1} converge also to z. Now, assume that A(X) is
closed. Then, z = Au for some u ∈ X. The rest of the proof follows as in Theorem
4.1.

Remark 4.5. As the function F in Theorem 4.4 is non-decreasing in variables
t5 and t6, Theorem 2.5 of [5] and theorems of [4] and [14] are not applicable.



Common fixed point theorems for expansive mappings 121

Theorem 4.6. Let {gi}i≥1, S and T be self-mappings of a complete metric
space (X, d) satisfying (4.4) and (4.5). Suppose that gi(X) or gi+1(X) or S(X)
or T (X) is closed and the pairs (gi, S) and (gi, T ) are weakly compatible. Then
{gi}i≥1, S and T have a unique common fixed point in X.

Proof. It follows as in the proof of Theorem 4.3.
The following example supports our Theorem 4.4.
Example 4.7. Let X = [1,∞), d(x, y) = |x− y|, A,B, S and T be self-

mappings of X defined by:

Ax =
{

2x6 if x ∈ [1,∞) and x 6= 2
2 if x = 2

Sx =
{

x3 + 1 if x ∈ [1,∞) and x 6= 2
2 if x = 2

Bx =
{

2x4 if x ∈ [1,∞) and x 6= 2
2 if x = 2

Tx =
{

x2 + 1 if x ∈ [1,∞) and x 6= 2
2 if x = 2

and
F (t1, t2, t3, t4, t5, t6) = t1 − at2 + b

t3t6
t5 + t6 + 1

− ct4,

a > 1, b > 0, 0 ≤ c < 1 and a + c − b > 1. It is easy to see that the pairs (A,S)
and (B, T ) are weakly compatible.

If x = y = 2 or x = y = 1, we have

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx, By)) = 0.

If x ∈ [1,∞), x 6= 2 and y ∈ [1,∞), y 6= 2, we get

d(Ax, By) = 2
∣∣x6 − y4

∣∣ = 2(x3 + y2)
∣∣x3 − y2

∣∣ ≥ 4d(Sx, Ty).

If x ∈ (1,∞), x 6= 2 and y = 2, we get

d(Ax,By) = 2
∣∣x6 − 1

∣∣ and d(Sx, Ty) =
∣∣x3 − 1

∣∣ .

It follows that
d(Ax,By)
d(Sx, Ty)

=
2

∣∣x6 − 1
∣∣

|x3 − 1| > 4.

Hence d(Ax,By) > 4d(Sx, Ty).
Similarly, if x = 2 and y ∈ [1,∞), y 6= 2 we get d(Ax,By) > 4d(Sx, Ty).

Then, for all x, y ∈ X

d(Ax,By) ≥ 4d(fx, gy)− b
d(Ax, Sx)d(Sx, By)

d(Ax, Ty) + d(Sx, By) + 1
+ cd(By, Ty),
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and so

F (d(Ax,By), d(Sx, Ty), d(Ax, Sx), d(By, Ty), d(Ax, Ty), d(Sx, By)) ≥ 0.

Thus, all conditions of Theorem 4.4 hold and 2 is the unique common fixed point of
A,B, S and T . Note that Theorem 2.5 of [5] is not applicable since the mappings
A and B are not surjective.

Acknowledgement. The authors would like to thank anonymous referees
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