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GENERALIZED DERIVATIONS AS A GENERALIZATION
OF JORDAN HOMOMORPHISMS ACTING ON LIE IDEALS

Basudeb Dhara, Shervin Sahebi and Venus Rahmani

Abstract. Let R be a prime ring with extended centroid C, L a non-central Lie ideal
of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H and G such that
H(u2)n = G(u)2n for all u ∈ L, then one of the following holds:

(1) H(x) = ax and G(x) = bx for all x ∈ R, with a, b ∈ C and an = b2n;

(2) char(R) 6= 2, R satisfies s4, H(x) = ax + [p, x] and G(x) = bx for all x ∈ R, with b ∈ C and
an = b2n;

(3) char(R) = 2 and R satisfies s4.

As an application we also obtain some range inclusion results of continuous generalized
derivations on Banach algebras.

1. Introduction

Let R be an associative prime ring with center Z(R) and U the Utumi quotient
ring of R. The center of U , denoted by C, is called the extended centroid of R (we
refer the reader to [2] for these objects). For given x, y ∈ R, the Lie commutator
of x, y is denoted by [x, y] = xy − yx. A linear mapping d : R → R is called a
derivation, if it satisfies the Leibnitz rule d(xy) = d(x)y + xd(y) for all x, y ∈ R.
In particular, d is said to be an inner derivation induced by an element a ∈ R, if
d(x) = [a, x] for all x ∈ R. In [5], Bresar introduced the definition of generalized
derivation: An additive mapping F : R → R is called generalized derivation if
there exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for
all x, y ∈ R, and d is called the associated derivation of F . Hence, the concept
of generalized derivations covers the concept of derivations. In [20], Lee extended
the definition of generalized derivation as follows: by a generalized derivation we
mean an additive mapping F : I → U such that F (xy) = F (x)y + xd(y) holds for
all x, y ∈ I, where I is a dense left ideal of R and d is a derivation from I into
U . Moreover, Lee also proved that every generalized derivation can be uniquely
extended to a generalized derivation of U , and thus all generalized derivations of
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R will be implicitly assumed to be defined on the whole of U . Lee obtained the
following: every generalized derivation F on a dense left ideal of R can be uniquely
extended to U and assumes the form F (x) = ax + d(x) for some a ∈ U and a
derivation d on U . Let S be a nonempty subset of R and F : R → R be an additive
mapping. Then we say that F acts as homomorphism or anti-homomorphism on S
if F (xy) = F (x)F (y) or F (xy) = F (y)F (x) holds for all x, y ∈ S respectively. The
additive mapping F acts as a Jordan homomorphism on S if F (x2) = F (x)2 holds
for all x ∈ S.

Let us introduce the background of our investigation. In [25], Singer and
Wermer obtained a fundamental result which stated investigation into the ranges
of derivations on Banach algebras. They proved that any continuous derivation
on a commutative Banach algebra has the range in the Jacobson radical of the
algebra. Very interesting question is how to obtain non-commutative version of
Singer-Wermer theorem. In [24] Sinclair obtained a fundamental result which stat-
ed investigation into the ranges of derivations on a non-commutative Banach al-
gebra. He proved that every continuous derivation of a Banach algebra leaves
primitive ideals of the algebra invariant. In the meanwhile many authors obtained
more information about derivations satisfying certain suitable conditions in Banach
algebra. For example, in [23] Park proved that if d is a linear continuous derivation
of a non-commutative Banach algebra A such that [[d(x), x], d(x)] ∈ rad(A) for
all x ∈ A then d(A) ⊆ rad(A). In [9], De Filippis extended the Park’s result to
generalized derivations.

Many results in literature indicate that global structure of a prime ring R is
often tightly connected to the behavior of additive mappings defined on R. A. Ali,
S. Ali and N. Ur Rehman in [1] proved that if d is a derivation of a 2-torsion free
prime ring R which acts as a homomorphism or anti-homomorphism on a non-
central Lie ideal of R such that u2 ∈ L, for all u ∈ L, then d = 0. At this point the
natural question is what happens in case the derivation is replaced by generalized
derivation. In [14], Golbasi and Kaya respond this question. More precisely, they
proved the following: Let R be a prime ring of characteristic different from 2, H a
generalized derivation of R, L a Lie ideal of R such that u2 ∈ L for all u ∈ L. If
H acts as a homomorphism or anti-homomorphism on L, then either d = 0 or L is
central in R. More recently in [8], Filippis studied the situation when generalized
derivation H acts as a Jordan homomorphism on a non-central Lie ideal L.

In [10], we generalize these results when conditions are more widespread. More
precisely we prove that if H is a non-zero generalized derivation of prime ring R
such that H(u2)n = H(u)2n for all u ∈ L, a non-central Lie ideal of R, where n ≥ 1
is a fixed integer, then one of the following holds:
(1) char(R) = 2 and R satisfies s4;
(2) H(x) = bx for all x ∈ R, for some b ∈ C and bn = 1.

The present article is motivated by the previous results. The main results of
this paper are as follows:

Theorem 1.1. Let R be a prime ring with extended centroid C, L a non-central
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Lie ideal of R and n ≥ 1 a fixed integer. If R admits the generalized derivations H
and G such that H(u2)n = G(u)2n for all u ∈ L, then one of the following holds:

(1) H(x) = ax and G(x) = bx for all x ∈ R, with a, b ∈ C and an = b2n;

(2) char(R) 6= 2, R satisfies s4, H(x) = ax + [p, x] and G(x) = bx for all x ∈ R,
with b ∈ C and an = b2n;

(3) char(R) = 2 and R satisfies s4.

We prove the following result regarding the non-commutative Banach algebra.

Theorem 1.2. Let A be a non-commutative Banach algebra, ζ = La + d,
η = Lb + δ continuous generalized derivations of A and n a fixed positive in-
teger. If ζ([x, y]2)n − η([x, y])2n ∈ rad(A), for all x, y ∈ A, then d(A) ⊆
rad(A), δ(A) ⊆ rad(A), [a,A] ⊆ rad(A), [b, A] ⊆ rad(A) and an − b2n ⊆ rad(A) or
s4(a1, a2, a3, a4) ∈ rad(A) for all a1, a2, a3, a4 ∈ A.

The following remarks are useful tools for the proof of main results.

Remark 1.3. Let R be a prime ring and L a noncentral Lie ideal of R.
If char(R) 6= 2, by [4, Lemma 1] there exists a nonzero ideal I of R such that
0 6= [I, R] ⊆ L. If char(R) = 2 and dimCRC > 4, i.e., char(R) = 2 and R does not
satisfy s4, then by [19, Theorem 13] there exists a nonzero ideal I of R such that
0 6= [I, R] ⊆ L. Thus if either char(R) 6= 2 or R does not satisfy s4, then we may
conclude that there exists a nonzero ideal I of R such that [I, I] ⊆ L.

Remark 1.4. We denote by Der(U) the set of all derivations on U . By a
derivation word ∆ of R we mean ∆ = d1d2d3 . . . dm for some derivations di ∈
Der(U).

For x ∈ R, we denote by x∆ the image of x under ∆, that is x∆ =
(· · · (xd1)d2 · · · )dm . By a differential polynomial, we mean a generalized polynomial,
with coefficients in U , of the form Φ(x∆j

i ) involving noncommutative indeterminates
xi on which the derivations words ∆j act as unary operations. Φ(x∆j

i ) = 0 is said
to be a differential identity on a subset T of U if it vanishes for any assignment of
values from T to its indeterminates xi.

Let Dint be the C-subspace of Der(U) consisting of all inner derivations on U
and let d be a non-zero derivation on R. By [17, Theorem 2] we have the following
result:

If Φ(x1, x2, · · · , xn, d(x1), d(x2) · · · d(xn) is a differential identity on R, then
one of the following holds:

(1) d ∈ Dint;

(2) R satisfies the generalized polynomial identity Φ(x1, x2, · · · , xn, y1, y2, · · · , yn).

2. Proof of the main results

Now we begin with the following lemmas.
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Lemma 2.1. Let R = Mk(F ) be the ring of all k× k matrices over the field F
with k ≥ 2 and a, b, p, q ∈ R. Suppose that

(a[x, y]2 + [x, y]2b)n = (p[x, y] + [x, y]q)2n

for all x, y ∈ R, where n ≥ 1 a fixed integer. Then one of the following holds:
(1) k = 2, p, q ∈ F.I2 and (a + b)n − (p + q)2n = 0;
(2) k ≥ 3, a, b, p, q ∈ F.Ik and (a + b)n − (p + q)2n = 0.

Proof. Let a = (aij)k×k, b = (bij)k×k, p = (pij)k×k and q = (qij)k×k, where
aij , bij , pij and qij ∈ F . Denote eij the usual matrix unit with 1 in (i, j)-entry and
zero elsewhere. By choosing x = eii, y = eij for any i 6= j, we have

0 = (peij + eijq)2n. (1)

Multiplying this equality from right by eij , we arrive at

0 = (peij + eijq)2neij = (qji)2neij .

This implies qji = 0. Thus for any i 6= j, we have qji = 0, which implies that q is
diagonal matrix. Let q =

∑k
i=1 qiieii. For any F -automorphism θ of R, we have

(aθ[x, y]2 + [x, y]2bθ)n = (pθ[x, y] + [x, y]qθ)2n

for every x, y ∈ R. Hence qθ must also be diagonal. We have

(1 + eij)q(1− eij) =
k∑

i=1

qiieii + (qjj − qii)eij

diagonal. Therefore, qjj = qii and so q ∈ F.Ik.
Now left multiplying (1) by eij , we have pji = 0 for any i 6= j, that is p is

diagonal. Then by same manner as above, we have p ∈ F.Ik.
Case-I : Let k = 2. We know the fact that for any x, y ∈ M2(F ), [x, y]2 ∈ F.I2.

Thus our assumption reduces to

((a + b)n − (p + q)2n)[x, y]2n = 0

for all x, y ∈ R. We choose [x, y] = [e12, e21] = e11 − e22 and so [x, y]2 = I2. Thus
from above relation, we have that (a + b)n − (p + q)2n = 0.

Case-II : Let k ≥ 3. Choose x = eit−etj and y = ett, where i, j, t are any three
distinct indices. Then [x, y] = eit + etj and so [x, y]2 = eij . Thus by assumption,
we have

(aeij + eijb)n = 0

for all x, y ∈ R. Left multiplying by eij , above relation yields an
ji = 0 that is aji = 0

for any i 6= j. This gives that a is diagonal, and hence by above argument a is
central. By the same manner, right multiplying above relation by eij , we have b
diagonal and hence central. Then our identity reduces to

((a + b)n − (p + q)2n)[x, y]2n = 0

for all x, y ∈ R. This implies that (a + b)n − (p + q)2n = 0.
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Lemma 2.2. Let R be a non-commutative prime ring with extended centroid
C and a, b, p, q ∈ R. Suppose that

(a[x, y]2 + [x, y]2b)n = (p[x, y] + [x, y]q)2n

for all x, y ∈ R, where n ≥ 1 a fixed integer. Then one of the following holds:

(1) R satisfies s4, p, q ∈ C and (a + b)n − (p + q)2n = 0;

(2) R does not satisfy s4, a, b, p, q ∈ C and (a + b)n − (p + q)2n = 0.

Proof. By assumption, R satisfies the generalized polynomial identity (GPI)

f(x, y) = (a[x, y]2 + [x, y]2b)n − (p[x, y] + [x, y]q)2n.

By Chuang [7, Theorem 2], this generalized polynomial identity (GPI) is also sat-
isfied by U . Now we consider the following two cases:

Case-I. U does not satisfy any nontrivial GPI

Let T = U ∗C C{x, y}, the free product of U and C{x, y}, the free C-algebra
in noncommuting indeterminates x and y. Thus

(a[x, y]2 + [x, y]2b)n − (p[x, y] + [x, y]q)2n

is zero element in T = U ∗C C{x, y}. Let q /∈ C. Then {1, q} is C-independent. If
b /∈ SpanC{1, q}, then expanding above expression, we see that ([x, y]q)2n appears
nontrivially, a contradiction. Let b = α + βq for some α, β ∈ C. Then we have

(a[x, y]2 + α[x, y]2 + β[x, y]2q)n − (p[x, y] + [x, y]q)2n

is zero in T . Since q /∈ C, we have from above

(a[x, y]2 + α[x, y]2 + β[x, y]2q)n−1β[x, y]2q − (p[x, y] + [x, y]q)2n−1[x, y]q,

that is,

{(a[x, y]2 + α[x, y]2 + β[x, y]2q)n−1β[x, y]− (p[x, y] + [x, y]q)2n−1}[x, y]q

is zero in T . In the above expression, ([x, y]q)2n−1[x, y]q appears nontrivially, a
contradiction. Thus we conclude that q ∈ C. Then the identity reduces to

(a[x, y]2 + [x, y]2b)n − ((p + q)[x, y])2n

which is zero element in T . Again, if b /∈ C, then ([x, y]2b)n becomes a nontrivial
element in the above expansion, a contradiction. Hence b ∈ C. Thus we have

((a + b)[x, y]2)n − ((p + q)[x, y])2n,

that is,

{((a + b)[x, y]2)n−1(a + b)[x, y]− ((p + q)[x, y])2n−1(p + q)}[x, y]

is zero element in T . If p+q /∈ C, then ((p+q)[x, y])2n−1(p+q)[x, y] is not cancelled
in the above expansion, leading again contradiction. Hence p + q ∈ C and so

((a + b)[x, y]2)n − [x, y]2n(p + q)2n = 0



Generalized derivations as a generalization . . . 97

in T . If a + b /∈ C, then from above, ((a + b)[x, y]2)n appears nontrivially, a
contradiction. Hence, a + b ∈ C. Therefore, we have

{(a + b)n − (p + q)2n}[x, y]2n = 0

in T , implying (a + b)n − (p + q)2n = 0. This is our conclusion (2).
Case-II. U satisfies a nontrivial GPI
Thus we assume that

(a[x, y]2 + [x, y]2b)n − (p[x, y] + [x, y]q)2n = 0

is a nontrivial GPI for U . In case C is infinite, we have f(x, y) = 0 for all x, y ∈
U⊗C C, where C is the algebraic closure of C. Since both U and U⊗C C are prime
and centrally closed [11], we may replace R by U or U ⊗C C according to C finite
or infinite. Thus we may assume that R centrally closed over C which either finite
or algebraically closed and f(x, y) = 0 for all x, y ∈ R. By Martindale’s Theorem
[22], R is then primitive ring having non-zero socle soc(R) with C as the associated
division ring. Hence by Jacobson’s Theorem [15], R is isomorphic to a dense ring of
linear transformations of a vector space V over C. If dimCV < ∞, then R ' Mk(C)
for some k ≥ 2. In this case by Lemma 2.1, we obtain our conclusions.

Now we assume that dimCV = ∞. Let e be an idempotent element of soc(R).
Then replacing x with e and y with er(1− e), we have

(per(1− e) + er(1− e)q)2n = 0. (2)

Left multiplying by (1 − e) we get (1 − e)(per(1 − e))2n = 0. This implies that
((1− e)per)2n+1 = 0 for all r ∈ R. By [12], it follows that (1− e)pe = 0. Similarly
replacing x with e and y with (1 − e)re, we shall get ep(1 − e) = 0. Thus for any
idempotent e ∈ soc(R), we have (1− e)pe = 0 = ep(1− e) that is [p, e] = 0. There-
fore, [p, E] = 0, where E is the additive subgroup generated by all idempotents
of soc(R). Since E is non-central Lie ideal of soc(R), this implies p ∈ C (see [4,
Lemma 2]). Now by similar argument we can prove that q ∈ C.

Then our identity reduces to

(a[x, y]2 + [x, y]2b)n − α2n[x, y]2n = 0

for all x, y ∈ R, where α = p + q ∈ C. Let for some v ∈ V , v and bv are linearly
independent over C. Since dimCV = ∞, there exists w ∈ V such that v, bv, w are
linearly independent over C. By density there exist x, y ∈ R such that

xv = v, xbv = −bv, xw = 0;
yv = 0, ybv = w, yw = v.

Then [x, y]v = 0, [x, y]bv = w, [x, y]w = v and hence 0 = {(a[x, y]2 + [x, y]2b)n −
α2n[x, y]2n}v = v, a contradiction. Thus v and bv are linearly C-dependent for
all v ∈ V . By standard argument, it follows that b ∈ C. Then again our identity
reduces to

(a′[x, y]2)n − α2n[x, y]2n = 0
for all x, y ∈ R, where a′ = a + b.
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Let for some v ∈ V , v and a′v are linearly independent over C. Since dimCV =
∞, there exists w ∈ V such that v, a′v, w, u are linearly independent over C. By
density there exist x, y ∈ R such that

xv = v, xa′v = −bv, xw = 0, xu = v + u;

yv = u, ya′v = w, yw = v, yu = 0.

Then [x, y]v = v, [x, y]a′v = w, [x, y]w = v and hence 0 = {(a′[x, y]2)n −
α2n[x, y]2n}v = a′v − α2nv, a contradiction. Thus v and a′v are linearly C-
dependent for all v ∈ V . Then again by standard argument, we have that a′ ∈ C.
Thus our identity reduces to

(a′n − α2n)[x, y]2n = 0

for all x, y ∈ R. This gives a′n − α2n = 0 i.e., (a + b)n = (p + q)2n or [x, y]2n = 0
for all x, y ∈ R. The last case implies R to be commutative, a contradiction.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. If char(R) = 2 and R satisfies s4, then we have our

conclusion (3). So we assume that either charR 6= 2 or R does not satisfy s4.
Since L is non central by Remark 1.3, there exists a nonzero ideal I of R such that
[I, I] ⊆ L. Thus by assumption I satisfies the differential identity

H([x, y]2)n = G([x, y])2n.

Now since R is a prime ring and H, G are generalized derivations of R, by Lee
[20, Theorem 3], H(x) = ax + d(x) and G(x) = bx + δ(x) for some a, b ∈ U and
derivations d, δ on U . Since I,R and U satisfy the same differential identity [21],
without loss of generality,

H([x, y]2)n = G([x, y])2n

for all x, y ∈ U . Hence U satisfies

(a[x, y]2 + d([x, y]2))n = (b[x, y] + δ([x, y]))2n. (3)

Here we divide the proof into three cases:
Case 1. Let d and δ be both inner derivations induced by elements p, q ∈ U

respectively; that is, d(x) = [p, x] and δ(x) = [q, x] for all x ∈ U . It follows that

(a[x, y]2 + [p, [x, y]2])n − (b[x, y] + [q, [x, y]])2n = 0

that is
((a + p)[x, y]2 − [x, y]2p)n − ((b + q)[x, y]− [x, y]q)2n = 0

for all x, y ∈ U . Now by Lemma 2.2, one of the following holds:
(1) R satisfies s4, b + q, q ∈ C and an − b2n = 0. Thus H(x) = ax + [p, x] and

G(x) = (b + q)x− xq = bx for all x ∈ R, with b ∈ C and an = b2n. In this case by
assumption, char (R) 6= 2.

(2) R does not satisfy s4, a + p, p, b + q, q ∈ C and an − b2n = 0. Thus
H(x) = ax + [p, x] = ax and G(x) = bx + [q, x] = bx for all x ∈ R, with a, b ∈ C
and an = b2n.
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Case 2. Assume that d and δ are not both inner derivations of U . Suppose
that d and δ be C-linearly dependent modulo Dint. Let δ = βd + ad(p), for some
β ∈ C and ad(p) the inner derivation induced by element p ∈ U . Notice that if d
is inner or β = 0, then δ is also inner, a contradiction.

Therefore consider the case when d is not inner and β 6= 0. Then by (3), we
have that U satisfies

(a[x, y]2 + d([x, y]2))n = (b[x, y] + βd([x, y]) + [p, [x, y]])2n

that is

(a[x, y]2 + ([d(x), y] + [x, d(y)])[x, y] + [x, y]([d(x), y] + [x, d(y)]))n

= (b[x, y] + β([d(x), y] + [x, d(y)]) + [p, [x, y]])2n.

Then by Kharchenko’s Theorem [17],

(a[x, y]2 + ([z, y] + [x,w])[x, y] + [x, y]([z, y] + [x, w]))n

= (b[x, y] + β([z, y] + [x,w]) + [p, [x, y]])2n. (4)

Setting z = w = 0, we obtain

(a[x, y]2)n = ((b + p)[x, y]− [x, y]p)2n

for all x, y ∈ U . Then by Lemma 2.2, we have b + p, p ∈ C, that gives b, p ∈ C.
Therefore, in particular for x = 0, (4) becomes 0 = β2n[z, y]2n. Since β 6= 0, we
have 0 = [z, y]2n for all z, y ∈ U . This implies that U and so R is commutative.
This contradicts with the fact that L is noncentral Lie ideal of R.

The situation when d = λδ + ad(q), for some λ ∈ C and ad(q) the inner
derivation induced by element q ∈ U , is similar.

Case 3. Assume now that d and δ be C-linearly independent modulo Dint. In
this case from (3), we have that U satisfies

(a[x, y]2 + ([d(x), y] + [x, d(y)])[x, y] + [x, y]([d(x), y] + [x, d(y)]))n

= (b[x, y] + [δ(x), y] + [x, δ(y)])2n. (5)

By Kharchenko’s Theorem [17], U satisfies

(a[x, y]2 + ([z, y] + [x,w])[x, y] + [x, y]([z, y] + [x,w]))n = (b[x, y] + [s, y] + [x, t])2n.

In particular, for x = 0 we have [s, y]2n = 0 for all s, y ∈ U . As above this leads
that U and so R is commutative, a contradiction.

In particular, the proof of Theorem 1.1 yields:

Corollary 2.3. Let R be a prime ring and n ≥ 1 a fixed integer. If R admits
the generalized derivations H and G such that H(x2)n = G(x)2n for all x ∈ [R,R],
then one of the following holds: (1) H(x) = ax and G(x) = bx for all x ∈ R, with
a, b ∈ C and an = b2n; (2) R satisfies s4.

Here A will denote a complex non-commutative Banach algebras. Our final
result in this paper is about continuous generalized derivations on non-commutative
Banach algebras.
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The following results are useful tools needed in the proof of Theorem 1.2.
Remark 2.4. (see [24]). Any continuous derivation of Banach algebra leaves

the primitive ideals invariant.
Remark 2.5. (see [25]). Any continuous linear derivation on a commutative

Banach algebra maps the algebra into its radical.
Remark 2.6. (see [16]). Any linear derivation on semisimple Banach algebra

is continuous.
Proof of Theorem 1.2. By the hypothesis, ζ, η are continuous. Again, since

La, Lb, the left multiplication by some element a, b ∈ A, are continuous, we have
that the derivations d, δ are also continuous. By Remark 2.4, for any primitive ideal
P of A, we have ζ(P ) ⊆ aP + d(P ) ⊆ P and η(P ) ⊆ aP + d(P ) ⊆ P . It means
that the continuous generalized derivations ζ, η leaves the primitive ideal invariant.
Denote Ā = A/P for any primitive ideals P . Thus we can define the generalized
derivations ζP : Ā → Ā by ζP (x̄) = ζP (x + P ) = ζ(x) + P and ηP : Ā → Ā by
ηP (x̄) = ηP (x + P ) = η(x) + P for all x̄ ∈ Ā, where A/P = Ā. Since P is primitive
ideal, Ā is primitive and so it is prime. The hypothesis ζ([x, y]2)n − η([x, y])2n ∈
rad(A) yields that ζP ([x̄, ȳ]2)n − ηP ([x̄, ȳ])2n = 0̄ for all x̄, ȳ ∈ Ā. Now from
Corollary 2.3, it is immediate that either (1) d = 0̄, δ = 0̄, ā ∈ Z(Ā), b̄ ∈ Z(Ā)
and (a + P )n = (b + P )2n, that is, d(A) ⊆ P, δ(A) ⊆ P , [a,A] ⊆ P, [b, A] ⊆ P and
an−b2n ∈ P ; or (2) Ā satisfies s4, that is s4(a1, a2, a3, a4) ∈ P for all a1, a2, a3, a4 ∈
A. Since the radical of A is the intersection of all primitive ideals, we arrive the
required conclusions.

Corollary 2.7. Let A be a non-commutative semisimple Banach algebra
ζ = La+d, η = Lb+δ continuous generalized derivations of A and n a fixed positive
integer. If ζ([x, y]2)n − (η[x, y])2n = 0, for all x, y ∈ A, then ζ(x) = αx, η(x) = βx
for some α, β ∈ Z(A) and αn = β2n or A satisfies s4.
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