GENERALIZED DERIVATIONS AS A GENERALIZATION OF JORDAN HOMOMORPHISMS ACTING ON LIE IDEALS

Basudeb Dhara, Shervin Sahebi and Venus Rahmani

Abstract

Let R be a prime ring with extended centroid C, L a non-central Lie ideal of R and $n \geq 1$ a fixed integer. If R admits the generalized derivations H and G such that $H\left(u^{2}\right)^{n}=G(u)^{2 n}$ for all $u \in L$, then one of the following holds: (1) $H(x)=a x$ and $G(x)=b x$ for all $x \in R$, with $a, b \in C$ and $a^{n}=b^{2 n}$; (2) $\operatorname{char}(R) \neq 2, R$ satisfies $s_{4}, H(x)=a x+[p, x]$ and $G(x)=b x$ for all $x \in R$, with $b \in C$ and $a^{n}=b^{2 n}$ (3) $\operatorname{char}(R)=2$ and R satisfies s_{4}.

As an application we also obtain some range inclusion results of continuous generalized derivations on Banach algebras.

1. Introduction

Let R be an associative prime ring with center $Z(R)$ and U the Utumi quotient ring of R. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [2] for these objects). For given $x, y \in R$, the Lie commutator of x, y is denoted by $[x, y]=x y-y x$. A linear mapping $d: R \rightarrow R$ is called a derivation, if it satisfies the Leibnitz rule $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. In particular, d is said to be an inner derivation induced by an element $a \in R$, if $d(x)=[a, x]$ for all $x \in R$. In [5], Bresar introduced the definition of generalized derivation: An additive mapping $F: R \rightarrow R$ is called generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in R$, and d is called the associated derivation of F. Hence, the concept of generalized derivations covers the concept of derivations. In [20], Lee extended the definition of generalized derivation as follows: by a generalized derivation we mean an additive mapping $F: I \rightarrow U$ such that $F(x y)=F(x) y+x d(y)$ holds for all $x, y \in I$, where I is a dense left ideal of R and d is a derivation from I into U. Moreover, Lee also proved that every generalized derivation can be uniquely extended to a generalized derivation of U, and thus all generalized derivations of

[^0]R will be implicitly assumed to be defined on the whole of U. Lee obtained the following: every generalized derivation F on a dense left ideal of R can be uniquely extended to U and assumes the form $F(x)=a x+d(x)$ for some $a \in U$ and a derivation d on U. Let S be a nonempty subset of R and $F: R \rightarrow R$ be an additive mapping. Then we say that F acts as homomorphism or anti-homomorphism on S if $F(x y)=F(x) F(y)$ or $F(x y)=F(y) F(x)$ holds for all $x, y \in S$ respectively. The additive mapping F acts as a Jordan homomorphism on S if $F\left(x^{2}\right)=F(x)^{2}$ holds for all $x \in S$.

Let us introduce the background of our investigation. In [25], Singer and Wermer obtained a fundamental result which stated investigation into the ranges of derivations on Banach algebras. They proved that any continuous derivation on a commutative Banach algebra has the range in the Jacobson radical of the algebra. Very interesting question is how to obtain non-commutative version of Singer-Wermer theorem. In [24] Sinclair obtained a fundamental result which stated investigation into the ranges of derivations on a non-commutative Banach algebra. He proved that every continuous derivation of a Banach algebra leaves primitive ideals of the algebra invariant. In the meanwhile many authors obtained more information about derivations satisfying certain suitable conditions in Banach algebra. For example, in [23] Park proved that if d is a linear continuous derivation of a non-commutative Banach algebra A such that $[[d(x), x], d(x)] \in \operatorname{rad}(A)$ for all $x \in A$ then $d(A) \subseteq \operatorname{rad}(A)$. In [9], De Filippis extended the Park's result to generalized derivations.

Many results in literature indicate that global structure of a prime ring R is often tightly connected to the behavior of additive mappings defined on R. A. Ali, S. Ali and N. Ur Rehman in [1] proved that if d is a derivation of a 2-torsion free prime ring R which acts as a homomorphism or anti-homomorphism on a noncentral Lie ideal of R such that $u^{2} \in L$, for all $u \in L$, then $d=0$. At this point the natural question is what happens in case the derivation is replaced by generalized derivation. In [14], Golbasi and Kaya respond this question. More precisely, they proved the following: Let R be a prime ring of characteristic different from $2, H$ a generalized derivation of R, L a Lie ideal of R such that $u^{2} \in L$ for all $u \in L$. If H acts as a homomorphism or anti-homomorphism on L, then either $d=0$ or L is central in R. More recently in [8], Filippis studied the situation when generalized derivation H acts as a Jordan homomorphism on a non-central Lie ideal L.

In [10], we generalize these results when conditions are more widespread. More precisely we prove that if H is a non-zero generalized derivation of prime ring R such that $H\left(u^{2}\right)^{n}=H(u)^{2 n}$ for all $u \in L$, a non-central Lie ideal of R, where $n \geq 1$ is a fixed integer, then one of the following holds:
(1) $\operatorname{char}(R)=2$ and R satisfies s_{4};
(2) $H(x)=b x$ for all $x \in R$, for some $b \in C$ and $b^{n}=1$.

The present article is motivated by the previous results. The main results of this paper are as follows:

Theorem 1.1. Let R be a prime ring with extended centroid C, L a non-central

Lie ideal of R and $n \geq 1$ a fixed integer. If R admits the generalized derivations H and G such that $H\left(u^{2}\right)^{n}=G(u)^{2 n}$ for all $u \in L$, then one of the following holds:
(1) $H(x)=a x$ and $G(x)=b x$ for all $x \in R$, with $a, b \in C$ and $a^{n}=b^{2 n}$;
(2) $\operatorname{char}(R) \neq 2, R$ satisfies $s_{4}, H(x)=a x+[p, x]$ and $G(x)=b x$ for all $x \in R$, with $b \in C$ and $a^{n}=b^{2 n}$;
(3) $\operatorname{char}(R)=2$ and R satisfies s_{4}.

We prove the following result regarding the non-commutative Banach algebra.
ThEOREM 1.2. Let A be a non-commutative Banach algebra, $\zeta=L_{a}+d$, $\eta=L_{b}+\delta$ continuous generalized derivations of A and n a fixed positive integer. If $\zeta\left([x, y]^{2}\right)^{n}-\eta([x, y])^{2 n} \in \operatorname{rad}(A)$, for all $x, y \in A$, then $d(A) \subseteq$ $\operatorname{rad}(A), \delta(A) \subseteq \operatorname{rad}(A),[a, A] \subseteq \operatorname{rad}(A),[b, A] \subseteq \operatorname{rad}(A)$ and $a^{n}-b^{2 n} \subseteq \operatorname{rad}(A)$ or $s_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \operatorname{rad}(A)$ for all $a_{1}, a_{2}, a_{3}, a_{4} \in A$.

The following remarks are useful tools for the proof of main results.
REmARK 1.3. Let R be a prime ring and L a noncentral Lie ideal of R. If $\operatorname{char}(R) \neq 2$, by [4, Lemma 1] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. If $\operatorname{char}(R)=2$ and $\operatorname{dim}_{C} R C>4$, i.e., $\operatorname{char}(R)=2$ and R does not satisfy s_{4}, then by [19, Theorem 13] there exists a nonzero ideal I of R such that $0 \neq[I, R] \subseteq L$. Thus if either $\operatorname{char}(R) \neq 2$ or R does not satisfy s_{4}, then we may conclude that there exists a nonzero ideal I of R such that $[I, I] \subseteq L$.

REmARK 1.4. We denote by $\operatorname{Der}(U)$ the set of all derivations on U. By a derivation word Δ of R we mean $\Delta=d_{1} d_{2} d_{3} \ldots d_{m}$ for some derivations $d_{i} \in$ $\operatorname{Der}(U)$.

For $x \in R$, we denote by x^{Δ} the image of x under Δ, that is $x^{\Delta}=$ $\left(\cdots\left(x^{d_{1}}\right)^{d_{2}} \cdots\right)^{d_{m}}$. By a differential polynomial, we mean a generalized polynomial, with coefficients in U, of the form $\Phi\left(x_{i}^{\Delta_{j}}\right)$ involving noncommutative indeterminates x_{i} on which the derivations words Δ_{j} act as unary operations. $\Phi\left(x_{i}^{\Delta_{j}}\right)=0$ is said to be a differential identity on a subset T of U if it vanishes for any assignment of values from T to its indeterminates x_{i}.

Let $D_{\text {int }}$ be the C-subspace of $\operatorname{Der}(U)$ consisting of all inner derivations on U and let d be a non-zero derivation on R. By [17, Theorem 2] we have the following result:

If $\Phi\left(x_{1}, x_{2}, \cdots, x_{n}, d\left(x_{1}\right), d\left(x_{2}\right) \cdots d\left(x_{n}\right)\right.$ is a differential identity on R, then one of the following holds:
(1) $d \in D_{i n t}$;
(2) R satisfies the generalized polynomial identity $\Phi\left(x_{1}, x_{2}, \cdots, x_{n}, y_{1}, y_{2}, \cdots, y_{n}\right)$.

2. Proof of the main results

Now we begin with the following lemmas.

Lemma 2.1. Let $R=M_{k}(F)$ be the ring of all $k \times k$ matrices over the field F with $k \geq 2$ and $a, b, p, q \in R$. Suppose that

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}=(p[x, y]+[x, y] q)^{2 n}
$$

for all $x, y \in R$, where $n \geq 1$ a fixed integer. Then one of the following holds:
(1) $k=2, p, q \in F . I_{2}$ and $(a+b)^{n}-(p+q)^{2 n}=0$;
(2) $k \geq 3, a, b, p, q \in F . I_{k}$ and $(a+b)^{n}-(p+q)^{2 n}=0$.

Proof. Let $a=\left(a_{i j}\right)_{k \times k}, b=\left(b_{i j}\right)_{k \times k}, p=\left(p_{i j}\right)_{k \times k}$ and $q=\left(q_{i j}\right)_{k \times k}$, where $a_{i j}, b_{i j}, p_{i j}$ and $q_{i j} \in F$. Denote $e_{i j}$ the usual matrix unit with 1 in (i, j)-entry and zero elsewhere. By choosing $x=e_{i i}, y=e_{i j}$ for any $i \neq j$, we have

$$
\begin{equation*}
0=\left(p e_{i j}+e_{i j} q\right)^{2 n} \tag{1}
\end{equation*}
$$

Multiplying this equality from right by $e_{i j}$, we arrive at

$$
0=\left(p e_{i j}+e_{i j} q\right)^{2 n} e_{i j}=\left(q_{j i}\right)^{2 n} e_{i j}
$$

This implies $q_{j i}=0$. Thus for any $i \neq j$, we have $q_{j i}=0$, which implies that q is diagonal matrix. Let $q=\sum_{i=1}^{k} q_{i i} e_{i i}$. For any F-automorphism θ of R, we have

$$
\left(a^{\theta}[x, y]^{2}+[x, y]^{2} b^{\theta}\right)^{n}=\left(p^{\theta}[x, y]+[x, y] q^{\theta}\right)^{2 n}
$$

for every $x, y \in R$. Hence q^{θ} must also be diagonal. We have

$$
\left(1+e_{i j}\right) q\left(1-e_{i j}\right)=\sum_{i=1}^{k} q_{i i} e_{i i}+\left(q_{j j}-q_{i i}\right) e_{i j}
$$

diagonal. Therefore, $q_{j j}=q_{i i}$ and so $q \in F . I_{k}$.
Now left multiplying (1) by $e_{i j}$, we have $p_{j i}=0$ for any $i \neq j$, that is p is diagonal. Then by same manner as above, we have $p \in F . I_{k}$.

Case-I: Let $k=2$. We know the fact that for any $x, y \in M_{2}(F),[x, y]^{2} \in F . I_{2}$. Thus our assumption reduces to

$$
\left((a+b)^{n}-(p+q)^{2 n}\right)[x, y]^{2 n}=0
$$

for all $x, y \in R$. We choose $[x, y]=\left[e_{12}, e_{21}\right]=e_{11}-e_{22}$ and so $[x, y]^{2}=I_{2}$. Thus from above relation, we have that $(a+b)^{n}-(p+q)^{2 n}=0$.

Case-II: Let $k \geq 3$. Choose $x=e_{i t}-e_{t j}$ and $y=e_{t t}$, where i, j, t are any three distinct indices. Then $[x, y]=e_{i t}+e_{t j}$ and so $[x, y]^{2}=e_{i j}$. Thus by assumption, we have

$$
\left(a e_{i j}+e_{i j} b\right)^{n}=0
$$

for all $x, y \in R$. Left multiplying by $e_{i j}$, above relation yields $a_{j i}^{n}=0$ that is $a_{j i}=0$ for any $i \neq j$. This gives that a is diagonal, and hence by above argument a is central. By the same manner, right multiplying above relation by $e_{i j}$, we have b diagonal and hence central. Then our identity reduces to

$$
\left((a+b)^{n}-(p+q)^{2 n}\right)[x, y]^{2 n}=0
$$

for all $x, y \in R$. This implies that $(a+b)^{n}-(p+q)^{2 n}=0$.

Lemma 2.2. Let R be a non-commutative prime ring with extended centroid C and $a, b, p, q \in R$. Suppose that

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}=(p[x, y]+[x, y] q)^{2 n}
$$

for all $x, y \in R$, where $n \geq 1$ a fixed integer. Then one of the following holds:
(1) R satisfies $s_{4}, p, q \in C$ and $(a+b)^{n}-(p+q)^{2 n}=0$;
(2) R does not satisfy $s_{4}, a, b, p, q \in C$ and $(a+b)^{n}-(p+q)^{2 n}=0$.

Proof. By assumption, R satisfies the generalized polynomial identity (GPI)

$$
f(x, y)=\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-(p[x, y]+[x, y] q)^{2 n}
$$

By Chuang [7, Theorem 2], this generalized polynomial identity (GPI) is also satisfied by U. Now we consider the following two cases:

Case-I. U does not satisfy any nontrivial GPI

Let $T=U *_{C} C\{x, y\}$, the free product of U and $C\{x, y\}$, the free C-algebra in noncommuting indeterminates x and y. Thus

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-(p[x, y]+[x, y] q)^{2 n}
$$

is zero element in $T=U *_{C} C\{x, y\}$. Let $q \notin C$. Then $\{1, q\}$ is C-independent. If $b \notin \operatorname{Span}_{C}\{1, q\}$, then expanding above expression, we see that $([x, y] q)^{2 n}$ appears nontrivially, a contradiction. Let $b=\alpha+\beta q$ for some $\alpha, \beta \in C$. Then we have

$$
\left(a[x, y]^{2}+\alpha[x, y]^{2}+\beta[x, y]^{2} q\right)^{n}-(p[x, y]+[x, y] q)^{2 n}
$$

is zero in T. Since $q \notin C$, we have from above

$$
\left(a[x, y]^{2}+\alpha[x, y]^{2}+\beta[x, y]^{2} q\right)^{n-1} \beta[x, y]^{2} q-(p[x, y]+[x, y] q)^{2 n-1}[x, y] q
$$

that is,

$$
\left\{\left(a[x, y]^{2}+\alpha[x, y]^{2}+\beta[x, y]^{2} q\right)^{n-1} \beta[x, y]-(p[x, y]+[x, y] q)^{2 n-1}\right\}[x, y] q
$$

is zero in T. In the above expression, $([x, y] q)^{2 n-1}[x, y] q$ appears nontrivially, a contradiction. Thus we conclude that $q \in C$. Then the identity reduces to

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-((p+q)[x, y])^{2 n}
$$

which is zero element in T. Again, if $b \notin C$, then $\left([x, y]^{2} b\right)^{n}$ becomes a nontrivial element in the above expansion, a contradiction. Hence $b \in C$. Thus we have

$$
\left((a+b)[x, y]^{2}\right)^{n}-((p+q)[x, y])^{2 n}
$$

that is,

$$
\left\{\left((a+b)[x, y]^{2}\right)^{n-1}(a+b)[x, y]-((p+q)[x, y])^{2 n-1}(p+q)\right\}[x, y]
$$

is zero element in T. If $p+q \notin C$, then $((p+q)[x, y])^{2 n-1}(p+q)[x, y]$ is not cancelled in the above expansion, leading again contradiction. Hence $p+q \in C$ and so

$$
\left((a+b)[x, y]^{2}\right)^{n}-[x, y]^{2 n}(p+q)^{2 n}=0
$$

in T. If $a+b \notin C$, then from above, $\left((a+b)[x, y]^{2}\right)^{n}$ appears nontrivially, a contradiction. Hence, $a+b \in C$. Therefore, we have

$$
\left\{(a+b)^{n}-(p+q)^{2 n}\right\}[x, y]^{2 n}=0
$$

in T, implying $(a+b)^{n}-(p+q)^{2 n}=0$. This is our conclusion (2).
Case-II. U satisfies a nontrivial GPI
Thus we assume that

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-(p[x, y]+[x, y] q)^{2 n}=0
$$

is a nontrivial GPI for U. In case C is infinite, we have $f(x, y)=0$ for all $x, y \in$ $U \otimes_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both U and $U \otimes_{C} \bar{C}$ are prime and centrally closed [11], we may replace R by U or $U \otimes_{C} \bar{C}$ according to C finite or infinite. Thus we may assume that R centrally closed over C which either finite or algebraically closed and $f(x, y)=0$ for all $x, y \in R$. By Martindale's Theorem [22], R is then primitive ring having non-zero $\operatorname{socle} \operatorname{soc}(R)$ with C as the associated division ring. Hence by Jacobson's Theorem [15], R is isomorphic to a dense ring of linear transformations of a vector space V over C. If $\operatorname{dim}_{C} V<\infty$, then $R \simeq M_{k}(C)$ for some $k \geq 2$. In this case by Lemma 2.1, we obtain our conclusions.

Now we assume that $\operatorname{dim}_{C} V=\infty$. Let e be an idempotent element of $\operatorname{soc}(R)$. Then replacing x with e and y with $\operatorname{er}(1-e)$, we have

$$
\begin{equation*}
(\operatorname{per}(1-e)+\operatorname{er}(1-e) q)^{2 n}=0 \tag{2}
\end{equation*}
$$

Left multiplying by $(1-e)$ we get $(1-e)(\operatorname{per}(1-e))^{2 n}=0$. This implies that $((1-e) p e r)^{2 n+1}=0$ for all $r \in R$. By [12], it follows that $(1-e) p e=0$. Similarly replacing x with e and y with $(1-e) r e$, we shall get $e p(1-e)=0$. Thus for any idempotent $e \in \operatorname{soc}(R)$, we have $(1-e) p e=0=e p(1-e)$ that is $[p, e]=0$. Therefore, $[p, E]=0$, where E is the additive subgroup generated by all idempotents of $\operatorname{soc}(R)$. Since E is non-central Lie ideal of $\operatorname{soc}(R)$, this implies $p \in C$ (see [4, Lemma 2]). Now by similar argument we can prove that $q \in C$.

Then our identity reduces to

$$
\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-\alpha^{2 n}[x, y]^{2 n}=0
$$

for all $x, y \in R$, where $\alpha=p+q \in C$. Let for some $v \in V, v$ and $b v$ are linearly independent over C. Since $\operatorname{dim}_{C} V=\infty$, there exists $w \in V$ such that $v, b v, w$ are linearly independent over C. By density there exist $x, y \in R$ such that

$$
\begin{gathered}
x v=v, \quad x b v=-b v, \quad x w=0 \\
y v=0, \quad y b v=w, \quad y w=v
\end{gathered}
$$

Then $[x, y] v=0,[x, y] b v=w,[x, y] w=v$ and hence $0=\left\{\left(a[x, y]^{2}+[x, y]^{2} b\right)^{n}-\right.$ $\left.\alpha^{2 n}[x, y]^{2 n}\right\} v=v$, a contradiction. Thus v and $b v$ are linearly C-dependent for all $v \in V$. By standard argument, it follows that $b \in C$. Then again our identity reduces to

$$
\left(a^{\prime}[x, y]^{2}\right)^{n}-\alpha^{2 n}[x, y]^{2 n}=0
$$

for all $x, y \in R$, where $a^{\prime}=a+b$.

Let for some $v \in V, v$ and $a^{\prime} v$ are linearly independent over C. Since $\operatorname{dim}_{C} V=$ ∞, there exists $w \in V$ such that $v, a^{\prime} v, w, u$ are linearly independent over C. By density there exist $x, y \in R$ such that

$$
\begin{gathered}
x v=v, \quad x a^{\prime} v=-b v, \quad x w=0, \quad x u=v+u \\
y v=u, \quad y a^{\prime} v=w, \quad y w=v, \quad y u=0
\end{gathered}
$$

Then $[x, y] v=v,[x, y] a^{\prime} v=w,[x, y] w=v$ and hence $0=\left\{\left(a^{\prime}[x, y]^{2}\right)^{n}-\right.$ $\left.\alpha^{2 n}[x, y]^{2 n}\right\} v=a^{\prime} v-\alpha^{2 n} v$, a contradiction. Thus v and $a^{\prime} v$ are linearly C dependent for all $v \in V$. Then again by standard argument, we have that $a^{\prime} \in C$. Thus our identity reduces to

$$
\left(a^{\prime n}-\alpha^{2 n}\right)[x, y]^{2 n}=0
$$

for all $x, y \in R$. This gives $a^{\prime n}-\alpha^{2 n}=0$ i.e., $(a+b)^{n}=(p+q)^{2 n}$ or $[x, y]^{2 n}=0$ for all $x, y \in R$. The last case implies R to be commutative, a contradiction.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. If $\operatorname{char}(R)=2$ and R satisfies s_{4}, then we have our conclusion (3). So we assume that either $\operatorname{char} R \neq 2$ or R does not satisfy s_{4}. Since L is non central by Remark 1.3, there exists a nonzero ideal I of R such that $[I, I] \subseteq L$. Thus by assumption I satisfies the differential identity

$$
H\left([x, y]^{2}\right)^{n}=G([x, y])^{2 n}
$$

Now since R is a prime ring and H, G are generalized derivations of R, by Lee [20, Theorem 3], $H(x)=a x+d(x)$ and $G(x)=b x+\delta(x)$ for some $a, b \in U$ and derivations d, δ on U. Since I, R and U satisfy the same differential identity [21], without loss of generality,

$$
H\left([x, y]^{2}\right)^{n}=G([x, y])^{2 n}
$$

for all $x, y \in U$. Hence U satisfies

$$
\begin{equation*}
\left(a[x, y]^{2}+d\left([x, y]^{2}\right)\right)^{n}=(b[x, y]+\delta([x, y]))^{2 n} \tag{3}
\end{equation*}
$$

Here we divide the proof into three cases:
Case 1. Let d and δ be both inner derivations induced by elements $p, q \in U$ respectively; that is, $d(x)=[p, x]$ and $\delta(x)=[q, x]$ for all $x \in U$. It follows that

$$
\left(a[x, y]^{2}+\left[p,[x, y]^{2}\right]\right)^{n}-(b[x, y]+[q,[x, y]])^{2 n}=0
$$

that is

$$
\left((a+p)[x, y]^{2}-[x, y]^{2} p\right)^{n}-((b+q)[x, y]-[x, y] q)^{2 n}=0
$$

for all $x, y \in U$. Now by Lemma 2.2, one of the following holds:
(1) R satisfies $s_{4}, b+q, q \in C$ and $a^{n}-b^{2 n}=0$. Thus $H(x)=a x+[p, x]$ and $G(x)=(b+q) x-x q=b x$ for all $x \in R$, with $b \in C$ and $a^{n}=b^{2 n}$. In this case by assumption, char $(R) \neq 2$.
(2) R does not satisfy $s_{4}, a+p, p, b+q, q \in C$ and $a^{n}-b^{2 n}=0$. Thus $H(x)=a x+[p, x]=a x$ and $G(x)=b x+[q, x]=b x$ for all $x \in R$, with $a, b \in C$ and $a^{n}=b^{2 n}$.

Case 2. Assume that d and δ are not both inner derivations of U. Suppose that d and δ be C-linearly dependent modulo $D_{\text {int }}$. Let $\delta=\beta d+a d(p)$, for some $\beta \in C$ and $a d(p)$ the inner derivation induced by element $p \in U$. Notice that if d is inner or $\beta=0$, then δ is also inner, a contradiction.

Therefore consider the case when d is not inner and $\beta \neq 0$. Then by (3), we have that U satisfies

$$
\left(a[x, y]^{2}+d\left([x, y]^{2}\right)\right)^{n}=(b[x, y]+\beta d([x, y])+[p,[x, y]])^{2 n}
$$

that is

$$
\begin{aligned}
\left(a[x, y]^{2}+([d(x), y]+[x, d(y)])\right. & {[x, y]+[x, y]([d(x), y]+[x, d(y)]))^{n} } \\
& =(b[x, y]+\beta([d(x), y]+[x, d(y)])+[p,[x, y]])^{2 n}
\end{aligned}
$$

Then by Kharchenko's Theorem [17],

$$
\begin{align*}
\left(a[x, y]^{2}+([z, y]+[x, w])[x, y]+\right. & {[x, y]([z, y]+[x, w]))^{n} } \\
& =(b[x, y]+\beta([z, y]+[x, w])+[p,[x, y]])^{2 n} \tag{4}
\end{align*}
$$

Setting $z=w=0$, we obtain

$$
\left(a[x, y]^{2}\right)^{n}=((b+p)[x, y]-[x, y] p)^{2 n}
$$

for all $x, y \in U$. Then by Lemma 2.2, we have $b+p, p \in C$, that gives $b, p \in C$. Therefore, in particular for $x=0$, (4) becomes $0=\beta^{2 n}[z, y]^{2 n}$. Since $\beta \neq 0$, we have $0=[z, y]^{2 n}$ for all $z, y \in U$. This implies that U and so R is commutative. This contradicts with the fact that L is noncentral Lie ideal of R.

The situation when $d=\lambda \delta+a d(q)$, for some $\lambda \in C$ and $a d(q)$ the inner derivation induced by element $q \in U$, is similar.

Case 3. Assume now that d and δ be C-linearly independent modulo $D_{\text {int }}$. In this case from (3), we have that U satisfies

$$
\begin{align*}
\left(a[x, y]^{2}+([d(x), y]+[x, d(y)])[x, y]+[x, y]\right. & ([d(x), y]+[x, d(y)]))^{n} \\
& =(b[x, y]+[\delta(x), y]+[x, \delta(y)])^{2 n} \tag{5}
\end{align*}
$$

By Kharchenko's Theorem [17], U satisfies
$\left(a[x, y]^{2}+([z, y]+[x, w])[x, y]+[x, y]([z, y]+[x, w])\right)^{n}=(b[x, y]+[s, y]+[x, t])^{2 n}$.
In particular, for $x=0$ we have $[s, y]^{2 n}=0$ for all $s, y \in U$. As above this leads that U and so R is commutative, a contradiction.

In particular, the proof of Theorem 1.1 yields:
Corollary 2.3. Let R be a prime ring and $n \geq 1$ a fixed integer. If R admits the generalized derivations H and G such that $H\left(x^{2}\right)^{n}=G(x)^{2 n}$ for all $x \in[R, R]$, then one of the following holds: (1) $H(x)=a x$ and $G(x)=b x$ for all $x \in R$, with $a, b \in C$ and $a^{n}=b^{2 n}$; (2) R satisfies s_{4}.

Here A will denote a complex non-commutative Banach algebras. Our final result in this paper is about continuous generalized derivations on non-commutative Banach algebras.

The following results are useful tools needed in the proof of Theorem 1.2.
REmARK 2.4. (see [24]). Any continuous derivation of Banach algebra leaves the primitive ideals invariant.

REmARK 2.5. (see [25]). Any continuous linear derivation on a commutative Banach algebra maps the algebra into its radical.

REmARK 2.6. (see [16]). Any linear derivation on semisimple Banach algebra is continuous.

Proof of Theorem 1.2. By the hypothesis, ζ, η are continuous. Again, since L_{a}, L_{b}, the left multiplication by some element $a, b \in A$, are continuous, we have that the derivations d, δ are also continuous. By Remark 2.4, for any primitive ideal P of A, we have $\zeta(P) \subseteq a P+d(P) \subseteq P$ and $\eta(P) \subseteq a P+d(P) \subseteq P$. It means that the continuous generalized derivations ζ, η leaves the primitive ideal invariant. Denote $\bar{A}=A / P$ for any primitive ideals P. Thus we can define the generalized derivations $\zeta_{P}: \bar{A} \rightarrow \bar{A}$ by $\zeta_{P}(\bar{x})=\zeta_{P}(x+P)=\zeta(x)+P$ and $\eta_{P}: \bar{A} \rightarrow \bar{A}$ by $\eta_{P}(\bar{x})=\eta_{P}(x+P)=\eta(x)+P$ for all $\bar{x} \in \bar{A}$, where $A / P=\bar{A}$. Since P is primitive ideal, \bar{A} is primitive and so it is prime. The hypothesis $\zeta\left([x, y]^{2}\right)^{n}-\eta([x, y])^{2 n} \in$ $\operatorname{rad}(A)$ yields that $\zeta_{P}\left([\bar{x}, \bar{y}]^{2}\right)^{n}-\eta_{P}([\bar{x}, \bar{y}])^{2 n}=\overline{0}$ for all $\bar{x}, \bar{y} \in \bar{A}$. Now from Corollary 2.3, it is immediate that either (1) $d=\overline{0}, \delta=\overline{0}, \bar{a} \in Z(\bar{A}), \bar{b} \in Z(\bar{A})$ and $(a+P)^{n}=(b+P)^{2 n}$, that is, $d(A) \subseteq P, \delta(A) \subseteq P,[a, A] \subseteq P,[b, A] \subseteq P$ and $a^{n}-b^{2 n} \in P$; or (2) A satisfies s_{4}, that is $s_{4}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in P$ for all $a_{1}, a_{2}, a_{3}, a_{4} \in$ A. Since the radical of A is the intersection of all primitive ideals, we arrive the required conclusions.

Corollary 2.7. Let A be a non-commutative semisimple Banach algebra $\zeta=L_{a}+d, \eta=L_{b}+\delta$ continuous generalized derivations of A and n a fixed positive integer. If $\zeta\left([x, y]^{2}\right)^{n}-(\eta[x, y])^{2 n}=0$, for all $x, y \in A$, then $\zeta(x)=\alpha x, \eta(x)=\beta x$ for some $\alpha, \beta \in Z(A)$ and $\alpha^{n}=\beta^{2 n}$ or A satisfies s_{4}.

Acknowledgements. This paper is supported by Islamic Azad University Central Tehran Branch (IAUCTB). The first author is supported by a grant from National Board for Higher Mathematics (NBHM), India. Grant No. is NBHM/R.P. 26/ 2012/Fresh/1745 dated 15.11.12. The second and third authors want to thank authority of IAUCTB for their support to complete this research.

REFERENCES

[1] Ali, A., Ali, S., Ur Rehman, N., On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (1-2) (2003), 79-82.
[2] Beidar, K. I., Martindale III, W. S., Mikhalev, A. V., Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. Vol. 196. (1996). New York: Marcel Dekker, Inc.
[3] Beidar, K. I., Rings of quotients of semiprime rings, Vestnik Moskovskogo Universiteta 33 (5) (1978), 36-43.
[4] Bergen, J., Herstein, I. N., Kerr, J. W., Lie ideals and derivations of prime rings, J. Algebra 71 (1981), 259-267.
[5] Brešar, M., On the distance of the composition of two derivations to be the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[6] Chang, C. M., Lee, T. K., Annihilators of power values of derivations in prime rings, Comm. Algebra 26 (7) (1998), 2091-2113.
[7] Chuang, C. L., GPI's having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
[8] De Filippis, V., Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals, Acta Math. Sinica 25 (12) (2009), 1965-1973.
[9] De Filippis, V., Generalized derivations on prime rings and noncommutative Banach algebras, Bull. Korean Math. Soc. 45 (2008), 621-629.
[10] Dhara, B., Sahebi, Sh., Rahmani, V., Generalized derivations as a generalization of Jordan homomorphisms on Lie ideals and right ideals, Math. Slovaca, to appear (2015).
[11] Erickson, T. S., Martindale III, W. S., Osborn, J. M., Prime nonassociative algebras., Pacific J. Math. 60 (1975), 49-63.
[12] Felzenszwalb, B., On a result of Levitzki, Canad. Math. Bull. 21 (1978), 241-242.
[13] Faith, C., Utumi, Y., On a new proof of Littof's theorem, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371.
[14] Golbasi, O., Kaya, K., On Lie ideals with generalized derivations, Siberian Math. J. 47 (5) (2006), 862-866.
[15] Jacobson, N., Structure of rings, Amer. Math. Soc. Colloq. Pub. 37. Providence, RI: Amer. Math. Soc., (1964).
[16] Jacobson, B. E., Sinclair, A. M., Continuity of derivations and problem of kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
[17] Kharchenko, V. K., Differential identity of prime rings, Algebra and Logic 17 (1978), 155168.
[18] Lanski, C., An engle condition with derivation, Proc. Amer. Math. Soc. 183 (3) (1993), 731-734.
[19] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1) (1972), 117-136.
[20] Lee, T. K., Generalized derivations of left faithful rings Comm. Algebra 27 (8) (1999), 40574073.
[21] Lee, T. K., Semiprime rings with differential identities Bull. Inst. Math. Acad. Sinica 20 (1) (1992), 27-38.
[22] Martindale III, W. S., Prime rings satistying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[23] Park, K. H., On derivations in non commutative semiprime rings and Banach algebras, Bull. Korean Math. Soc. 42 (2005), 671-678.
[24] Sinclair, A. M., Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
[25] Singer, I. M., Wermer, J., Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
(received 09.09.2013; in revised form 13.07.2014; available online 01.09.2014)
B. D., Department of Mathematics, Belda College, Belda, Paschim Medinipur, 721424, W.B., India
E-mail: basu_dhara@yahoo.com
Sh. S. and V. R., Department Of Mathematics, Islamic Azad University, Central Tehran Branch, 13185/768, Tehran, Iran

E-mail: sahebi@iauctb.ac.ir, ven.rahmani.math@iauctb.ac.ir, venosrahmani@yahoo.com

[^0]: 2010 Mathematics Subject Classification: 16W25, 16N60, 16R50, 16D60
 Keywords and phrases: Prime ring; generalized derivation; extended centroid; Utumi quotient ring; Banach algebra.

