FIXED POINT THEOREMS ON S-METRIC SPACES

Shaban Sedghi and Nguyen Van Dung

Abstract

In this paper, we prove a general fixed point theorem in S-metric spaces which is a generalization of Theorem 3.1 from [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik 64 (2012), 258-266]. As applications, we get many analogues of fixed point theorems from metric spaces to S-metric spaces.

1. Introduction and preliminaries

In [13], S. Sedghi, N. Shobe and A. Aliouche have introduced the notion of an S-metric space as follows.

Definition 1.1. [13, Definition 2.1] Let X be a nonempty set. An S-metric on X is a function $S: X^{3} \rightarrow[0, \infty)$ that satisfies the following conditions for all $x, y, z, a \in X$.
(S1) $S(x, y, z)=0$ if and only if $x=y=z$.
(S2) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$.
The pair (X, S) is called an S-metric space.
This notion is a generalization of a G-metric space [11] and a D^{*}-metric space [14]. For the fixed point problem in generalized metric spaces, many results have been proved, see [1, 7, 9, 10], for example. In [13], the authors proved some properties of S-metric spaces. Also, they proved some fixed point theorems for a self-map on an S-metric space.

In this paper, we prove a general fixed point theorem in S-metric spaces which is a generalization of [13, Theorem 3.1]. As applications, we get many analogues of fixed point theorems in metric spaces for S -metric spaces.

Now we recall some notions and lemmas which will be useful later.

2010 AMS Subject Classification: 54H25, 54E99
Keywords and phrases: S-metric space.
This work is partly discussed at the Dong Thap Seminar on Mathematical Analysis.

Definition 1.2. [2] Let X be a nonempty set. A B-metric on X is a function $d: X^{2} \rightarrow[0, \infty)$ if there exists a real number $b \geq 1$ such that the following conditions hold for all $x, y, z \in X$.
(B1) $d(x, y)=0$ if and only if $x=y$.
(B2) $d(x, y)=d(y, x)$.
(B3) $d(x, z) \leq b[d(x, y)+d(y, z)]$.
The pair (X, d) is called a B-metric space.
Definition 1.3. [13] Let (X, S) be an S-metric space. For $r>0$ and $x \in X$, we define the open ball $B_{S}(x, r)$ and the closed ball $B_{S}[x, r]$ with center x and radius r as follows

$$
\begin{aligned}
B_{S}(x, r) & =\{y \in X: S(y, y, x)<r\} \\
B_{S}[x, r] & =\{y \in X: S(y, y, x) \leq r\}
\end{aligned}
$$

The topology induced by the S-metric is the topology generated by the base of all open balls in X.

Definition 1.4. [13] Let (X, S) be an S-metric space.
(1) A sequence $\left\{x_{n}\right\} \subset X$ converges to $x \in X$ if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. That is, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have $S\left(x_{n}, x_{n}, x\right)<\varepsilon$. We write $x_{n} \rightarrow x$ for brevity.
(2) A sequence $\left\{x_{n}\right\} \subset X$ is a Cauchy sequence if $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. That is, for each $\varepsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that for all $n, m \geq n_{0}$ we have $S\left(x_{n}, x_{n}, x_{m}\right)<\varepsilon$.
(3) The S -metric space (X, S) is complete if every Cauchy sequence is a convergent sequence.
Lemma 1.5. [13, Lemma 2.5] In an S-metric space, we have

$$
S(x, x, y)=S(y, y, x)
$$

for all $x, y \in X$.
Lemma 1.6. [13, Lemma 2.12] Let (X, S) be an S-metric space. If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $S\left(x_{n}, x_{n}, y_{n}\right) \rightarrow S(x, x, y)$.

As a special case of [13, Examples in page 260] we have the following
Example 1.7. Let \mathbb{R} be the real line. Then

$$
S(x, y, z)=|x-z|+|y-z|
$$

for all $x, y, z \in \mathbb{R}$ is an S -metric on \mathbb{R}. This S-metric on \mathbb{R} is called the usual S-metric on \mathbb{R}.

2. Main results

First, we prove some properties of S-metric spaces.
Proposition 2.1. Let (X, S) be an S-metric space and let

$$
d(x, y)=S(x, x, y)
$$

for all $x, y \in X$. Then we have
(1) d is a B-metric on X;
(2) $x_{n} \rightarrow x$ in (X, S) if and only if $x_{n} \rightarrow x$ in (X, d);
(3) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, S) if and only if $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d).

Proof. For the statement (1), conditions (B1) and (B2) are easy to check. It follows from (S2) and Lemma 1.5 that

$$
\begin{aligned}
d(x, z) & =S(x, x, z) \leq S(x, x, y)+S(x, x, y)+S(z, z, y) \\
& =2 S(x, x, y)+S(y, y, z)=2 d(x, y)+d(y, z) \\
d(x, z) & =S(z, z, x) \leq S(z, z, y)+S(z, z, y)+S(x, x, y) \\
& =2 S(z, z, y)+S(x, x, y)=2 d(y, z)+d(x, y)
\end{aligned}
$$

It follows that $d(x, z) \leq 3 / 2[d(x, y)+d(y, z)]$. Then d is a B-metric with $b=3 / 2$.
Statements (2) and (3) are easy to check.
The following property is trivial and we omit the proof.
Proposition 2.2. Let (X, S) be an S-metric space. Then we have
(1) X is first-countable;
(2) X is regular.

Remark 2.3. By Propositions 2.1 and 2.2 we have that every S-metric space is topologically equivalent to a B-metric space.

Corollary 2.4. Let $f: X \rightarrow Y$ be a map from an S-metric space X to an S-metric space Y. Then f is continuous at $x \in X$ if and only if $f\left(x_{n}\right) \rightarrow f(x)$ whenever $x_{n} \rightarrow x$.

Now, we introduce an implicit relation to investigate some fixed point theorems on S-metric spaces. Let \mathcal{M} be the family of all continuous functions of five variables $M: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$. For some $k \in[0,1)$, we consider the following conditions.
(C1) For all $x, y, z \in \mathbb{R}_{+}$, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq k x$.
(C2) For all $y \in \mathbb{R}_{+}$, if $y \leq M(y, 0, y, y, 0)$, then $y=0$.
(C3) If $x_{i} \leq y_{i}+z_{i}$ for all $x_{i}, y_{i}, z_{i} \in \mathbb{R}_{+}, i \leq 5$, then

$$
M\left(x_{1}, \ldots, x_{5}\right) \leq M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right)
$$

Moreover, for all $y \in X, M(0,0,0, y, 2 y) \leq k y$.
REmark 2.5. Note that the coefficient k in conditions (C1) and (C3) may be different, for example, k_{1} and k_{3} respectively. But we may assume that they are equal by putting $k=\max \left\{k_{1}, k_{3}\right\}$.

A general fixed point theorem for S-metric spaces is as follows.
Theorem 2.6. Let T be a self-map on a complete S-metric space (X, S) and $S(T x, T x, T y) \leq M(S(x, x, y), S(T x, T x, x), S(T x, T x, y)$,

$$
\begin{equation*}
S(T y, T y, x), S(T y, T y, y)) \tag{2.1}
\end{equation*}
$$

for all $x, y, z \in X$ and some $M \in \mathcal{M}$. Then we have
(1) If M satisfies the condition (C1), then T has a fixed point. Moreover, for any $x_{0} \in X$ and the fixed point x, we have

$$
S\left(T x_{n}, T x_{n}, x\right) \leq \frac{2 k^{n}}{1-k} S\left(x_{0}, x_{0}, T x_{0}\right)
$$

(2) If M satisfies the condition (C2) and T has a fixed point, then the fixed point is unique.
(3) If M satisfies the condition (C3) and T has a fixed point x, then T is continuous at x.

Proof. (1) For each $x_{0} \in X$ and $n \in \mathbb{N}$, put $x_{n+1}=T x_{n}$. It follows from (2.1) and Lemma 1.5 that

$$
\begin{aligned}
S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)= & S\left(T x_{n}, T x_{n}, T x_{n+1}\right) \\
\leq & M\left(S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right), S\left(x_{n+1}, x_{n+1}, x_{n+1}\right),\right. \\
& \left.S\left(x_{n+2}, x_{n+2}, x_{n}\right), S\left(x_{n+2}, x_{n+2}, x_{n+1}\right)\right) \\
= & M\left(S\left(x_{n}, x_{n}, x_{n+1}\right), S\left(x_{n}, x_{n}, x_{n+1}\right), 0\right. \\
& \left.S\left(x_{n}, x_{n}, x_{n+2}\right), S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)\right)
\end{aligned}
$$

By (S2) and Lemma 1.5 we have

$$
\begin{aligned}
S\left(x_{n}, x_{n}, x_{n+2}\right) & \leq 2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+2}, x_{n+2}, x_{n+1}\right) \\
& =2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+1}, x_{n+1}, x_{n+2}\right)
\end{aligned}
$$

Since M satisfies the condition (C1), there exists $k \in[0,1)$ such that

$$
\begin{equation*}
S\left(x_{n+1}, x_{n+1}, x_{n+2}\right) \leq k S\left(x_{n}, x_{n}, x_{n+1}\right) \leq k^{n+1} S\left(x_{0}, x_{0}, x_{1}\right) \tag{2.2}
\end{equation*}
$$

Thus for all $n<m$, by using (S2), Lemma 1.5 and (2.2), we have

$$
\begin{aligned}
S\left(x_{n}, x_{n}, x_{m}\right) & \leq 2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{m}, x_{m}, x_{n+1}\right) \\
& =2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n+1}, x_{n+1}, x_{m}\right) \\
& \cdots \\
& \leq 2\left[k^{n}+\cdots+k^{m-1}\right] S\left(x_{0}, x_{0}, x_{1}\right) \\
& \leq \frac{2 k^{n}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right) .
\end{aligned}
$$

Taking the limit as $n, m \rightarrow \infty$ we get $S\left(x_{n}, x_{n}, x_{m}\right) \rightarrow 0$. This proves that $\left\{x_{n}\right\}$ is a Cauchy sequence in the complete S -metric space (X, S). Then $x_{n} \rightarrow x \in X$. Moreover, taking the limit as $m \rightarrow \infty$ we get

$$
S\left(x_{n}, x_{n}, x\right) \leq \frac{2 k^{n+1}}{1-k} S\left(x_{0}, x_{0}, x_{1}\right)
$$

It implies that

$$
S\left(T x_{n}, T x_{n}, x\right) \leq \frac{2 k^{n}}{1-k} S\left(x_{0}, x_{0}, T x_{0}\right)
$$

Now we prove that x is a fixed point of T. By using (2.1) again we get

$$
\begin{aligned}
S\left(x_{n+1}, x_{n+1}, T x\right)= & S\left(T x_{n}, T x_{n}, T x\right) \\
\leq & M\left(S\left(x_{n}, x_{n}, x\right), S\left(T x_{n}, T x_{n}, x\right), S\left(T x_{n}, T x_{n}, x_{n}\right)\right. \\
& \left.S\left(T x, T x, x_{n}\right), S(T x, T x, x)\right) \\
= & M\left(S\left(x_{n}, x_{n}, x\right), S\left(x_{n+1}, x_{n+1}, x\right), S\left(x_{n+1}, x_{n+1}, x_{n}\right)\right. \\
& \left.S\left(T x, T x, x_{n}\right), S(T x, T x, x)\right)
\end{aligned}
$$

Note that $M \in \mathcal{M}$, then using Lemma 1.6 and taking the limit as $n \rightarrow \infty$ we obtain

$$
S(x, x, T x) \leq M(0,0,0, S(T x, T x, x), S(T x, T x, x))
$$

Then, from Lemma 1.5, we obtain

$$
S(x, x, T x) \leq M(0,0,0, S(x, x, T x), S(x, x, T x,))
$$

Since M satisfies the condition (C1), then $S(x, x, T x) \leq k \cdot 0=0$. This proves that $x=T x$.
(2) Let x, y be fixed points of T. We shall prove that $x=y$. It follows from (2.1) and Lemma 1.5 that

$$
\begin{aligned}
S(x, x, y) & =S(T x, T x, T y) \\
& \leq M(S(x, x, y), S(T x, T x, x), S(T x, T x, y), S(T y, T y, x), S(T y, T y, y)) \\
& =M(S(x, x, y), 0, S(x, x, y), S(y, y, x), 0) \\
& =M(S(x, x, y), 0, S(x, x, y), S(x, x, y), 0)
\end{aligned}
$$

Since M satisfies the condition $((\mathrm{C} 2)$, then $S(x, x, y)=0$. This proves that $x=y$.
(3) Let x be the fixed point of T and $y_{n} \rightarrow x \in X$. By Corollary 2.4, we need to prove that $T y_{n} \rightarrow T x$. It follows from (2.1) that

$$
\begin{aligned}
S\left(x, x, T y_{n}\right)= & S\left(T x, T x, T y_{n}\right) \\
\leq & M\left(S\left(x, x, y_{n}\right), S(T x, T x, x), S\left(T x, T x, y_{n}\right)\right. \\
& \left.S\left(T y_{n}, T y_{n}, x\right), S\left(T y_{n}, T y_{n}, y_{n}\right)\right) \\
= & M\left(S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right), S\left(T y_{n}, T y_{n}, x\right), S\left(T y_{n}, T y_{n}, y_{n}\right)\right)
\end{aligned}
$$

Since M satisfies the condition (C3) and by (S2)

$$
S\left(T y_{n}, T y_{n}, y_{n}\right) \leq 2 S\left(T y_{n}, T y_{n}, x\right)+S\left(y_{n}, y_{n}, x\right)
$$

then we have

$$
\begin{aligned}
S\left(x, x, T y_{n}\right) \leq & M\left(S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right)\right) \\
& +M\left(0,0,0, S\left(T y_{n}, T y_{n}, x\right), 2 \cdot S\left(T y_{n}, T y_{n}, x\right)\right) \\
\leq & M\left(S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right)\right)+k S\left(T y_{n}, T y_{n}, x\right)
\end{aligned}
$$

Therefore

$$
S\left(x, x, T y_{n}\right) \leq \frac{1}{1-k} M\left(S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right), 0, S\left(x, x, y_{n}\right)\right)
$$

Note that $M \in \mathcal{M}$, hence taking the limit as $n \rightarrow \infty$ we get $S\left(x, x, T y_{n}\right) \rightarrow 0$. This proves that $T y_{n} \rightarrow x=T x$.

Next, we give some analogues of fixed point theorems in metric spaces for Smetric spaces by combining Theorem 2,6 with examples of $M \in \mathcal{M}$ and M satisfies conditions (C1), (C2) and (C3). The following corollary is an analogue of Banach's contraction principle.

Corollary 2.7. [13, Theorem 3.1] Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq L S(x, x, y)
$$

for some $L \in[0,1)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=L x$ for some $L \in[0,1)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$.

The following corollary is an analogue of R. Kannan's result in [8].
Corollary 2.8. Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq a(S(T x, T x, x)+S(T y, T y, y))
$$

for some $a \in[0,1 / 2)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=a(y+t)$ for some $a \in[0,1 / 2)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=a(x+y)$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq a /(1-a)^{\prime}, x$ with $a /(1-a)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=0$, then $y=0$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =a\left(x_{2}+x_{5}\right) \leq a\left[\left(y_{2}+z_{2}\right)+\left(y_{5}+z_{5}\right)\right] \\
& =a\left(y_{2}+z_{2}\right)+a \cdot\left(y_{5}+z_{5}\right)=M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right) .
\end{aligned}
$$

Moreover

$$
M(0,0,0, y, 2 y)=a(0+2 y)=2 a y
$$

where $2 a<1$. Therefore, T satisfies the condition (C3).
Example 2.9. Let \mathbb{R} be the usual S-metric space as in Example 1.7 and let

$$
T x= \begin{cases}1 / 2 & \text { if } x \in[0,1) \\ 1 / 4 & \text { if } x=1\end{cases}
$$

Then T is a self-map on a complete S-metric space $[0,1] \subset \mathbb{R}$. For all $x \in(3 / 4,1)$ we have

$$
\begin{aligned}
S(T x, T x, T 1) & =S(1 / 2,1 / 2,1 / 4)=|1 / 2-1 / 4|+|1 / 2-1 / 4|=1 / 2 \\
S(x, x, 1) & =|x-1|+|x-1|=2|x-1|<1 / 2
\end{aligned}
$$

Then T does not satisfy the condition of Corollary 2.7. We also have

$$
S(T x, T x, x)= \begin{cases}2|1 / 2-x| & \text { if } x \in[0,1) \\ 3 / 2 & \text { if } x=1\end{cases}
$$

It implies that

$$
\begin{aligned}
& 5 / 12((S(T x, T x, x)+S(T y, T y, y)) \\
& \qquad= \begin{cases}5 / 6(|1 / 2-x|+|1 / 2-y|) & \text { if } x, y \in[0,1) \\
5 / 12|1 / 2-x|+5 / 8 & \text { if } x \in[0,1), y=1\end{cases}
\end{aligned}
$$

Then we get $S(T x, T x, T y) \leq 5 / 12((S(T x, T x, x)+S(T y, T y, y))$. Therefore, T satisfies the condition of Corollary 2.8. It is clear that $x=1 / 2$ is the unique fixed point of T.

The following corollary is an analogue of R. M. T. Bianchini's result in [3].
Corollary 2.10. Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq h \max \{S(T x, T x, x), S(T y, T y, y)\}
$$

for some $h \in[0,1)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, if $h \in[0,1 / 2)$, then T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=$ $h \max \{y, t\}$ for some $h \in[0,1)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=h \max \{x, y\}$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq h x$ or $y \leq h y$. Therefore, $y \leq h x$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=h \max \{y, 0\}=h y$, then $y=0$ since $h<1 / 2$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =h \max \left\{x_{2}, x_{5}\right\} \leq h \max \left\{y_{2}+z_{2}, y_{5}+z_{5}\right\} \\
& \leq h \max \left\{y_{2}, y_{5}\right\}+h \max \left\{z_{2}, z_{5}\right\}=M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right)
\end{aligned}
$$

Moreover, if $h \in[0,1 / 2)$, then $2 h<1$ and $M(0,0,0, y, 2 y)=h \max \{0,2 y\}=2 h y$ where $2 h<1$. Therefore, T satisfies the condition (C3).

Example 2.11. Let \mathbb{R} be the usual S-metric space as in Example 1.7 and let $T x=x / 3$ for all $x \in[0,1]$. We have

$$
\begin{aligned}
S(T x, T x, T y)=S(x / 3, x / 3, y / 3) & =|x / 3-y / 3|+|x / 3-y / 3|=2 / 3|x-y| \\
S(T x, T x, x)=S(x / 3, x / 3, x) & =|x / 3-x|+|x / 3-x|=4 / 3|x| \\
S(T y, T y, y)=S(y / 3, y / 3, y) & =|y / 3-y|+|y / 3-y|=4 / 3|y| \\
S(T x, T x, x)+S(T y, T y, y) & =4 / 3(|x|+|y|) \\
\max \{S(T x, T x, x), S(T y, T y, y)\} & =4 / 3 \max \{|x|,|y|\} .
\end{aligned}
$$

It implies that $S(T 1, T 1, T 0)=2 / 3, S(T 1, T 1,1)+S(T 0, T 0,0)=4 / 3$. This proves that T does not satisfy the condition of Corollary 2.8. We also have that T satisfies the condition of Corollary 2.10 with $h=3 / 4$ and T has a unique fixed point $x=0$.

The following corollary is an analogue of S. Reich's result in [12].
Corollary 2.12. Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq a S(x, x, y)+b S(T x, T x, x)+c S(T y, T y, y)
$$

for some $a, b, c \geq 0, a+b+c<1$, and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, if $c<1 / 2$, then T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=a x+$ $b y+c t$ for some $a, b, c \geq 0, a+b+c<1$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=a x+b x+c y$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq(a+b) /(1-c) x$ with $(a+b) /(1-c)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=a y$, then $y=0$ since $a<1$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =a x_{1}+b x_{2}+c x_{5} \\
& \leq a\left(y_{1}+z_{1}\right)+b\left(y_{2}+z_{2}\right)+c\left(y_{5}+z_{5}\right) \\
& =\left(a y_{1}+b y_{2}+c y_{5}\right)+\left(a z_{1}+b z_{2}+c z_{5}\right) \\
& =M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right) .
\end{aligned}
$$

Moreover $M(0,0,0, y, 2 y)=2 c y$ where $2 c<1$. Therefore, T satisfies the condition (C3).

Example 2.13. Let \mathbb{R} be the usual S-metric space as in Example 1.7 and let $T x=x / 2$ for all $x \in[0,1]$. We have

$$
\begin{aligned}
S(T x, T x, T y) & =|x / 2-y / 2|+|x / 2-y / 2|=|x-y| \\
S(x, x, y) & =|x-y|+|x-y|=2|x-y| \\
S(T x, T x, x) & =|x / 2-x|+|x / 2-x|=|x| .
\end{aligned}
$$

Then $S(T x, T x, T 0)=|x|, \max \{S(T x, T x, x), S(T 0, T 0,0)\}=|x|$. This proves that T does not satisfy the condition of Corollary 2.10. We also have

$$
S(T x, T x, T y) \leq 1 / 2 S(x, x, y)+1 / 3 S(T x, T x, x)+1 / 3 S(T y, T y, y)
$$

Then T satisfy the condition of Corollary 2.12 . It is clear that T has a unique fixed point $x=0$.

The following corollary is an analogue of S. K. Chatterjee's result in [4].
Corollary 2.14. Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq h \max \{S(T x, T x, y), S(T y, T y, x)\}
$$

for some $h \in[0,1 / 3)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=$ $h \max \{z, s\}$ for some $h \in[0,1 / 3)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=h \max \{0, z\}$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq 2 h x+h y$. So $y \leq 2 h /(1-h) x$ with $2 h /(1-h)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=h y$, then $y=0$ since $h<1 / 3$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =h \max \left\{x_{3}, x_{4}\right\} \leq h \max \left\{y_{3}+z_{3}, y_{4}+z_{4}\right\} \\
& \leq h \max \left\{y_{3}, y_{4}\right\}+h \max \left\{z_{3}, z_{4}\right\}=M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right)
\end{aligned}
$$

Moreover

$$
M(0,0,0, y, 2 y)=h \max \{0, y\}=h y
$$

where $h<1$. Therefore, T satisfies the condition (C3).
Corollary 2.15. Let T be a self-map on a complete S-metric space (X, S)
and

$$
S(T x, T x, T y) \leq a \cdot(S(T x, T x, y)+S(T y, T y, x))
$$

for some $a \in[0,1 / 3)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=a(z+s)$ for some $a \in[0,1 / 3)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=a(0+z)=a z$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq 2 a x+a y$. So $y \leq 2 a /(1-a) x$ with $2 a /(1-a)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=a(y+y)=2 a y$ then $y=0$ since $2 a<2 / 3$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =a\left(x_{3}+x_{4}\right) \leq a\left(y_{3}+z_{3}+y_{4}+z_{4}\right) \\
& =a\left(y_{3}+y_{4}\right)+a\left(z_{3}+z_{4}\right)=M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right)
\end{aligned}
$$

Moreover $M(0,0,0, y, 2 y)=a(0+y)=a y$ where $a<1$. Therefore, T satisfies the condition (C3).

Example 2.16. Let \mathbb{R} be the usual S-metric space as in Example 1.7 and let $T x=x / 3$ for all $x \in[0,1]$. Then we have $S(T x, T x, T y)=2|x / 3-y / 3|=$ $2 / 3|x-y|, S(T x, T x, y)=2|x / 3-y|, S(T y, T y, x)=2|y / 3-x|$. It implies that $S(T 1, T 1, T 0)=2 / 3, S(T 1, T 1,0)=2 / 3, S(T 0, T 0,1)=2$. This proves that T does not satisfy the condition of Corollary 2.14. We also have

$$
S(T x, T x, y)+S(T y, T y, x)=2|x / 3-y|+2|y / 3-x| \geq 8 / 3|x-y|
$$

Therefore, T satisfies the condition of Corollary 2.15. It is clear that T has a unique fixed point $x=0$.

Corollary 2.17. Let T be a self-map on a complete S-metric space (X, S) and

$$
S(T x, T x, T y) \leq a S(x, x, y)+b S(T x, T x, y)+c S(T y, T y, x)
$$

for some $a, b, c \geq 0, a+b+c<1, a+3 c<1$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=a x+b z+$ $c s$ for some $a, b, c \geq 0, a+b+c<1, a+3 c<1$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=a x+c z$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq a x+2 c x+c y$. So $y \leq(a+2 c) /(1-c) x$ with $(a+2 c) /(1-c)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=a y+b y+c y=(a+b+c) y$ then $y=0$ since $a+b+c<1$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =a x_{1}+b x_{3}+c x_{4} \leq a\left(y_{1}+z_{1}\right)+b\left(y_{3}+z_{3}\right)+c\left(y_{4}+z_{4}\right) \\
& =\left(a y_{1}+b y_{3}+c y_{4}\right)+\left(a z_{1}+b z_{3}+c z_{4}\right) \\
& =M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right)
\end{aligned}
$$

Moreover $M(0,0,0, y, 2 y)=c y$ where $c<1$. Therefore, T satisfies the condition (C3).

Example 2.18. Let \mathbb{R} be the usual S-metric space as in Example 1.7 and let $T x=3 / 4(1-x)$ for all $x \in[0,1]$. Then we have $S(T x, T x, T y)=$ $3 / 2|x-y|, S(T x, T x, y)=2|3 / 4(1-x)-y|$. It implies that $S(T 1, T 1, T 0)=3 / 2$, $\max \{S(T 1, T 1,0), S(T 0, T 0,1)\}=\max \{0,1 / 2\}=1 / 2$. This proves that T does not satisfy the condition of Corollary 2.14. We also have
$4 / 5 S(x, x, y)+0 \cdot S(T x, T x, y)+0 \cdot S(T y, T y, x)=(8 / 5)|x-y| \geq S(T x, T x, T y)$.
Therefore, T satisfies the condition of Corollary 2.17. It is clear that T has a unique fixed point $x=3 / 7$.

The following corollary is an analogue of G. E. Hardy and T. D. Rogers' result in [6].

Corollary 2.19. Let T be a self-map on a complete S-metric space (X, S) and

$$
\begin{aligned}
S(T x, T x, T y) \leq a_{1} S(x, x, y)+a_{2} S(T x, T x, x) & +a_{3} S(T x, T x, y) \\
& +a_{4} S(T y, T y, x)+a_{5} S(T y, T y, y)
\end{aligned}
$$

for some $a_{1}, \ldots, a_{5} \geq 0$ such that $\max \left\{a_{1}+a_{2}+3 a_{4}+a_{5}, a_{1}+a_{3}+a_{4}, a_{4}+2 a_{5}\right\}<1$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=a_{1} x+$ $a_{2} y+a_{3} z+a_{4} s+a_{5} t$ for some $a_{1}, \ldots, a_{5} \geq 0$ such that $\max \left\{a_{1}+a_{2}+3 a_{4}+a_{5}, a_{1}+\right.$ $\left.a_{3}+a_{4}, a_{4}+2 a_{5}\right\}<1$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First,
we have $M(x, x, 0, z, y)=a_{1} x+a_{2} x+a_{4} z+a_{5} y$. So, if $y \leq M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then

$$
y \leq a_{1} x+a_{2} x+a_{4} z+a_{5} y \leq a_{1} x+a_{2} x+a_{4}(2 x+y)+a_{5} y .
$$

Then $y \leq\left(a_{1}+a_{2}+2 a_{4}\right) /\left(1-a_{4}-a_{5}\right) x$ with $\left(a_{1}+a_{2}+2 a_{4}\right) /\left(1-a_{4}-a_{5}\right)<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=a_{1} y+a_{3} y+a_{4} y=\left(a_{1}+a_{3}+a_{4}\right) y$ then $y=0$ since $a_{1}+a_{3}+a_{4}<1$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =a_{1} x_{1}+\cdots+a_{5} x_{5} \\
& \leq a_{1}\left(y_{1}+z_{1}\right)+\cdots+a_{5}\left(y_{5}+z_{5}\right) \\
& =\left(a_{1} y_{1}+\cdots+a_{5} y_{5}\right)+\left(a_{1} z_{1}+\cdots+a_{5} z_{5}\right) \\
& =M\left(y_{1}, \cdots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right) .
\end{aligned}
$$

Moreover $M(0,0,0, y, 2 y)=a_{4} y+2 a_{5} y=\left(a_{4}+2 a_{5}\right) y$ where $a_{4}+2 a_{5}<1$. Therefore, T satisfies the condition (C3).

Example 2.20. Let T be the map in Example 2.16. Then we have

$$
\begin{gathered}
S(T 1, T 1, T 1 / 2)=1, \\
a S(1,1,1 / 2)+b S(T 1, T 1,1 / 2)+c S(T 1 / 2, T 1 / 2,1)=a+2 c .
\end{gathered}
$$

This proves that T does not satisfy the condition of Corollary 2.17 . We also have $0 \cdot S(x, x, y)+(3 / 4) S(T x, T x, x)+(3 / 4) S(T x, T x, y)+0 \cdot S(T y, T y, x)+0 \cdot S(T y, T y, y)$ $=(3 / 4) S(T x, T x, x)+(3 / 4) S(T x, T x, y) \geq S(T x, T x, T y)$.
Therefore, T satisfies the condition of Corollary 2.19. It is clear that T has a unique fixed point $x=0$.

The following corollary is an analogue of L. B. Ćirić's result in [5].
Corollary 2.21. Let T be a self-map on a complete S-metric space (X, S) and
$S(T x, T x, T y) \leq h \max \{S(x, x, y), S(T x, T x, x), S(T x, T x, y)$,

$$
S(T y, T y, x), S(T y, T y, y)\}
$$

for some $h \in[0,1 / 3)$ and all $x, y \in X$. Then T has a unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with $M(x, y, z, s, t)=$ $h \max \{x, y, z, s, t\}$ for some $h \in[0,1 / 3)$ and all $x, y, z, s, t \in \mathbb{R}_{+}$. Indeed, M is continuous. First, we have $M(x, x, 0, z, y)=h \max \{x, x, 0, z, y\}$. So, if $y \leq$ $M(x, x, 0, z, y)$ with $z \leq 2 x+y$, then $y \leq h x$ or $y \leq h z \leq h(2 x+y)$. Then $y \leq k x$ with $k=\max \{h, 2 h /(1-h)\}<1$. Therefore, T satisfies the condition (C1).

Next, if $y \leq M(y, 0, y, y, 0)=h . y$, then $y=0$ since $h<1 / 3$. Therefore, T satisfies the condition (C2).

Finally, if $x_{i} \leq y_{i}+z_{i}$ for $i \leq 5$, then

$$
\begin{aligned}
M\left(x_{1}, \ldots, x_{5}\right) & =h \max \left\{x_{1}, \ldots, x_{5}\right\} \leq h \max \left\{y_{1}+z_{1}, \ldots, y_{5}+z_{5}\right\} \\
& \leq h \max \left\{y_{1}, \ldots, y_{5}\right\}+h \max \left\{z_{1}, \ldots, z_{5}\right\} \\
& =M\left(y_{1}, \ldots, y_{5}\right)+M\left(z_{1}, \ldots, z_{5}\right) .
\end{aligned}
$$

Moreover $M(0,0,0, y, 2 y)=2 h y$ where $2 h<1$. Therefore, T satisfies the condition (C3).

REFERENCES

[1] R.P. Agarwal, M. Meehan, D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, 2004.
[2] I.A. Bakhtin, The contraction principle in quasimetric spaces, Func. An., Ulianowsk, Gos. Ped. Ins. 30 (1989), 26-37.
[3] R.M.T. Bianchini, Su un problema di S. Reich aguardante la teoria dei punti fissi, Boll. Un. Mat. Ital. 5 (1972), 103-108.
[4] S.K. Chatterjee, Fixed point theorems, Rend. Acad. Bulgare. Sci. 25 (1972), 727-730.
[5] L.B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267-273.
[6] G.E. Hardy, T.D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (1973), 201-206.
[7] M. Jovanović, Z. Kadelburg, S. Radenović, Common fixed point results in metric-type spaces, Fixed Point Theory Appl. 2010 (2010), 1-15.
[8] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405-408.
[9] M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl. 2010 (2010), 1-7.
[10] M.A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 7 (2010), 3123-3129.
[11] Z. Mustafa, B. 1 Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[12] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull 14 (1971), 121-124.
[13] S. Sedghi, N. Shobe, A. Aliouche, A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik 64 (2012), 258-266.
[14] S. Sedghi, N. Shobe, H. Zhou, A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl. 2007 (2007), 1-13.
(received 08.06.2012; in revised form 27.08.2012; available online 01.11.2012)
Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail: sedghi_gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir
Department of Mathematics, Dong Thap University, Cao Lanh City, Dong Thap Province, Vietnam
E-mail: nvdung@dthu.edu.vn, nguyendungtc@yahoo.com

