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FIXED POINT THEOREMS ON S-METRIC SPACES

Shaban Sedghi and Nguyen Van Dung

Abstract. In this paper, we prove a general fixed point theorem in S-metric spaces which is
a generalization of Theorem 3.1 from [S. Sedghi, N. Shobe, A. Aliouche, Mat. Vesnik 64 (2012),
258–266]. As applications, we get many analogues of fixed point theorems from metric spaces to
S-metric spaces.

1. Introduction and preliminaries

In [13], S. Sedghi, N. Shobe and A. Aliouche have introduced the notion of an
S-metric space as follows.

Definition 1.1. [13, Definition 2.1] Let X be a nonempty set. An S-metric
on X is a function S : X3 → [0,∞) that satisfies the following conditions for all
x, y, z, a ∈ X.

(S1) S(x, y, z) = 0 if and only if x = y = z.

(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X, S) is called an S-metric space.

This notion is a generalization of a G-metric space [11] and a D∗-metric space
[14]. For the fixed point problem in generalized metric spaces, many results have
been proved, see [1, 7, 9, 10], for example. In [13], the authors proved some
properties of S-metric spaces. Also, they proved some fixed point theorems for
a self-map on an S-metric space.

In this paper, we prove a general fixed point theorem in S-metric spaces which
is a generalization of [13, Theorem 3.1]. As applications, we get many analogues of
fixed point theorems in metric spaces for S-metric spaces.

Now we recall some notions and lemmas which will be useful later.
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Definition 1.2. [2] Let X be a nonempty set. A B-metric on X is a function
d : X2 → [0,∞) if there exists a real number b ≥ 1 such that the following
conditions hold for all x, y, z ∈ X.

(B1) d(x, y) = 0 if and only if x = y.
(B2) d(x, y) = d(y, x).
(B3) d(x, z) ≤ b[d(x, y) + d(y, z)].

The pair (X, d) is called a B-metric space.

Definition 1.3. [13] Let (X, S) be an S-metric space. For r > 0 and x ∈ X,
we define the open ball BS(x, r) and the closed ball BS [x, r] with center x and radius
r as follows

BS(x, r) = {y ∈ X : S(y, y, x) < r},
BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

The topology induced by the S-metric is the topology generated by the base of all
open balls in X.

Definition 1.4. [13] Let (X,S) be an S-metric space.
(1) A sequence {xn} ⊂ X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞.

That is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have
S(xn, xn, x) < ε. We write xn → x for brevity.

(2) A sequence {xn} ⊂ X is a Cauchy sequence if S(xn, xn, xm) → 0 as n,m →∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0 we have
S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 1.5. [13, Lemma 2.5] In an S-metric space, we have
S(x, x, y) = S(y, y, x)

for all x, y ∈ X.
Lemma 1.6. [13, Lemma 2.12] Let (X, S) be an S-metric space. If xn → x

and yn → y then S(xn, xn, yn) → S(x, x, y).

As a special case of [13, Examples in page 260] we have the following
Example 1.7. Let R be the real line. Then

S(x, y, z) = |x− z|+ |y − z|
for all x, y, z ∈ R is an S-metric on R. This S-metric on R is called the usual
S-metric on R.

2. Main results

First, we prove some properties of S-metric spaces.

Proposition 2.1. Let (X,S) be an S-metric space and let
d(x, y) = S(x, x, y)

for all x, y ∈ X. Then we have
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(1) d is a B-metric on X;
(2) xn → x in (X,S) if and only if xn → x in (X, d);
(3) {xn} is a Cauchy sequence in (X,S) if and only if {xn} is a Cauchy sequence

in (X, d).

Proof. For the statement (1), conditions (B1) and (B2) are easy to check. It
follows from (S2) and Lemma 1.5 that

d(x, z) = S(x, x, z) ≤ S(x, x, y) + S(x, x, y) + S(z, z, y)

= 2S(x, x, y) + S(y, y, z) = 2d(x, y) + d(y, z)

d(x, z) = S(z, z, x) ≤ S(z, z, y) + S(z, z, y) + S(x, x, y)

= 2S(z, z, y) + S(x, x, y) = 2d(y, z) + d(x, y).

It follows that d(x, z) ≤ 3/2[d(x, y) + d(y, z)]. Then d is a B-metric with b = 3/2.
Statements (2) and (3) are easy to check.
The following property is trivial and we omit the proof.

Proposition 2.2. Let (X,S) be an S-metric space. Then we have
(1) X is first-countable;
(2) X is regular.

Remark 2.3. By Propositions 2.1 and 2.2 we have that every S-metric space
is topologically equivalent to a B-metric space.

Corollary 2.4. Let f : X → Y be a map from an S-metric space X to an
S-metric space Y . Then f is continuous at x ∈ X if and only if f(xn) → f(x)
whenever xn → x.

Now, we introduce an implicit relation to investigate some fixed point theorems
on S-metric spaces. Let M be the family of all continuous functions of five variables
M : R5

+ → R+. For some k ∈ [0, 1), we consider the following conditions.
(C1) For all x, y, z ∈ R+, if y ≤ M(x, x, 0, z, y) with z ≤ 2x + y, then y ≤ k x.
(C2) For all y ∈ R+, if y ≤ M(y, 0, y, y, 0), then y = 0.
(C3) If xi ≤ yi + zi for all xi, yi, zi ∈ R+, i ≤ 5, then

M(x1, . . . , x5) ≤ M(y1, . . . , y5) + M(z1, . . . , z5).
Moreover, for all y ∈ X, M(0, 0, 0, y, 2y) ≤ k y.
Remark 2.5. Note that the coefficient k in conditions (C1) and (C3) may be

different, for example, k1 and k3 respectively. But we may assume that they are
equal by putting k = max{k1, k3}.

A general fixed point theorem for S-metric spaces is as follows.

Theorem 2.6. Let T be a self-map on a complete S-metric space (X,S) and
S(Tx, Tx, Ty) ≤ M(S(x, x, y), S(Tx, Tx, x), S(Tx, Tx, y),

S(Ty, Ty, x), S(Ty, Ty, y)) (2.1)
for all x, y, z ∈ X and some M ∈M. Then we have
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(1) If M satisfies the condition (C1), then T has a fixed point. Moreover, for any
x0 ∈ X and the fixed point x, we have

S(Txn, Txn, x) ≤ 2kn

1− k
S(x0, x0, Tx0).

(2) If M satisfies the condition (C2) and T has a fixed point, then the fixed point
is unique.

(3) If M satisfies the condition (C3) and T has a fixed point x, then T is continuous
at x.

Proof. (1) For each x0 ∈ X and n ∈ N, put xn+1 = Txn. It follows from (2.1)
and Lemma 1.5 that

S(xn+1, xn+1, xn+2) = S(Txn, Txn, Txn+1)

≤ M
(
S(xn, xn, xn+1), S(xn+1, xn+1, xn), S(xn+1, xn+1, xn+1),

S(xn+2, xn+2, xn), S(xn+2, xn+2, xn+1)
)

= M
(
S(xn, xn, xn+1), S(xn, xn, xn+1), 0,

S(xn, xn, xn+2), S(xn+1, xn+1, xn+2)
)
.

By (S2) and Lemma 1.5 we have

S(xn, xn, xn+2) ≤ 2S(xn, xn, xn+1) + S(xn+2, xn+2, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2).

Since M satisfies the condition (C1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn+2) ≤ kS(xn, xn, xn+1) ≤ kn+1S(x0, x0, x1). (2.2)

Thus for all n < m, by using (S2), Lemma 1.5 and (2.2), we have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)
. . .

≤ 2
[
kn + · · ·+ km−1

]
S(x0, x0, x1)

≤ 2kn

1− k
S(x0, x0, x1).

Taking the limit as n,m → ∞ we get S(xn, xn, xm) → 0. This proves that {xn}
is a Cauchy sequence in the complete S-metric space (X, S). Then xn → x ∈ X.
Moreover, taking the limit as m →∞ we get

S(xn, xn, x) ≤ 2kn+1

1− k
S(x0, x0, x1).

It implies that

S(Txn, Txn, x) ≤ 2kn

1− k
S(x0, x0, Tx0).
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Now we prove that x is a fixed point of T . By using (2.1) again we get

S(xn+1, xn+1, Tx) = S(Txn, Txn, Tx)

≤ M
(
S(xn, xn, x), S(Txn, Txn, x), S(Txn, Txn, xn),

S(Tx, Tx, xn), S(Tx, Tx, x)
)

= M
(
S(xn, xn, x), S(xn+1, xn+1, x), S(xn+1, xn+1, xn),

S(Tx, Tx, xn), S(Tx, Tx, x)
)
.

Note that M ∈M, then using Lemma 1.6 and taking the limit as n →∞ we obtain

S(x, x, Tx) ≤ M
(
0, 0, 0, S(Tx, Tx, x), S(Tx, Tx, x)

)
.

Then, from Lemma 1.5, we obtain

S(x, x, Tx) ≤ M
(
0, 0, 0, S(x, x, Tx), S(x, x, Tx, )

)
.

Since M satisfies the condition (C1), then S(x, x, Tx) ≤ k · 0 = 0. This proves that
x = Tx.

(2) Let x, y be fixed points of T . We shall prove that x = y. It follows
from (2.1) and Lemma 1.5 that

S(x, x, y) = S(Tx, Tx, Ty)

≤ M
(
S(x, x, y), S(Tx, Tx, x), S(Tx, Tx, y), S(Ty, Ty, x), S(Ty, Ty, y)

)

= M
(
S(x, x, y), 0, S(x, x, y), S(y, y, x), 0

)

= M
(
S(x, x, y), 0, S(x, x, y), S(x, x, y), 0

)
.

Since M satisfies the condition ((C2), then S(x, x, y) = 0. This proves that x = y.
(3) Let x be the fixed point of T and yn → x ∈ X. By Corollary 2.4, we need

to prove that Tyn → Tx. It follows from (2.1) that

S(x, x, Tyn) = S(Tx, Tx, Tyn)

≤ M
(
S(x, x, yn), S(Tx, Tx, x), S(Tx, Tx, yn),

S(Tyn, T yn, x), S(Tyn, T yn, yn)
)

= M
(
S(x, x, yn), 0, S(x, x, yn), S(Tyn, T yn, x), S(Tyn, T yn, yn)

)
.

Since M satisfies the condition (C3) and by (S2)

S(Tyn, T yn, yn) ≤ 2S(Tyn, T yn, x) + S(yn, yn, x)

then we have

S(x, x, Tyn) ≤ M
(
S(x, x, yn), 0, S(x, x, yn), 0, S(x, x, yn)

)

+ M
(
0, 0, 0, S(Tyn, Tyn, x), 2.S(Tyn, T yn, x)

)

≤ M
(
S(x, x, yn), 0, S(x, x, yn), 0, S(x, x, yn)

)
+ k S(Tyn, T yn, x).

Therefore

S(x, x, Tyn) ≤ 1
1− k

M
(
S(x, x, yn), 0, S(x, x, yn), 0, S(x, x, yn)

)
.
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Note that M ∈M, hence taking the limit as n →∞ we get S(x, x, Tyn) → 0. This
proves that Tyn → x = Tx.

Next, we give some analogues of fixed point theorems in metric spaces for S-
metric spaces by combining Theorem 2,6 with examples of M ∈M and M satisfies
conditions (C1), (C2) and (C3). The following corollary is an analogue of Banach’s
contraction principle.

Corollary 2.7. [13, Theorem 3.1] Let T be a self-map on a complete S-metric
space (X, S) and

S(Tx, Tx, Ty) ≤ LS(x, x, y)
for some L ∈ [0, 1) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = Lx for
some L ∈ [0, 1) and all x, y, z, s, t ∈ R+.

The following corollary is an analogue of R. Kannan’s result in [8].

Corollary 2.8. Let T be a self-map on a complete S-metric space (X,S) and

S(Tx, Tx, Ty) ≤ a
(
S(Tx, Tx, x) + S(Ty, Ty, y)

)

for some a ∈ [0, 1/2) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = a (y + t)
for some a ∈ [0, 1/2) and all x, y, z, s, t ∈ R+. Indeed, M is continuous. First, we
have M(x, x, 0, z, y) = a(x + y). So, if y ≤ M(x, x, 0, z, y) with z ≤ 2x + y, then
y ≤ a/(1− a)′, x with a/(1− a) < 1. Therefore, T satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = 0, then y = 0. Therefore, T satisfies the condi-
tion (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = a(x2 + x5) ≤ a[(y2 + z2) + (y5 + z5)]

= a(y2 + z2) + a.(y5 + z5) = M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover
M(0, 0, 0, y, 2y) = a(0 + 2y) = 2ay

where 2a < 1. Therefore, T satisfies the condition (C3).
Example 2.9. Let R be the usual S-metric space as in Example 1.7 and let

Tx =
{

1/2 if x ∈ [0, 1)
1/4 if x = 1.

Then T is a self-map on a complete S-metric space [0, 1] ⊂ R. For all x ∈ (3/4, 1)
we have

S(Tx, Tx, T1) = S(1/2, 1/2, 1/4) = |1/2− 1/4|+ |1/2− 1/4| = 1/2

S(x, x, 1) = |x− 1|+ |x− 1| = 2|x− 1| < 1/2.
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Then T does not satisfy the condition of Corollary 2.7. We also have

S(Tx, Tx, x) =
{

2|1/2− x| if x ∈ [0, 1)
3/2 if x = 1.

It implies that

5/12
(
(S(Tx, Tx, x) + S(Ty, Ty, y)

)

=
{

5/6
(|1/2− x|+ |1/2− y|) if x, y ∈ [0, 1)

5/12|1/2− x|+ 5/8 if x ∈ [0, 1), y = 1.

Then we get S(Tx, Tx, Ty) ≤ 5/12
(
(S(Tx, Tx, x) + S(Ty, Ty, y)

)
. Therefore, T

satisfies the condition of Corollary 2.8. It is clear that x = 1/2 is the unique fixed
point of T .

The following corollary is an analogue of R. M. T. Bianchini’s result in [3].

Corollary 2.10. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ h max{S(Tx, Tx, x), S(Ty, Ty, y)}
for some h ∈ [0, 1) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, if h ∈ [0, 1/2), then T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) =
h max{y, t} for some h ∈ [0, 1) and all x, y, z, s, t ∈ R+. Indeed, M is continu-
ous. First, we have M(x, x, 0, z, y) = h max{x, y}. So, if y ≤ M(x, x, 0, z, y) with
z ≤ 2x + y, then y ≤ hx or y ≤ h y. Therefore, y ≤ h x. Therefore, T satisfies the
condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = h max{y, 0} = h y, then y = 0 since h < 1/2.
Therefore, T satisfies the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = hmax{x2, x5} ≤ h max{y2 + z2, y5 + z5}
≤ hmax{y2, y5}+ h max{z2, z5} = M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover, if h ∈ [0, 1/2), then 2h < 1 and M(0, 0, 0, y, 2y) = h max{0, 2y} = 2h y
where 2h < 1. Therefore, T satisfies the condition (C3).

Example 2.11. Let R be the usual S-metric space as in Example 1.7 and let
Tx = x/3 for all x ∈ [0, 1]. We have

S(Tx, Tx, Ty) = S(x/3, x/3, y/3) = |x/3− y/3|+ |x/3− y/3| = 2/3|x− y|
S(Tx, Tx, x) = S(x/3, x/3, x) = |x/3− x|+ |x/3− x| = 4/3|x|
S(Ty, Ty, y) = S(y/3, y/3, y) = |y/3− y|+ |y/3− y| = 4/3|y|
S(Tx, Tx, x) + S(Ty, Ty, y) = 4/3(|x|+ |y|)

max{S(Tx, Tx, x), S(Ty, Ty, y)} = 4/3max{|x|, |y|}.
It implies that S(T1, T1, T0) = 2/3, S(T1, T1, 1)+S(T0, T0, 0) = 4/3. This proves
that T does not satisfy the condition of Corollary 2.8. We also have that T satisfies
the condition of Corollary 2.10 with h = 3/4 and T has a unique fixed point x = 0.
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The following corollary is an analogue of S. Reich’s result in [12].

Corollary 2.12. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ aS(x, x, y) + b S(Tx, Tx, x) + c S(Ty, Ty, y)

for some a, b, c ≥ 0, a + b + c < 1, and all x, y ∈ X. Then T has a unique fixed
point in X. Moreover, if c < 1/2, then T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = ax +
by + ct for some a, b, c ≥ 0, a + b + c < 1 and all x, y, z, s, t ∈ R+. Indeed, M is
continuous. First, we have M(x, x, 0, z, y) = ax+ bx+ cy. So, if y ≤ M(x, x, 0, z, y)
with z ≤ 2x + y, then y ≤ (a + b)/(1− c) x with (a + b)/(1− c) < 1. Therefore, T
satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = ay, then y = 0 since a < 1. Therefore, T satisfies
the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = ax1 + bx2 + cx5

≤ a(y1 + z1) + b(y2 + z2) + c(y5 + z5)

= (ay1 + by2 + cy5) + (az1 + bz2 + cz5)

= M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover M(0, 0, 0, y, 2y) = 2cy where 2c < 1. Therefore, T satisfies the condi-
tion (C3).

Example 2.13. Let R be the usual S-metric space as in Example 1.7 and let
Tx = x/2 for all x ∈ [0, 1]. We have

S(Tx, Tx, Ty) = |x/2− y/2|+ |x/2− y/2| = |x− y|
S(x, x, y) = |x− y|+ |x− y| = 2|x− y|

S(Tx, Tx, x) = |x/2− x|+ |x/2− x| = |x|.
Then S(Tx, Tx, T0) = |x|, max{S(Tx, Tx, x), S(T0, T0, 0)} = |x|. This proves that
T does not satisfy the condition of Corollary 2.10. We also have

S(Tx, Tx, Ty) ≤ 1/2S(x, x, y) + 1/3S(Tx, Tx, x) + 1/3S(Ty, Ty, y).

Then T satisfy the condition of Corollary 2.12. It is clear that T has a unique fixed
point x = 0.

The following corollary is an analogue of S. K. Chatterjee’s result in [4].

Corollary 2.14. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ h max{S(Tx, Tx, y), S(Ty, Ty, x)}
for some h ∈ [0, 1/3) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, T is continuous at the fixed point.
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Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) =
h max{z, s} for some h ∈ [0, 1/3) and all x, y, z, s, t ∈ R+. Indeed, M is con-
tinuous. First, we have M(x, x, 0, z, y) = h max{0, z}. So, if y ≤ M(x, x, 0, z, y)
with z ≤ 2x + y, then y ≤ 2hx + hy. So y ≤ 2h/(1 − h)x with 2h/(1 − h) < 1.
Therefore, T satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = hy, then y = 0 since h < 1/3. Therefore, T
satisfies the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = hmax{x3, x4} ≤ h max{y3 + z3, y4 + z4}
≤ hmax{y3, y4}+ h max{z3, z4} = M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover
M(0, 0, 0, y, 2y) = h max{0, y} = hy

where h < 1. Therefore, T satisfies the condition (C3).

Corollary 2.15. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ a.
(
S(Tx, Tx, y) + S(Ty, Ty, x)

)

for some a ∈ [0, 1/3) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = a(z + s)
for some a ∈ [0, 1/3) and all x, y, z, s, t ∈ R+. Indeed, M is continuous. First, we
have M(x, x, 0, z, y) = a(0 + z) = az. So, if y ≤ M(x, x, 0, z, y) with z ≤ 2x + y,
then y ≤ 2ax + ay. So y ≤ 2a/(1− a) x with 2a/(1− a) < 1. Therefore, T satisfies
the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = a(y + y) = 2ay then y = 0 since 2a < 2/3.
Therefore, T satisfies the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = a(x3 + x4) ≤ a(y3 + z3 + y4 + z4)

= a(y3 + y4) + a(z3 + z4) = M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover M(0, 0, 0, y, 2y) = a(0 + y) = ay where a < 1. Therefore, T satisfies the
condition (C3).

Example 2.16. Let R be the usual S-metric space as in Example 1.7 and
let Tx = x/3 for all x ∈ [0, 1]. Then we have S(Tx, Tx, Ty) = 2|x/3 − y/3| =
2/3|x − y|, S(Tx, Tx, y) = 2|x/3 − y|, S(Ty, Ty, x) = 2|y/3 − x|. It implies that
S(T1, T1, T0) = 2/3, S(T1, T1, 0) = 2/3, S(T0, T0, 1) = 2. This proves that T
does not satisfy the condition of Corollary 2.14. We also have

S(Tx, Tx, y) + S(Ty, Ty, x) = 2|x/3− y|+ 2|y/3− x| ≥ 8/3|x− y|.
Therefore, T satisfies the condition of Corollary 2.15. It is clear that T has a unique
fixed point x = 0.
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Corollary 2.17. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ aS(x, x, y) + bS(Tx, Tx, y) + cS(Ty, Ty, x)

for some a, b, c ≥ 0, a + b + c < 1, a + 3c < 1 and all x, y ∈ X. Then T has a
unique fixed point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = ax+bz+
cs for some a, b, c ≥ 0, a+b+c < 1, a+3c < 1 and all x, y, z, s, t ∈ R+. Indeed, M is
continuous. First, we have M(x, x, 0, z, y) = ax+cz. So, if y ≤ M(x, x, 0, z, y) with
z ≤ 2x+y, then y ≤ ax+2cx+cy. So y ≤ (a+2c)/(1−c) x with (a+2c)/(1−c) < 1.
Therefore, T satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = ay + by + cy = (a + b + c)y then y = 0 since
a + b + c < 1. Therefore, T satisfies the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = ax1 + bx3 + cx4 ≤ a(y1 + z1) + b(y3 + z3) + c(y4 + z4)

= (ay1 + by3 + cy4) + (az1 + bz3 + cz4)

= M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover M(0, 0, 0, y, 2y) = cy where c < 1. Therefore, T satisfies the condi-
tion (C3).

Example 2.18. Let R be the usual S-metric space as in Example 1.7
and let Tx = 3/4(1 − x) for all x ∈ [0, 1]. Then we have S(Tx, Tx, Ty) =
3/2|x − y|, S(Tx, Tx, y) = 2|3/4(1 − x) − y|. It implies that S(T1, T1, T0) = 3/2,
max{S(T1, T1, 0), S(T0, T0, 1)} = max{0, 1/2} = 1/2. This proves that T does
not satisfy the condition of Corollary 2.14. We also have

4/5S(x, x, y) + 0 · S(Tx, Tx, y) + 0 · S(Ty, Ty, x) = (8/5)|x− y| ≥ S(Tx, Tx, Ty).

Therefore, T satisfies the condition of Corollary 2.17. It is clear that T has a unique
fixed point x = 3/7.

The following corollary is an analogue of G. E. Hardy and T. D. Rogers’ result
in [6].

Corollary 2.19. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ a1S(x, x, y) + a2S(Tx, Tx, x) + a3S(Tx, Tx, y)

+ a4S(Ty, Ty, x) + a5S(Ty, Ty, y)

for some a1, . . . , a5 ≥ 0 such that max{a1 +a2 +3a4 +a5, a1 +a3 +a4, a4 +2a5} < 1
and all x, y ∈ X. Then T has a unique fixed point in X. Moreover, T is continuous
at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) = a1x +
a2y+a3z +a4s+a5t for some a1, . . . , a5 ≥ 0 such that max{a1 +a2 +3a4 +a5, a1 +
a3 + a4, a4 + 2a5} < 1 and all x, y, z, s, t ∈ R+. Indeed, M is continuous. First,
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we have M(x, x, 0, z, y) = a1x + a2x + a4z + a5y. So, if y ≤ M(x, x, 0, z, y) with
z ≤ 2x + y, then

y ≤ a1x + a2x + a4z + a5y ≤ a1x + a2x + a4(2x + y) + a5y.

Then y ≤ (a1 + a2 + 2a4)/(1− a4 − a5) x with (a1 + a2 + 2a4)/(1− a4 − a5) < 1.
Therefore, T satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = a1y + a3y + a4y = (a1 + a3 + a4)y then y = 0
since a1 + a3 + a4 < 1. Therefore, T satisfies the condition (C2).

Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = a1x1 + · · ·+ a5x5

≤ a1(y1 + z1) + · · ·+ a5(y5 + z5)

= (a1y1 + · · ·+ a5y5) + (a1z1 + · · ·+ a5z5)

= M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover M(0, 0, 0, y, 2y) = a4y+2a5y = (a4+2a5)y where a4+2a5 < 1. Therefore,
T satisfies the condition (C3).

Example 2.20. Let T be the map in Example 2.16. Then we have

S(T1, T1, T1/2) = 1,

aS(1, 1, 1/2) + bS(T1, T1, 1/2) + cS(T1/2, T1/2, 1) = a + 2c.

This proves that T does not satisfy the condition of Corollary 2.17. We also have

0·S(x, x, y)+(3/4)S(Tx, Tx, x)+(3/4)S(Tx, Tx, y)+0·S(Ty, Ty, x)+0·S(Ty, Ty, y)

= (3/4)S(Tx, Tx, x) + (3/4)S(Tx, Tx, y) ≥ S(Tx, Tx, Ty).

Therefore, T satisfies the condition of Corollary 2.19. It is clear that T has a unique
fixed point x = 0.

The following corollary is an analogue of L. B. Ćirić’s result in [5].

Corollary 2.21. Let T be a self-map on a complete S-metric space (X, S)
and

S(Tx, Tx, Ty) ≤ h max
{
S(x, x, y), S(Tx, Tx, x), S(Tx, Tx, y),

S(Ty, Ty, x), S(Ty, Ty, y)
}

for some h ∈ [0, 1/3) and all x, y ∈ X. Then T has a unique fixed point in X.
Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.6 with M(x, y, z, s, t) =
h max{x, y, z, s, t} for some h ∈ [0, 1/3) and all x, y, z, s, t ∈ R+. Indeed, M
is continuous. First, we have M(x, x, 0, z, y) = h max{x, x, 0, z, y}. So, if y ≤
M(x, x, 0, z, y) with z ≤ 2x + y, then y ≤ hx or y ≤ hz ≤ h(2x + y). Then y ≤ kx
with k = max{h, 2h/(1− h)} < 1. Therefore, T satisfies the condition (C1).

Next, if y ≤ M(y, 0, y, y, 0) = h.y, then y = 0 since h < 1/3. Therefore, T
satisfies the condition (C2).
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Finally, if xi ≤ yi + zi for i ≤ 5, then

M(x1, . . . , x5) = h max{x1, . . . , x5} ≤ h max{y1 + z1, . . . , y5 + z5}
≤ h max{y1, . . . , y5}+ hmax{z1, . . . , z5}
= M(y1, . . . , y5) + M(z1, . . . , z5).

Moreover M(0, 0, 0, y, 2y) = 2hy where 2h < 1. Therefore, T satisfies the condi-
tion (C3).
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